JPH04116196A - Method and apparatus for manufacturing porous body metal - Google Patents

Method and apparatus for manufacturing porous body metal

Info

Publication number
JPH04116196A
JPH04116196A JP23197890A JP23197890A JPH04116196A JP H04116196 A JPH04116196 A JP H04116196A JP 23197890 A JP23197890 A JP 23197890A JP 23197890 A JP23197890 A JP 23197890A JP H04116196 A JPH04116196 A JP H04116196A
Authority
JP
Japan
Prior art keywords
oxidizing atmosphere
porous metal
metal
producing
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23197890A
Other languages
Japanese (ja)
Inventor
Atsushi Nishikawa
西河 穆
Tetsuya Nishi
西 徹也
Masayuki Furukawa
古川 正行
Masaaki Honda
正明 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP23197890A priority Critical patent/JPH04116196A/en
Publication of JPH04116196A publication Critical patent/JPH04116196A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To obtain a porous body metal having high mechanical strength and high rigidity by heating and removing an organic body under non-oxidizing atmosphere at the time of removing the organic body after applying metal on skelton surface of the organic body having three dimensional net-work structure. CONSTITUTION:Basis material of the organic body, such as nonwoven fabric, having space communicating with the inner part, is used and a carbon conductive coating material is applied on this, and after giving the conductivity, the plating is executed and metal of Ni, etc., is electrodeposited on the skelton surface of basis material. The organic body in the basis material executed with this plating, is heated and removed under non-oxidizing atmosphere to make the porous body metal. Then, the above non-oxidizing atmosphere is desirable to be hydrogen gas, nitrogen gas or mixed gas of these. Further, the above heating temp. is desirable to be >=800 deg.C and the above organic body is desirable to be urethane resin.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、連通空間を有する三次元綱状構造の多孔体
金属を製造する際に、基材の有機物体を加熱除去する方
法およびその装置に関するものである。
Detailed Description of the Invention [Field of Industrial Application] This invention provides a method and apparatus for removing organic matter from a base material by heating when manufacturing a porous metal having a three-dimensional wire-like structure having communicating spaces. It is related to.

〔従来の技術〕[Conventional technology]

三次元綱状構造の多孔体金属は、電池の電極、各種フィ
ルター、触媒の担体等に使用されている。
Porous metals with a three-dimensional wire-like structure are used for battery electrodes, various filters, catalyst carriers, etc.

このような多孔体金属は、連通気孔を有する発泡樹脂、
不織布の有機物体を基材にしてこの基材の骨格表面上に
、無電解メツキ、気相メツキ、塗布等の方法により金属
、あるいはカーボンを被覆して導電性を付与し、さらに
、必要な厚さまで金属を電気メツキした後に、基材の有
機物体を除去することによって製造されている。
Such porous metals include foamed resins with continuous pores,
The skeletal surface of the nonwoven organic substance is coated with metal or carbon by electroless plating, vapor phase plating, coating, etc. to provide conductivity, and then the required thickness is coated with metal or carbon. It is manufactured by electroplating the metal and then removing the organic matter from the substrate.

ところで、従来、上記基材の有機物体の除去には、第5
図に示すような熱処理装置が使用されている。
By the way, conventionally, in order to remove organic substances from the base material, a fifth
A heat treatment device as shown in the figure is used.

上記の熱処理装置は、焙焼炉1と、還元熱処理炉2と、
基材Aと焙焼炉1、還元熱処理炉2内をそれぞれ通過さ
せるための搬送キャリヤとしてのメンシュベルト、金属
ベルト3とによって構成され、基材Aを焙焼炉1内にお
いて大気中で焼却除去した後、焙焼によって酸化した金
属を、還元熱処理炉2において還元処理するようになっ
ている。
The above heat treatment apparatus includes a roasting furnace 1, a reduction heat treatment furnace 2,
It is composed of a mensch belt and a metal belt 3 as transport carriers for passing the base material A through the roasting furnace 1 and the reduction heat treatment furnace 2, respectively, and the base material A is incinerated and removed in the atmosphere in the roasting furnace 1. After that, the metal oxidized by roasting is subjected to reduction treatment in a reduction heat treatment furnace 2.

