JPH04115905A - Density measuring method and casting controlling system of grout material - Google Patents
Density measuring method and casting controlling system of grout materialInfo
- Publication number
- JPH04115905A JPH04115905A JP23633690A JP23633690A JPH04115905A JP H04115905 A JPH04115905 A JP H04115905A JP 23633690 A JP23633690 A JP 23633690A JP 23633690 A JP23633690 A JP 23633690A JP H04115905 A JPH04115905 A JP H04115905A
- Authority
- JP
- Japan
- Prior art keywords
- grout
- density
- grout material
- pipe bodies
- vibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011440 grout Substances 0.000 title claims abstract description 54
- 239000000463 material Substances 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title claims abstract description 10
- 238000005266 casting Methods 0.000 title abstract 2
- 230000003287 optical effect Effects 0.000 claims abstract description 7
- 230000005284 excitation Effects 0.000 claims abstract description 6
- 238000002347 injection Methods 0.000 claims description 18
- 239000007924 injection Substances 0.000 claims description 18
- 238000001514 detection method Methods 0.000 claims description 7
- 230000001681 protective effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 9
- 239000004568 cement Substances 0.000 description 8
- 238000001739 density measurement Methods 0.000 description 6
- 238000005086 pumping Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000008267 milk Substances 0.000 description 4
- 210000004080 milk Anatomy 0.000 description 4
- 235000013336 milk Nutrition 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000005251 gamma ray Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011083 cement mortar Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
Landscapes
- Measuring Volume Flow (AREA)
- Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、グラウト材の密度測定方法およびグラウト用
注入管理システムに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring the density of grout and an injection management system for grout.
ダムやトンネル工事においては、漏水、湧水を防止した
り、岩盤強化の目的で岩盤間隙をセメントミルクで充填
するセメントミルク注入が行われている。また、地盤沈
下のため構造物の基礎に生じた空洞充填、あるいはトン
ネルやシールドの裏込めなどの目的でセメントモルタル
を注入する方法が一般的に行われている。In dam and tunnel construction, cement milk injection is used to fill gaps in bedrock with cement milk to prevent water leaks and springs, and to strengthen bedrock. Additionally, cement mortar is generally injected to fill cavities created in the foundations of structures due to ground subsidence, or to backfill tunnels and shields.
しかるに、この種の注入工法では、注入後に全ての注入
位置において、注入効果を確認することは実際上不可能
である。したがって、注入するグラウト材料が所定の密
度等を有しているかについて予め管理する必要がある。However, with this type of injection method, it is practically impossible to confirm the injection effect at all injection positions after injection. Therefore, it is necessary to control in advance whether the grout material to be injected has a predetermined density or the like.
従来、セメントミルクおよびモルタルなどのグラウト材
の密度検出装置としては、たとえば特公昭57−456
48号公報において、ラジオアイソトープ(以下、R1
という)を用いたγ線密度計に関し、セメントミルク等
が流れる管に対して、RI対向側の管体部分に複数の透
過ガンマ線検出ユニットを配設し、計数効率の高い検出
システムを構成することによって、漏洩γ線量を著しく
低減し、安全性を高めるとともに、簡易に利用し得る密
度測定装置が開示されている。Conventionally, as a density detection device for grout materials such as cement milk and mortar, for example, the Japanese Patent Publication No. 57-456
In Publication No. 48, radioisotope (hereinafter referred to as R1
Regarding a gamma ray densitometer using a gamma ray densitometer, a detection system with high counting efficiency is constructed by arranging multiple transmitted gamma ray detection units in the tube body part on the side opposite to the RI for a tube through which cement milk, etc. flows. discloses a density measuring device that significantly reduces leakage gamma rays, increases safety, and is easy to use.