第5図において、付量4はヒーター、5は水冷管、6は
マツフルをそれぞれ示している。
In FIG. 5, the attached amount 4 indicates the heater, 5 indicates the water cooling pipe, and 6 indicates the matsufuru.

〔発明が解決しようとする課題] ところが、上記のような熱処理装置を使用した方法では
、焙焼炉1内において金属骨格が酸化され、特に電析し
た金属は粒界が激しく酸化されるので、この後還元処理
を行っても、金属が密着、連結せず、機械的強度が小さ
く、剛性の弱い多孔体金属しか得られないという問題が
ある。
[Problems to be Solved by the Invention] However, in the method using the heat treatment apparatus as described above, the metal skeleton is oxidized in the roasting furnace 1, and in particular, the grain boundaries of the electrodeposited metal are severely oxidized. Even if a reduction treatment is performed after this, there is a problem in that the metals do not adhere or connect, and only porous metals with low mechanical strength and rigidity are obtained.

また、焙焼炉1内において金属骨格が酸化してもろくな
ると、焙焼炉1および還元熱処理炉2を連続的に通過さ
せようとした場合に、そのまま弓張ることができないの
で、搬送用のキャリヤとして、上記のように、メソシュ
ヘルド、金属ベルト等を必要とする。このため、焙焼炉
1や還元熱処理炉2では、搬送用のキャリヤを加熱する
ために、余分なエネルギーを必要とする。
In addition, if the metal skeleton becomes brittle due to oxidation in the roasting furnace 1, it will not be possible to straighten it as it is when passing through the roasting furnace 1 and the reduction heat treatment furnace 2 continuously. As mentioned above, it requires a metosheld, metal belt, etc. Therefore, the roasting furnace 1 and the reduction heat treatment furnace 2 require extra energy to heat the carrier for transportation.

さらに、還元熱処理炉2では、大量の還元性ガスを必要
とするという問題もある。
Furthermore, the reduction heat treatment furnace 2 also has the problem of requiring a large amount of reducing gas.

そこで、この発明は、上記の問題を解決するために、多
孔体金属を製造する際に、金属を酸化させずに有機物体
を除去する方法と装置を捉供しようとするものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a method and apparatus for removing organic matter without oxidizing metal when producing porous metal.

[課題を解決するだめの手段] この発明は、上記の課題を解決するために、炉内を非酸
化性雰囲気に調整した熱処理装置により、基材の有機物
体を、非酸化性雰囲気下で加熱除去するようにしたので
ある。
[Means for Solving the Problems] In order to solve the above problems, the present invention heats an organic substance as a base material in a non-oxidizing atmosphere using a heat treatment device whose inside of the furnace is adjusted to a non-oxidizing atmosphere. I decided to remove it.

〔作用〕[Effect]

基材の有機物体を非酸化性雰囲気下で加熱すると、有機
物体が加熱分解によって気化して除去され、この際、金
属は酸化されないので、機械的強度が大きく、剛性の強
い多孔体金属を得ることができる。
When the base organic material is heated in a non-oxidizing atmosphere, the organic material is vaporized and removed by thermal decomposition. At this time, the metal is not oxidized, so a porous metal with high mechanical strength and high rigidity is obtained. be able to.

〔実施例〕〔Example〕

この発明における非酸化性雰囲気としてCヨ、水素ガス
、窒素ガス、水素ガスと窒素ガスの混合ガスが使用され
るが、有機物体を加熱分解した気化ガスは、炉外に引出
されて燃焼させるので、その際には、可燃性ガスの存在
が有効であるため、上記混合ガス中の水素ガスの混合比
率は5%以上であることが望ましい。
In this invention, hydrogen gas, nitrogen gas, or a mixed gas of hydrogen gas and nitrogen gas are used as the non-oxidizing atmosphere, but since the vaporized gas obtained by thermally decomposing the organic matter is drawn out of the furnace and burned. In that case, since the presence of flammable gas is effective, it is desirable that the mixing ratio of hydrogen gas in the mixed gas is 5% or more.

また、この発明においては、有機物体を蒸し焼き状態で
炭化させずにガス化することが重要であり、そのために
は、加熱温度を高くして有機物体の液化さらにガス化の
速度を早めることが望ましい。例えば、加熱温度が、4
50°C〜650°Cの場合、有機物体の熱分解は行わ
れるが、その液化さらにガス化の速度が遅く、炉内汚染
が激しく実用生産に適さないし、得られる多孔体金属も
折り曲げ試験によって亀裂が生じる。また、650°C
〜800°Cでも折り曲げ試験によって多孔体金属に亀
裂が生しる。
In addition, in this invention, it is important to gasify the organic matter without carbonizing it in a steamed state, and for this purpose, it is desirable to increase the heating temperature to accelerate the rate of liquefaction and gasification of the organic matter. . For example, if the heating temperature is 4
In the case of 50°C to 650°C, thermal decomposition of organic substances takes place, but the rate of liquefaction and gasification is slow, the furnace is heavily contaminated, and it is not suitable for practical production. Cracks occur. Also, 650°C
Even at ~800°C, cracks occur in the porous metal during the bending test.

したがって、この発明における加熱温度は800°C以
上であることが望ましい。
Therefore, it is desirable that the heating temperature in this invention is 800°C or higher.

また、この発明においては非酸化性雰囲気中に酸素が混
入していてもよいが、酸素量が多くなれば有機物体の分
解は早くなっても金属の酸化が進むので、酸素量は金属
が酸化変色しない量でなければならない。
In addition, in this invention, oxygen may be mixed in the non-oxidizing atmosphere, but if the amount of oxygen is large, the oxidation of the metal will proceed even though the decomposition of organic substances will be faster. It must be in an amount that does not cause discoloration.

以下に、この発明によって多孔体金属を製造する場合の
具体例を示す。
A specific example of producing a porous metal according to the present invention will be shown below.

まず、有機物体の基材Aとして、セル数(1インチに接
する孔数を表す)50ケ/インチ、厚さ1.8閣、幅5
00mの連通気孔を有するウレタン発泡樹脂シートを使
用して、この基材Aに、第2図に示すようなカーボン塗
布装置によってカーボン導電塗料11を塗布して導電性
を付与する。
First, as the base material A of the organic substance, the number of cells (representing the number of holes touching 1 inch) is 50 cells/inch, the thickness is 1.8 mm, and the width is 5 mm.
Using a urethane foam resin sheet having 00 m of continuous pores, a carbon conductive paint 11 is applied to this base material A using a carbon coating device as shown in FIG. 2 to impart conductivity.

第2図に示すカーボン塗布装置は、カーボン導!塗料液
11の入った塗布槽12内に、ロール体13から繰り出
した基材Aを引き入れて基材Aにカーボン導1塗料液1
1を塗布した後、基材Aを塗布槽12から引き出し、ヒ
ーター14によって乾燥させた後に巻取りロール15に
巻き取るようになっている。
The carbon coating device shown in Fig. 2 is a carbon coating device. The base material A fed out from the roll body 13 is drawn into the coating tank 12 containing the paint liquid 11, and the carbon conductor 1 paint liquid 1 is applied to the base material A.
1, the base material A is pulled out from the coating tank 12, dried by a heater 14, and then wound onto a winding roll 15.

上記のようにして導電性を付与した基材Aを、第3図に
示すメツキ装置によって一次メツキを行い、その後、第
4図に示すメツキ装置によって二次メツキを行って、基
材Aの骨格表面に330 g /イのニッケルを電析さ
せた。メツキの総電流量は1000A、メツキ時間は2
0分であった。
The base material A, which has been imparted with conductivity as described above, is subjected to primary plating using the plating device shown in FIG. 3, and then second plating is performed using the plating device shown in FIG. 330 g/I of nickel was electrodeposited on the surface. The total current of plating is 1000A, the plating time is 2
It was 0 minutes.

第3図に示すメツキ装置は、メッキ槽17内に給電ドラ
ム18と、ニッケルの陽極19を設け、導電性を付与し
た基材Aを上記給電ドラム18に巻き付けるように走行
させてメツキを行うようになっている。
The plating device shown in FIG. 3 includes a power supply drum 18 and a nickel anode 19 in a plating tank 17, and performs plating by running a conductive base material A so as to wrap it around the power supply drum 18. It has become.