しかしながら、前記特公昭57−45648号公報記載
のRI式密度計によれば、グラウト材の密度を連続的に
測定できる点に関しては有用であるが、測定器自体が高
価であり経済的でない、RI線源の透過減衰により精度
確保が難しい、さらには、密度の小さい領域、たとえば
密度ρ≦1.082(g/c+++’)の場合にはバッ
クグランドノイズのため測定精度が極端に低下する、な
どの問題点があった。However, although the RI type density meter described in Japanese Patent Publication No. 57-45648 is useful in that it can continuously measure the density of grout, the measuring device itself is expensive and uneconomical. It is difficult to ensure accuracy due to the transmission attenuation of the radiation source, and furthermore, in areas with low density, for example, when density ρ≦1.082 (g/c+++'), measurement accuracy is extremely reduced due to background noise. There was a problem.
また、従来、前記RI式密度計を用いてグラウト材の注
入管理を行う場合には、グラウト送給経路の中間にRI
式密度計を組み込んだ場合には、その取扱いが特殊であ
るため専門業者に頼らざるを得ず、管理が間接的かつ複
雑になるなどの問題がある。また、前記RI式密度計は
人体に有害なガンマ−線を放射しているため、放射線障
害防止法上、その使用認可また使用届出申請などの諸手
続き、被曝線量の管理、健康管理などが義務付けられて
いるため、手続きや管理が煩わしいなどの問題もある。Conventionally, when controlling the injection of grout using the RI type density meter, it is necessary to use an RI
When a type density meter is incorporated, there are problems such as its handling is special, so it has to rely on a specialist, and its management becomes indirect and complicated. In addition, since the RI density meter emits gamma rays that are harmful to the human body, the Radiation Hazard Prevention Act requires various procedures such as application for approval and notification of use, radiation dose management, and health management. Because of this, there are problems such as cumbersome procedures and management.
さらに、グラウト注入材の検出制御部Fは、取付は業者
および取扱者が別となるため、流量計および圧力計など
の管理部F、とRI式密度計の管理部F2との2系統と
ならざるを得ないため、製作および管理が複雑で煩わし
いなどの問題もある。Furthermore, since the grout injection material detection control section F is installed by different companies and operators, it has two systems: a control section F for flowmeters and pressure gauges, and a control section F2 for the RI density meter. As a result, there are problems such as production and management being complicated and troublesome.
そこで、本発明の主たる目的は、低コストかつ高精度で
、取扱いおよび管理が簡単なグラウト用密度計を提供す
ることにある。Therefore, the main object of the present invention is to provide a density meter for grout that is low cost, highly accurate, and easy to handle and manage.
上記課題は、2本の管体を並設し、励磁コイルにより、
この両管体を逆位相の共振周波数で微振動させた状態で
、前記両管体にグラウト材を送り、このグラウト材送給
により生ずる前記両管体の入側と出側での位相差を光セ
ンサにより検出することによってグラウト密度を測定す
ることで解決できる。The above problem was solved by installing two pipes in parallel and using an excitation coil.
With both tubes being slightly vibrated at resonant frequencies with opposite phases, grout is fed to both tubes, and the phase difference between the inlet and outlet sides of both tubes caused by this grout feeding is corrected. This problem can be solved by measuring the grout density by detecting it with an optical sensor.
従来、グラウト工事の分野においては、ミキシング段階
における、セメントと水、あるいは細骨材等の配合比の
調整のみに頼り、グラウト圧送時における密度管理が成
されていないのが実情である。また、グラウト圧送時に
おける密度管理を行おうとしても、注入施工段階におけ
る密度を連続的に測定する適切な方法がないことも、前
述のように圧送時密度管理が行われない原因の一つであ
る。しかし、近年、注入段階における注入管理の重要さ
の再認識により、有用な密度測定装置の開発が望まれて
いる。Conventionally, in the field of grouting work, the actual situation has been to rely only on adjusting the blending ratio of cement and water or fine aggregate during the mixing stage, and density control has not been achieved during the pumping of grout. Furthermore, even if density control is attempted during grout pumping, the lack of an appropriate method to continuously measure density during the grouting process is one of the reasons why density control during pumping is not carried out as mentioned above. be. However, in recent years, the importance of injection control at the injection stage has been reaffirmed, and the development of a useful density measuring device has been desired.