また、第4図に示すメツキ装置は、メツキ液20の入っ
た第1メツキ槽21、第2メツキ槽22、第3メツキ槽
23内を、導電性を付与した基材Aを順次、対向するよ
うに設けた給電ロール24と駆動ロール25によって挟
んで通過させてメツキするようにしたものであり、第1
メツキ槽21、第2メツキ槽22、第3メツキ槽23内
には、走行する基材Aの上下に上部陽極26と下部陽極
27が設けられている。
Further, the plating apparatus shown in FIG. 4 sequentially faces the conductive substrate A through the first plating tank 21, second plating tank 22, and third plating tank 23 containing the plating liquid 20. The first plate is plated by being sandwiched between a power supply roll 24 and a drive roll 25, which are provided as shown in FIG.
In the plating tank 21, the second plating tank 22, and the third plating tank 23, an upper anode 26 and a lower anode 27 are provided above and below the traveling base material A.

次に、上記のようにして骨格表面にメツキが施された基
材Aを、第1図に示すこの発明に係る熱処理装置によっ
て熱処理を行って、基材Aの有機物体を加熱除去するこ
とにより、多孔体金属が得られる。
Next, the base material A whose skeleton surface has been plated as described above is heat-treated by the heat treatment apparatus according to the present invention shown in FIG. , a porous metal is obtained.

第1図に示す熱処理装置は、マンフル28で覆った炉内
が非酸化雰囲気に調整されており、前段部分がヒーター
29による加熱分解ゾーン30になっており、後段部分
が水冷却管31による冷却ゾーン32になっている。基
材Aは、対向一対の駆動ロール33に挟まれて炉内を通
過するようになっており、基材Aが加熱分解して発生す
る可燃性ガスは炉外に引出されて、燃焼させられる。ま
た、炉の出入口部分には、窒素ガスのシールゾーン34
が設けられており、出入口部分における着火が防止され
ている。
In the heat treatment apparatus shown in FIG. 1, the inside of the furnace covered with a manful 28 is adjusted to a non-oxidizing atmosphere, the front part is a thermal decomposition zone 30 by a heater 29, and the latter part is cooled by a water cooling pipe 31. It's in zone 32. The base material A is sandwiched between a pair of opposing drive rolls 33 and passes through the furnace, and the flammable gas generated by thermal decomposition of the base material A is drawn out of the furnace and burned. . In addition, a nitrogen gas seal zone 34 is provided at the entrance and exit portion of the furnace.
is provided to prevent ignition at the entrance/exit area.

上記熱処理装置の炉内の雰囲気を、水素ガスと窒素ガス
との容積混合比率を1:0.3:1.1:3.1:19
.1:30にして、加熱温度800°C〜850″Cに
して熱処理を行って得られた多孔体金属の機械的特性を
表1のNCLI〜NCL5に示す。
The atmosphere in the furnace of the above heat treatment equipment is set at a volumetric mixing ratio of hydrogen gas and nitrogen gas of 1:0.3:1.1:3.1:19.
.. The mechanical properties of the porous metals obtained by heat treatment at a heating temperature of 800° C. to 850″C are shown in NCLI to NCL5 in Table 1.

また、上記熱処理装置の炉内を、水素ガス3対窒素ガス
1の容積混合比率の雰囲気で加熱温度を450℃〜65
0°Cと650°C〜800°Cに設定して熱処理を行
って得られた多孔体金属の機械的特性を表1の隘6、N
[L7に示す。
In addition, the inside of the furnace of the heat treatment apparatus was heated at a heating temperature of 450°C to 65°C in an atmosphere with a volumetric mixing ratio of 3 parts hydrogen gas to 1 part nitrogen gas.
The mechanical properties of porous metals obtained by heat treatment at 0°C and 650°C to 800°C are shown in Table 1, column 6, N
[Shown in L7.

さらに、比較例として第5回に示す従来の熱処理装置を
使用して、600°C〜650°Cの焙焼炉1において
20分間、大気雰囲気中で基材Aの有機物体を焼却除去
した後、水素ガス3対窒素ガス1の容積混合比率の雰囲
気で温度800°C〜850°Cにした還元熱処理炉2
で熱処理を行って得られた多孔体金属の機械的特性を表
1のNα8に示す。
Furthermore, as a comparative example, using the conventional heat treatment equipment shown in Part 5, the organic matter of the base material A was removed by incineration in the roasting furnace 1 at 600°C to 650°C for 20 minutes in the air atmosphere. , a reduction heat treatment furnace 2 at a temperature of 800°C to 850°C in an atmosphere with a volumetric mixing ratio of 3 hydrogen gas to 1 nitrogen gas.
The mechanical properties of the porous metal obtained by heat treatment are shown in Nα8 in Table 1.

表1 表1の結果から、水素ガス含有量が5%以上の場合は、
No、 8に示す従来例よりも強度の向上がみられ、水
素ガス含有量が5%以下の場合は従来例に近い機械的特
性であることがわかった。
Table 1 From the results in Table 1, when the hydrogen gas content is 5% or more,
It was found that the strength was improved compared to the conventional example shown in No. 8, and when the hydrogen gas content was 5% or less, the mechanical properties were close to those of the conventional example.

また、熱処理温度が450°C〜650°Cの場合は、
基材のウレタンの熱分解はできても、液化から気化への
速度が遅く、炉内汚染が激しかった。
In addition, if the heat treatment temperature is 450°C to 650°C,
Although it was possible to thermally decompose the base material urethane, the rate from liquefaction to vaporization was slow, and the inside of the furnace was heavily contaminated.

また、熱処理温度が650°C〜800°Cの場合は、
変色は少なかったが、折り曲げ試験で亀裂が生した。
In addition, if the heat treatment temperature is 650°C to 800°C,
Although there was little discoloration, cracks appeared during the bending test.

〔発明の効果] 以上のように、この発明によれば、金属結晶粒が大きく
、骨格構造そのものに欠陥の少ない、機械的強度が大き
くて剛性の強い多孔体金属を得ることができるという効
果がある。
[Effects of the Invention] As described above, according to the present invention, it is possible to obtain a porous metal having large metal crystal grains, few defects in the skeletal structure itself, high mechanical strength, and high rigidity. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る熱処理装置の概略図、第2回は
カーボン塗布装置の一例を示す概略図、第3図及び第4
圓はそれぞれメツキ装置の一例を示す概略図、第5図は
従来の熱処理装置の概略図である。 A・・・・・・基材、     30・・・・・・加熱
分解ゾーン、32・・・・・・冷却ゾーン。 特許出願人 住友電気工業株式会社 同 代理人  鎌   1)  文
Fig. 1 is a schematic diagram of a heat treatment apparatus according to the present invention, Fig. 2 is a schematic diagram showing an example of a carbon coating apparatus, Figs.
Each circle is a schematic diagram showing an example of a plating device, and FIG. 5 is a schematic diagram of a conventional heat treatment device. A: Base material, 30: Thermal decomposition zone, 32: Cooling zone. Patent applicant Sumitomo Electric Industries, Ltd. Agent Kama 1) Text

Claims (8)

【特許請求の範囲】[Claims] (1)内部連通空間を有する三次元網状構造の有機物体
の骨格表面に金属を被覆した後、上記基材の有機物体を
除去する多孔体金属の製造方法において、上記基材の有
機物体を、非酸化性雰囲気下で加熱除去することを特徴
とする多孔体金属の製造方法。
(1) A method for producing a porous metal in which the skeletal surface of an organic substance having a three-dimensional network structure having an internal communication space is coated with a metal, and then the organic substance of the base material is removed, wherein the organic substance of the base material is removed. A method for producing a porous metal, characterized by removing it by heating in a non-oxidizing atmosphere.
(2)上記非酸化性雰囲気が水素ガスである請求項(1
)記載の多孔体金属の製造方法。
(2) Claim (1) wherein the non-oxidizing atmosphere is hydrogen gas.
) The method for producing the porous metal described in ).
(3)上記非酸化性雰囲気が窒素ガスである請求項(1
)記載の多孔体金属の製造方法。
(3) Claim (1) wherein the non-oxidizing atmosphere is nitrogen gas.
) The method for producing a porous metal according to the method.
(4)上記非酸化性雰囲気が窒素ガスと水素ガスの混合
ガスである請求項(1)記載の多孔体金属の製造方法。
(4) The method for producing a porous metal according to claim (1), wherein the non-oxidizing atmosphere is a mixed gas of nitrogen gas and hydrogen gas.
(5)上記混合ガスの水素ガスの混合比率が5%以上で
ある請求項(4)記載の多孔体金属の製造方法。
(5) The method for producing a porous metal according to claim (4), wherein the mixing ratio of hydrogen gas in the mixed gas is 5% or more.
(6)上記加熱温度が800℃以上である請求項(1)
記載の多孔体金属の製造方法。
(6) Claim (1) wherein the heating temperature is 800°C or higher.
The method for producing the porous metal described above.
(7)上記有機物体がウレタン系樹脂である請求項(1
)記載の多孔体金属の製造方法。
(7) Claim (1) wherein the organic substance is a urethane resin.
) The method for producing the porous metal described in ).
(8)炉内が非酸化性雰囲気に調整されていることを特
徴とする多孔体金属を製造する際における有機物体の加
熱除去用の熱処理装置。
(8) A heat treatment apparatus for heating and removing organic matter during the production of porous metal, characterized in that the inside of the furnace is adjusted to a non-oxidizing atmosphere.
JP23197890A 1990-08-31 1990-08-31 Method and apparatus for manufacturing porous body metal Pending JPH04116196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23197890A JPH04116196A (en) 1990-08-31 1990-08-31 Method and apparatus for manufacturing porous body metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23197890A JPH04116196A (en) 1990-08-31 1990-08-31 Method and apparatus for manufacturing porous body metal