近年、この要望に応えるべく、特公昭57−45648
号公報記載のRI式密度計が開示されているが、前述の
ように未だ残された問題も多い。In recent years, in order to meet this demand, the special public service No. 57-45648
Although the RI type density meter described in the publication is disclosed, there are still many problems as mentioned above.
本発明は、以上のような問題点に鑑み、案出された発明
である。発明者等は、低コストかつ高精度でグラウト密
度測定を行い得るとともに、取扱いおよび管理が簡単な
グラウト密度計を種々調査の結果、利用分野が異なるが
、各種化学溶液類、石油類、油脂類などの質量流量、密
度を測定し得るコリオリ式質量流量計にグラウト密度測
定の可能性を求めた。The present invention has been devised in view of the above problems. The inventors investigated various types of grout density meters that can be used to measure grout density at low cost and with high precision, and are easy to handle and manage. We investigated the possibility of measuring grout density using a Coriolis mass flowmeter that can measure mass flow rate and density.
質量流量計は、単位時間に流れる流体の量を質量で表示
するものであるが、同時に密度についても測定可能な計
測装置である。しかし、日本の現状から質量流量計は一
般的に普及するには未だ至らず、グラウト材に関し、高
精度の密度測定を保証し得るか否かについては定かでは
ない。A mass flowmeter is a measuring device that displays the amount of fluid flowing per unit time in terms of mass, but can also measure density. However, given the current situation in Japan, mass flowmeters have not yet become widely used, and it is not certain whether they can guarantee highly accurate density measurements for grout materials.
そこで、本発明者は後述する実施例における試験に基づ
き、グラウト材について高精度の密度測定を行い得るこ
とを確認し、実用化に成功した。Therefore, based on tests in Examples described later, the present inventors confirmed that highly accurate density measurements of grout materials could be performed, and succeeded in putting the method into practical use.
前記コリオリ式質量流量計とは、先ず2本の管体を並設
し、励磁コイルにより前記両管体を逆位相の共振周波数
で微振動させる。なお、この状態では流量はゼロ、また
は停止状態であるから前記管体はコリオリの力を受ける
ことはなく一定の微振動を続ける。この振動状態で、前
記両管体に被計測液が送られると、コリオリの力を受は
前記管体の入側と出側で位相差を生ずる。この位相差は
質量流量に比例するため、この位相差を光センサにより
検出することによって密度を測定するものである。In the Coriolis mass flowmeter, first, two tube bodies are arranged side by side, and both tube bodies are caused to vibrate slightly at resonant frequencies of opposite phases using an excitation coil. Note that in this state, the flow rate is zero or is in a stopped state, so the tube body is not subjected to the Coriolis force and continues to vibrate constantly. When the liquid to be measured is sent to both tubes in this vibrating state, the Coriolis force causes a phase difference between the inlet and outlet sides of the tubes. Since this phase difference is proportional to the mass flow rate, the density is measured by detecting this phase difference with an optical sensor.
なお、コリオリの力とは、周知のとおり、回転座標系の
運動物体にだけ働く、みかけの力で、慣性系に対する座
標系の角速度ωが一定ならば、遠心力を除いたものがこ
の力になる。回転軸方向の単位ベクトルをn、物体の質
量をm、回転座標系から見た速度を■とすれば、コリオ
リの力は、Fc=2mω[nv]で表される。As is well-known, the Coriolis force is an apparent force that acts only on a moving object in a rotating coordinate system.If the angular velocity ω of the coordinate system relative to the inertial frame is constant, this force, excluding the centrifugal force, Become. If the unit vector in the rotational axis direction is n, the mass of the object is m, and the speed seen from the rotational coordinate system is ■, then the Coriolis force is expressed as Fc=2mω[nv].