Publications (1)

Publication Number Publication Date
JPH04116196A true JPH04116196A (en) 1992-04-16

Family

ID=16932029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23197890A Pending JPH04116196A (en) 1990-08-31 1990-08-31 Method and apparatus for manufacturing porous body metal

Country Status (1)

Country Link
JP (1) JPH04116196A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08165590A (en) * 1994-12-14 1996-06-25 Shin Etsu Chem Co Ltd Production of porous metal
US5725750A (en) * 1996-04-19 1998-03-10 Sumitomo Electric Industries, Ltd. Process for producing porous iron metal body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08165590A (en) * 1994-12-14 1996-06-25 Shin Etsu Chem Co Ltd Production of porous metal
US5725750A (en) * 1996-04-19 1998-03-10 Sumitomo Electric Industries, Ltd. Process for producing porous iron metal body
AU713085B2 (en) * 1996-04-19 1999-11-25 Sumitomo Electric Industries, Ltd. Process for producing porous iron metal body
CN1109132C (en) * 1996-04-19 2003-05-21 住友电气工业株式会社 Process for producing porous iron metal bady

Similar Documents

Publication Publication Date Title
CN1970442B (en) Mesoporous carbon, method of preparing the same, and fuel cell using the carbon
CN1974381B (en) Mesoporous carbon including heteroatom, manufacturing method thereof, and fuel cell using the mesoporous carbon
US3160517A (en) Method of depositing metals and metallic compounds throughout the pores of a porous body
JPH0447430B2 (en)
JPH04116196A (en) Method and apparatus for manufacturing porous body metal
US2868702A (en) Method of forming a dielectric oxide film on a metal strip
Srikanth et al. Effect of high-temperature heat treatment duration on the purity and microstructure of MWCNTs
JPS6140459B2 (en)
CN110790267A (en) Preparation method of nitrogen-doped graphene
US2887984A (en) Apparatus for gas plating continuous length of metal strip
Takashima et al. Catalytic decomposition of trichloroethylene over Pt-/Ni-catalyst under microwave heating
JP2006273645A (en) Apparatus and method for continuously firing organic substance, carbon material, catalyst structure using the same, electrode for polymer electrolyte fuel cell, and polymer electrolyte fuel cell
US3567520A (en) Process for manufacturing electrodes of fuel cells
JPS58219945A (en) Catalyst for reforming hydrocarbon
Yamagiwa Liquid-phase synthesis of vertically aligned carbon nanotubes and related nanomaterials on preheated alloy substrates
US3055089A (en) Gaseous metal product and processes
JP2568175B2 (en) Method for producing glass plate coated with thin metal oxide layer
JPH0273988A (en) Production of porous metal
DE2453089A1 (en) REACTION BED FOR A CATALYTIC CRACKING SYSTEM
KR102276228B1 (en) Method for treating surface of carbon material
CN114597428B (en) Flexible carbon paper, preparation method thereof, gas diffusion layer and fuel cell
JPS62182264A (en) Method for sealing pore in thermally sprayed film
JPH0892669A (en) Heat treatment of metallic porous body
US3196003A (en) Process of making metal strips and sheets from waste metal
DE3047849C2 (en) Heating element for a high temperature furnace