以下、本発明に係るコリオリ式質量計について詳説する
。Hereinafter, the Coriolis mass meter according to the present invention will be explained in detail.
第4図はコリオリ式質量流量計を示す図であり、第5図
は第4図コリオリ式質量計のグラウト送給管体部分を取
り出した図である。FIG. 4 is a diagram showing a Coriolis mass flowmeter, and FIG. 5 is a diagram showing a grout feed pipe portion of the Coriolis mass meter shown in FIG. 4.
第4図において、圧送されるグラウト材料は入側送給管
10より装置内に入り、装置内に並列して設けられた振
動管体11a、llbに分流し、装置の出側部分におい
て再度合流して所定注入箇所まで送給される。In Fig. 4, the grout material to be pumped enters the device from the inlet feed pipe 10, is divided into vibrating pipe bodies 11a and 11b provided in parallel in the device, and then joins again at the outlet side of the device. and is delivered to a predetermined injection location.
前記振動管体11a、llbは、この振動管体11a、
llbを包囲する保護パイプ14に取付けられた励磁コ
イル13により、第6図に示されるように、グラウト材
が無送給または停止状態時においては、逆位相の共振周
波数で微振動をするようになっている。The vibrating tube bodies 11a, llb are the vibrating tube bodies 11a,
An excitation coil 13 attached to a protective pipe 14 surrounding the llb causes the grout to vibrate slightly at a resonant frequency of opposite phase when the grout is not being fed or is stopped, as shown in FIG. It has become.
この逆位相状態で微振動する前記振動管体11a、ll
bはコリオリの力を受けないため、一定の振動状態が持
続されるが、この振動管体11a、11b内に、グラウ
ト材が通過することによって、前記振動管体11a、l
lbは、コリオリの力を受け、第7図に示されるように
、その入側と出側において、振動に位相差を生ずるよう
になる。この位相差は質量流量に比例するため、この位
相差を光センサ12a、12bにより検出することによ
って、質量流量(kg/ll1in)を測定するもので
ある。The vibrating tube bodies 11a and 11 vibrate slightly in this opposite phase state.
b is not subjected to the Coriolis force, so a constant vibration state is maintained, but as the grout material passes through the vibrating tubes 11a, 11b, the vibrating tubes 11a, l
lb is subjected to the Coriolis force, and as shown in FIG. 7, a phase difference is generated in the vibrations at its input and output sides. Since this phase difference is proportional to the mass flow rate, the mass flow rate (kg/ll1in) is measured by detecting this phase difference using the optical sensors 12a and 12b.
以下、本発明の効果を実施例によりさらに詳説する。 Hereinafter, the effects of the present invention will be explained in more detail with reference to Examples.
第3図はダムグラウト用などのグラウト材の注入フロー
を示す図である。FIG. 3 is a diagram showing the injection flow of grouting material for dam grouting and the like.
第3図において、グラウト材は図示されないプラントな
どにおいて配合・混合された後、グラウト容器1に収容
される。前記グラウト容器1に収容された前記グラウト
材は、輸送ポンプ2を介してグラウト送給管3により注
入箇所まで送給される。In FIG. 3, grout materials are mixed and mixed in a plant (not shown) and then placed in a grout container 1. The grout material contained in the grout container 1 is delivered via a transport pump 2 to a grout feed pipe 3 to an injection location.
前記輸送ポンプ2の出側においては、グラウト送給管3
に3方弁5が設けられ、前記容器1に戻るリターン管4
が設けられている。また、前記3方弁5の下流側には、
近接して電磁流量計6、圧力計7および密度計としての
コリオリ式質量流量計8(以下、単に質量流量計という
)が設けられており、検出部Fを構成している。On the outlet side of the transport pump 2, a grout feed pipe 3 is provided.
A return pipe 4 returning to the container 1 is provided with a three-way valve 5.
is provided. Further, on the downstream side of the three-way valve 5,
An electromagnetic flowmeter 6, a pressure gauge 7, and a Coriolis mass flowmeter 8 (hereinafter simply referred to as a mass flowmeter) as a density meter are provided in close proximity, and constitute a detection section F.
前記検出部Fの電磁流量計6、圧力計7および質量流量
計8での計測データは記録計9に送られ、記録される。Measurement data from the electromagnetic flowmeter 6, pressure gauge 7, and mass flowmeter 8 of the detection section F is sent to a recorder 9 and recorded.
前述のようなグラウト注入装置により、水セメント比、
すなわち密度を種々変えながら、グラウト密度測定精度
および質量流量計による流量測定精度について試験を行
った。With the grouting equipment as mentioned above, the water-cement ratio,
That is, the grout density measurement accuracy and the flow rate measurement accuracy using a mass flowmeter were tested while varying the density.
試験は、グラウト圧送圧カニ P = 10 kg/c
m2の条件の下で、ケース1として水のみの場合(ρ=
Ig/ci+3)、ケース2として水セメント比がW/
C=8/1の場合(ρ= 1.045 g/cm”)、
ケース3として水セメント比がW/C=2/1の場合(
ρ= 1.255 g/cm”)の3種類のグラウト材
を圧送し、電磁流量計での計測値が0.5.10.20
.301/winの際の質量流量計による質量流量と密
度計測値をプロットした。The test was carried out using a grouting pressure crab P = 10 kg/c.
Under the condition of m2, Case 1 is the case of only water (ρ=
Ig/ci+3), and in case 2, the water-cement ratio is W/
When C=8/1 (ρ=1.045 g/cm”),
Case 3, where the water-cement ratio is W/C=2/1 (
Three types of grout materials with ρ = 1.255 g/cm”) were pumped, and the measured values with an electromagnetic flowmeter were 0.5, 10, and 20.
.. The mass flow rate and density measurement value measured by the mass flow meter at the time of 301/win were plotted.
第1図および第2図に前記試験結果を示す。第1図は縦
軸に質量流量計による密度測定値(g/cm3)を示し
、横軸に電磁流量計による流量測定値(i/win)を
示す。また、第2図は縦軸に質量流量計による測定値(
kg/■in)を示し、横軸に電磁流量計による流量測
定値(j! /win)を示す。The test results are shown in FIGS. 1 and 2. In FIG. 1, the vertical axis shows the density value (g/cm3) measured by the mass flowmeter, and the horizontal axis shows the flow rate value (i/win) measured by the electromagnetic flowmeter. In addition, in Figure 2, the vertical axis is the measured value by the mass flowmeter (
kg/■in), and the horizontal axis shows the flow rate measured by an electromagnetic flowmeter (j!/win).
密度測定精度に関しては、第1図により明らかとなるよ
うに、流量変化にかかわらず、グラウト密度値は、常に
ほぼ一定値を示し、高い精度で計測し得ることが判明さ
れた。Regarding the accuracy of density measurement, as is clear from FIG. 1, it was found that the grout density value always showed a substantially constant value regardless of the change in flow rate and could be measured with high accuracy.
一方、第2図に示される質量流量精度に関しては、本来
、質量流量値は体積流量×密度となるべきであるが、グ
ラウト材に関しては、この関係式は満たされていない。On the other hand, regarding the mass flow rate accuracy shown in FIG. 2, the mass flow rate value should originally be the volumetric flow rate x density, but this relational expression is not satisfied for the grout material.
しかし、各流量値における質量流量は直線上にプロット
されるため、補正係数を乗することによって質量流量を
計測することは可能である。However, since the mass flow rate at each flow rate value is plotted on a straight line, it is possible to measure the mass flow rate by multiplying by a correction coefficient.
以上詳説のとおり、本発明によれば、コリオリ式質量計
による密度測定により、低コストかつ高精度でグラウト
密度を計測し得るとともに、RI式密度計のように、取
扱いおよび管理に係わる煩わしさを感すること無く、グ
ラウト密度を測定することが可能となる。As described in detail above, according to the present invention, grout density can be measured at low cost and with high precision by density measurement using a Coriolis mass meter, and at the same time, it does not require the troublesome handling and management of the RI density meter. It becomes possible to measure grout density without feeling it.
第1図および第2図は実施例における試験結果を示す図
、第3図は実施例におけるグラウト注入フローを示す図
、第4図はコリオリ式質量計を示す図、第5図は第4図
コリオリ式質量計の振動管体部分を取り出した図、第6
図はグラウト材圧送停止時の振動管体の振動状況図、第
7図はグラウト材圧送時の振動管体の振動状況図である
。
1・・・グラウト容器、2・・・輸送ポンプ、3・・・
グラウト送給管、4・・・リターン管、5・・・3方弁
、6・・・電磁流量計、7・・−圧力計、8・・・コリ
オリ式質量流量計、9・・・記録計、lla、llb・
・・振動管体、12a、12b・・・光センサ、13・
・・励磁コイル、14・・・保護パイプ
特許出願人 フロントエンジニアリング株式会社第1図
第2図
症通瀕I計1こ薯ろ須11趨(幌+n)第
図
第
図
第
図
う糺奴ガ燭Figures 1 and 2 are diagrams showing the test results in the example, Figure 3 is a diagram showing the grout injection flow in the example, Figure 4 is a diagram showing a Coriolis mass meter, and Figure 5 is a diagram showing the grout injection flow in the example. Figure showing the vibrating tube part of the Coriolis mass meter, No. 6
The figure is a diagram showing the state of vibration of the vibrating tube when the pumping of grout material is stopped, and FIG. 7 is the diagram of the state of vibration of the vibrating tube when the pumping of grout material is stopped. 1... Grout container, 2... Transport pump, 3...
Grout feed pipe, 4... Return pipe, 5... 3-way valve, 6... Electromagnetic flow meter, 7...-Pressure gauge, 8... Coriolis mass flow meter, 9... Record total, lla, llb・
... Vibration tube body, 12a, 12b... Optical sensor, 13.
...Exciting coil, 14...Protection pipe Patent applicant Front Engineering Co., Ltd. candle
Claims (2)
管体を逆位相の共振周波数で微振動させた状態で、前記
両管体にグラウト材を送り、このグラウト材送給により
生ずる前記両管体の入側と出側での位相差を光センサに
より検出することによってグラウト密度を測定すること
を特徴とするグラウト材の密度測定方法。(1) Two tubes are arranged in parallel, and an excitation coil causes both tubes to vibrate slightly at resonant frequencies in opposite phases, and then feeds grout material to both tubes. A method for measuring the density of a grout material, characterized in that the grout density is measured by using an optical sensor to detect the phase difference between the inlet side and the outlet side of both the pipe bodies.
流量計、圧力計および密度計からなるグラウト材注入管
理用検出部において、 前記密度計として、コリオリ式質量流量計を用いたこと
を特徴とするグラウト材注入管理システム。(2) In the detection unit for grout injection management consisting of a flow meter, a pressure gauge, and a density meter arranged adjacent to the middle of the grout injection line, a Coriolis mass flow meter is used as the density meter. Features a grout injection management system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2236336A JP3061843B2 (en) | 1990-09-06 | 1990-09-06 | Grout material injection management system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2236336A JP3061843B2 (en) | 1990-09-06 | 1990-09-06 | Grout material injection management system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04115905A true JPH04115905A (en) | 1992-04-16 |
JP3061843B2 JP3061843B2 (en) | 2000-07-10 |
Family
ID=16999298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2236336A Expired - Fee Related JP3061843B2 (en) | 1990-09-06 | 1990-09-06 | Grout material injection management system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3061843B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103128857A (en) * | 2011-11-28 | 2013-06-05 | 中铁十八局集团第三工程有限公司 | Bentonite slurrying control system for shield construction and method |
CN111489633A (en) * | 2020-05-06 | 2020-08-04 | 北方工业大学 | Assembly type building node grouting quality monitoring method based on BIM |
CN117577792A (en) * | 2024-01-16 | 2024-02-20 | 淄博火炬机电设备有限责任公司 | Positive grid grouting system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200488565Y1 (en) | 2017-04-12 | 2019-05-21 | 박용태 | Cutting Board Having Multi Function |
-
1990
- 1990-09-06 JP JP2236336A patent/JP3061843B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103128857A (en) * | 2011-11-28 | 2013-06-05 | 中铁十八局集团第三工程有限公司 | Bentonite slurrying control system for shield construction and method |
CN103128857B (en) * | 2011-11-28 | 2017-06-16 | 中铁十八局集团第三工程有限公司 | For the bentonite slurrying control system of shield-tunneling construction |
CN111489633A (en) * | 2020-05-06 | 2020-08-04 | 北方工业大学 | Assembly type building node grouting quality monitoring method based on BIM |
CN117577792A (en) * | 2024-01-16 | 2024-02-20 | 淄博火炬机电设备有限责任公司 | Positive grid grouting system |
CN117577792B (en) * | 2024-01-16 | 2024-04-19 | 淄博火炬机电设备有限责任公司 | Positive grid grouting system |
Also Published As
Publication number | Publication date |
---|---|
JP3061843B2 (en) | 2000-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4326475B2 (en) | Measurement of the amount of proppant mixed in the fracturing fluid using a Coriolis flow meter | |
JPH04256812A (en) | Apparatus for measuring and mixing mass flow | |
US6550327B1 (en) | Device for measuring the density of a flowing medium | |
CA2241919A1 (en) | Signal processing apparati and methods for attenuating shifts in zero intercept attributable to a changing boundary condition in a coriolis mass flow meter | |
EP3848680A1 (en) | Apparatus comprising an acoustic impact probe | |
CN101529216A (en) | Multiple flow conduit flow meter | |
EP0816807A3 (en) | Method and apparatus for correcting for performance degrading factors in coriolistype mass flowmeter | |
JPH0560046B2 (en) | ||
US7069776B2 (en) | Method for measuring particle concentration during injection pumping operations | |
CN105094157A (en) | Material flow meter, and control system for powder material flow and control method thereof | |
WO1998052000A3 (en) | Method and device for detecting and compensating zero point influences on coriolis-type mass flowmeters | |
JPH04115905A (en) | Density measuring method and casting controlling system of grout material | |
US20140122008A1 (en) | Device and Method for Measuring Mass Flow Rate of Fluids | |
JP7209418B2 (en) | POWDER FLOW MEASUREMENT DEVICE AND POWDER INTEGRATED FLOW MEASUREMENT METHOD | |
JPH01146098A (en) | Shielding machine | |
CN103528930B (en) | A kind of measurement muddy water flow concentration method and priming device | |
JP3184999B2 (en) | Flow measurement method of earth and sand plug flow | |
JPH04105051A (en) | Method and device for measuring concentration of cement type grout | |
JPH03293495A (en) | Muddy water type shield excavator | |
JP3126626B2 (en) | Apparatus and method for measuring characteristics of muddy water | |
JP2879815B2 (en) | Injection pressure measuring device during grouting work | |
JPH0765461B2 (en) | Monitoring device in shield chamber | |
JPS63193019A (en) | Apparatus for measuring liquid fluid | |
RU2104499C1 (en) | Process measuring flowrate of oil and oil products | |
JPH08270381A (en) | Facing stabilizing method of muddy water type shield construction method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080428 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090428 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100428 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |