JPH0411556A - Traveling mechanism on curved line part - Google Patents

Traveling mechanism on curved line part

Info

Publication number
JPH0411556A
JPH0411556A JP11255390A JP11255390A JPH0411556A JP H0411556 A JPH0411556 A JP H0411556A JP 11255390 A JP11255390 A JP 11255390A JP 11255390 A JP11255390 A JP 11255390A JP H0411556 A JPH0411556 A JP H0411556A
Authority
JP
Japan
Prior art keywords
rack
pinion
tooth
contact
traveling mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11255390A
Other languages
Japanese (ja)
Inventor
Kazuhiro Maezawa
前沢 一弘
Hideo Sugaya
菅谷 秀雄
Fumitaka Nakajima
中島 章隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Setsubi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Setsubi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Setsubi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Setsubi Engineering Co Ltd
Priority to JP11255390A priority Critical patent/JPH0411556A/en
Publication of JPH0411556A publication Critical patent/JPH0411556A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To permit three-dimensional traveling by forming the shape in the width direction of the tooth faces in the mutual contact of a traveling mechanism in which the tooth shapes of a rack and pinion travel in contact, into a projection form, projecting arcuate form, projecting triangular form or projecting trapezoidal form at the center part, and making the width of the tooth shape of the contact part different. CONSTITUTION:The tooth faces of a curve traveling rack 2 and a pinion 3 are worked to the arcuate forms 2A and 3A, and the width of the contact part between the rack and pinion is reduced. Through the tooth face working, the width is varied from H to H' as the width of the contact surface 4 of the pinion, and also on the inside where the interval between the tooth shapes of the rack 2 becomes narrow in the rack curved line part, the mutual interference between the rack 2 and pinion 3 is eliminated. Accordingly, the traveling on a curved line part is permitted, and also three-dimensional traveling is permitted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はラックピニオン方式を用いた走行機構に係り、
特に曲線部の曲がり半径を小さくした走行機構に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a traveling mechanism using a rack and pinion system,
In particular, the present invention relates to a traveling mechanism in which the bending radius of a curved portion is reduced.

〔従来の技術〕[Conventional technology]

従来、例えば原子炉の格納容器内の点検装置においては
、火力原子力発電VoQ、34.Nα3「沸騰水型原子
炉の格納容器内の遠隔自動点検装置」に示すようにトロ
リーチェーンを用いた装置となっていた。この装置は、
格納容器内に設置した軌道にトロリーチェーンを取付け
、そのトロリーチェーンに点検車を取付は走行させるも
のである。
Conventionally, for example, in inspection equipment in the containment vessel of a nuclear reactor, thermal and nuclear power generation VoQ, 34. As shown in Nα3 "Remote automatic inspection device for the containment vessel of a boiling water reactor", it was a device using a trolley chain. This device is
A trolley chain is attached to a track installed inside the containment vessel, and an inspection vehicle is attached to the trolley chain and driven.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、点検室内の点検装置の3次元的な走行
性の点についての配慮がなされていなかった。
The above-mentioned conventional technology does not give consideration to the three-dimensional running performance of the inspection device in the inspection room.

即ち、上記従来の走行装置はトロリーチェーンを用いて
いるので、登板、曲がり部などを有する三次元的な軌道
には、使用できなかった。また、点検軌道としては、閉
ループとする必要があり、さらに、大型のトロリーチェ
ーン駒動機構を格納容器内に常設する必要があり、配置
上の制約も受ける。また、叩動機構には、電動機を使用
しているため、電動機の耐放射性に問題があり、格納容
器内でのメンテナンスが必要となっていた。
That is, since the above-mentioned conventional traveling device uses a trolley chain, it cannot be used on a three-dimensional track having a raised surface, a curved portion, etc. Furthermore, the inspection track needs to be a closed loop, and furthermore, a large trolley chain moving mechanism needs to be permanently installed inside the containment vessel, which also imposes restrictions on placement. Furthermore, since the beating mechanism uses an electric motor, there is a problem with the radiation resistance of the electric motor, which requires maintenance within the containment vessel.

以上の問題点を解消する装置としてラックピニオンを用
いた自走式の点検装置の開発が望まれていた。
It has been desired to develop a self-propelled inspection device using a rack and pinion as a device to solve the above problems.

ラックピニオン方式を用いた走行機構としては。As a traveling mechanism using the rack and pinion system.

第6図に示すような例があるが、第6図に示す方法では
、登板性能は確保されるが、曲がり部では、ラックとピ
ニオンが干渉し、走行できないという問題点があった。
There is an example as shown in FIG. 6. Although the method shown in FIG. 6 ensures pitching performance, there is a problem in that the rack and pinion interfere with each other at bends, making it impossible to run.

このように上記従来装置の点検範囲は、ある特定された
機器まわりの2次元的なルートに限られ、点検範囲を拡
大するには、装置の別軌道への移設等が必要となってい
た。
As described above, the inspection range of the conventional device is limited to a two-dimensional route around a specified piece of equipment, and in order to expand the inspection range, it is necessary to relocate the device to a different track.

本発明の目的は、点検装置の3次元的な走行を可能とし
、点検室内の点検範囲の拡大及び装置の移設等の作業を
低減することにあり、ひいてはギヤそのものが、3次元
的な走行が可能である機構を提供することにある。
An object of the present invention is to enable inspection equipment to travel in three dimensions, thereby reducing work such as expanding the inspection range within the inspection room and relocating the equipment. The goal is to provide a mechanism that makes it possible.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的は以下の手段によって達成される。 The above objective is achieved by the following means.

(イ)ラックとピニオンとのそれぞれの歯型が接触して
走行する走行機構において、前記ラック又は前記ピニオ
ンのうち、少なくとも一方又は両方の歯型が、相互に接
触する歯面の幅方向の形状を中央部で凸形に形成したも
のであることを特徴とする曲線部走行機構。
(a) In a traveling mechanism in which the tooth profiles of a rack and a pinion are in contact with each other, the tooth profiles of at least one or both of the rack or the pinion are shaped in the width direction of the tooth surfaces in contact with each other. A curved section traveling mechanism characterized by having a convex shape at the center.

(ロ)ラックとピニオンとのそれぞれの歯型が接触して
走行する走行機構において、前記ラック又は前記ピニオ
ンのうち、少くとも一方又は両方の歯型が、相互に接触
する歯面の幅方向の形状を中央部で凸形の円弧形状に形
成したものであることを特徴とする曲線部走行機構。
(b) In a traveling mechanism in which the tooth profiles of a rack and a pinion are in contact with each other and run, the tooth profiles of at least one or both of the rack or the pinion are arranged in the width direction of the tooth surfaces in contact with each other. A curved section traveling mechanism characterized in that the shape is formed into an arcuate shape with a convex central portion.

(ハ)ラックとピニオンとのそれぞれの歯型が接触して
走行する走行機構において、前記ラック又は前記ピニオ
ンのうち、少くとも一方又は両方の歯型が、相互に接触
する歯面の幅方向の形状を中央部で凸形の三角形状に形
成したものであることを特徴とする曲線部走行機構。
(c) In a traveling mechanism in which the tooth profiles of a rack and a pinion are in contact with each other and run, the tooth profiles of at least one or both of the rack or the pinion are arranged in the width direction of the tooth surfaces in contact with each other. A curved section traveling mechanism characterized by having a triangular shape with a convex central portion.

(ニ)ラックとピニオンとのそれぞれの歯型が接触して
走行する走行機構において、前記ラック又は前記ピニオ
ンのうち、少くとも一方又は両方の歯型が、相互に接触
する歯面の幅方向の形状を中央部で凸形の台形状に形成
したものであることを特徴とする曲線部走行機構。
(d) In a traveling mechanism in which the tooth profiles of a rack and a pinion are in contact with each other and run, the tooth profiles of at least one or both of the rack or the pinion are arranged in the width direction of the tooth surfaces in contact with each other. A curved section traveling mechanism characterized by having a trapezoidal shape with a convex central portion.

(ホ)ラックとピニオンとのそれぞれの歯型が接触して
走行する走行機構において、前記ラック及び前記ピニオ
ンは、それぞれの接触部の歯型の幅が相異するものであ
ることを特徴とする曲線部走行機構。
(e) In a traveling mechanism in which the rack and pinion run while their respective tooth profiles are in contact with each other, the rack and the pinion are characterized in that the widths of the tooth profiles at their respective contact portions are different from each other. Curved section traveling mechanism.

〔作用〕[Effect]

上記構成によれば、ラックピニオンの歯形の接触部の幅
を小さくすることにより、バタクラッシュの効果を大き
く利用するすとが可能であり、曲線走行可能なラックピ
ニオン方式が可能となる。
According to the above configuration, by reducing the width of the contact portion of the tooth profile of the rack and pinion, it is possible to make greater use of the effect of the butterfly crash, and a rack and pinion system capable of running on curves becomes possible.

即ち、ラックピニオン方式の場合、曲線部を走行させよ
うとすると、曲がり走行用のラック曲がり部の内側と外
側で見かけ上、ピッチが違ってくるため、中心半径に合
せて設計されたラックの歯と干渉するので曲線部の走行
が不可能となる。ただし、歯車のバックラッシュ分だけ
の曲がりは可能であるが、その場合の曲率半径大はきく
、そのような走行ルートを、たとえば原子炉の格納容器
内に実現することは不可能である。
In other words, in the case of the rack and pinion system, when trying to travel around a curved section, the pitch appears to be different between the inside and outside of the rack bending section. This makes it impossible to travel on curved sections. However, although it is possible to bend the gear by the amount of backlash, the radius of curvature in that case is large, and it is impossible to realize such a travel route, for example, inside a containment vessel of a nuclear reactor.

本発明においては、このバックラッシュによる曲がり部
の曲率半径を小さくするため、ラック及びピニオンの歯
面に面取りをし、ラックとピニオンの接触部の幅を少な
くしたので、曲がり部の曲率半径がより小さい場合でも
走行可能となる。
In the present invention, in order to reduce the radius of curvature of the bent part due to this backlash, the tooth surfaces of the rack and pinion are chamfered to reduce the width of the contact part between the rack and pinion, so that the radius of curvature of the bent part is further reduced. Even if it is small, it can be run.

この場合、曲がり部の曲率半径と接触部の幅との関係は
、はぼ比例関係にあり、接触部の幅を172とすれば、
曲線走行可能な曲率半径は、1/2となる。
In this case, the relationship between the radius of curvature of the bent part and the width of the contact part is approximately proportional, and if the width of the contact part is 172, then
The radius of curvature that allows the vehicle to travel on curves is 1/2.

接触部の幅を小さくしたことにより、歯型部の強度を検
討する必要がある。歯型部の応力σ1、歯型に作用する
荷重をP、歯幅をbとすると次式の関係がある。
By reducing the width of the contact part, it is necessary to consider the strength of the toothed part. Assuming that the stress σ1 in the tooth profile, the load acting on the tooth profile is P, and the tooth width is b, the following equation holds.

σb = K v P / b ここでKvは、ラックピニオンの歯型形状の選定できま
る定数である。
σb = K v P / b Here, Kv is a constant determined by selection of the tooth profile of the rack and pinion.

上式より、歯幅すを小さくすると歯型部の応力が大きく
なってしまう。このため、仮に、設計応力が許容応力を
超える場合には従来使用していたラックピニオンの材質
を、例えば構造用炭素鋼(crb=20〜30kg/m
m2)からニッケルクロム鋼Cab=40〜60kg/
mm2)に変更すればよく、技術的な問題はない。
From the above equation, if the face width is made smaller, the stress in the tooth profile will increase. For this reason, if the design stress exceeds the allowable stress, the material of the rack and pinion used in the past should be changed to, for example, structural carbon steel (crb = 20 to 30 kg/m
m2) to nickel chromium steel Cab = 40~60kg/
mm2) and there is no technical problem.

〔実施例〕〔Example〕

以下、図面を参照して、本発明のいくつかの実施例を説
明する。
Hereinafter, some embodiments of the present invention will be described with reference to the drawings.

第1図(A)は、曲線走行用ラック2及びピニオン3の
歯面を円弧状2A及び3Aに加工し、ラックとピニオン
の接触部の幅を小さくした実施例である。
FIG. 1(A) shows an embodiment in which the tooth surfaces of the rack 2 and pinion 3 for running on a curve are processed into circular arc shapes 2A and 3A, and the width of the contact portion between the rack and the pinion is reduced.

第1図(B)は、本実施例の要部を示したもので、ラッ
ク2を例にとると、歯面が円弧状2Aに形成されており
、図中、点線で囲まれた肩2Bの部分を無くしである。
FIG. 1(B) shows the main parts of this embodiment. Taking the rack 2 as an example, the tooth surface is formed in an arc shape 2A, and the shoulder 2B surrounded by a dotted line in the figure. That part has been removed.

これにより、第2図に示す直線走行用ラック1及び曲線
走行用ラック2の連続した曲線部の走行が可能となって
いる。
This makes it possible for the straight running rack 1 and the curved running rack 2 shown in FIG. 2 to run on continuous curved sections.

第3図は、ラック及びピニオンの歯型を加工した場合の
曲線部に走行状態を示したものである。
FIG. 3 shows the running state of the curved portion when the tooth profiles of the rack and pinion are machined.

歯型の加工により、歯幅はHからピニオンの当り面4の
幅であるH′に変更され、ラック曲線部で、ラック2の
歯型どうしの間隔が狭まくなっている内側でも、ラック
2とピニオン3との相互の干渉が解消されるので、曲線
部の走行が可能となるのである。
By machining the tooth profile, the tooth width is changed from H to H', which is the width of the contact surface 4 of the pinion. Since the mutual interference between the motor and the pinion 3 is eliminated, it is possible to travel around curved sections.

第4図及び第5図はそれぞれ他の実施例を示すもので、
第4図はラック2及びピニオン3の歯型を三角形状に、
第5図は台形状に加工した場合の例である。
FIG. 4 and FIG. 5 each show other embodiments,
Figure 4 shows the teeth of the rack 2 and pinion 3 in a triangular shape.
FIG. 5 shows an example of processing into a trapezoidal shape.

これら他の実施例も第1図の実施例と同様の作用効果が
ある。
These other embodiments also have the same effects as the embodiment shown in FIG.

尚、これらの実施例では、ラック及びピニオンの双方の
歯型を加工しであるが、いずれか一方を加工したもので
もよい。ラックとピニオンとの双方を加工すれば、曲線
部での曲りやすさが実現され、より曲率の小さい曲線部
にすることができる。
In these embodiments, the tooth profiles of both the rack and pinion are machined, but either one of them may be machined. By processing both the rack and pinion, ease of bending at the curved portion can be realized, and the curved portion can be made with a smaller curvature.

ピニオンの方のみを加工すれば、製品として加工容易で
ある。また、ラックの方のみを加工してもよく、その場
合、曲線部のみ加工して直線部と接続してもよいし、全
線部を加工したものを曲げ加工することも可能である。
If only the pinion is processed, it is easy to process the product. Further, only the rack may be processed, and in that case, only the curved portion may be processed and connected to the straight portion, or it is also possible to process the entire wire portion and then bend it.

第6図は、従来のラックピニオン方式の一適用例である
FIG. 6 shows an application example of the conventional rack and pinion system.

走行レール5に、ラック1が取付けられている。A rack 1 is attached to a traveling rail 5.

即動装置6には、ピニオン3が取付けられており、即動
装置6の駆動力により、ピニオン3からラック1に駆動
力が作用し、その反作用として、駆動装N6、制御装置
7が自走して移動する。この場合、ラック1及びピニオ
ン3は、平歯車であるため曲線部の走行は、不可能であ
る。本発明の実施例によれば、この平歯形の歯形を加工
することにより、接触部の幅を少なくし、バックラッシ
ュの範囲で曲線部の走行が可能となる。
A pinion 3 is attached to the immediate action device 6, and the driving force of the immediate action device 6 acts on the rack 1 from the pinion 3, and as a reaction, the drive device N6 and the control device 7 are self-propelled. and move. In this case, since the rack 1 and pinion 3 are spur gears, it is impossible to travel around curved sections. According to the embodiment of the present invention, by machining the spur tooth profile, the width of the contact portion can be reduced and it is possible to travel on a curved portion within the range of backlash.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ラックピニオン方式を用いた曲線部の
走行が可能であり、3次元的な走行ルートを持つ点検装
置の実用化が可能となる。
According to the present invention, it is possible to travel around curved sections using a rack and pinion system, and it is possible to put into practical use an inspection device that has a three-dimensional travel route.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図は本実
施例のラックの上面図、第3図は本実施の作用効果を説
明する説明図、第4図及び第5図はそれぞれ本発明の他
の実施例を示す断面図、第6図は従来例の斜視図である
。 1・・・直線用ラック、2・・・曲線用ラック、3・・
・ピニオン、4・・・ピニオン当り面。
FIG. 1 is a sectional view showing one embodiment of the present invention, FIG. 2 is a top view of the rack of this embodiment, FIG. 3 is an explanatory diagram explaining the effects of this embodiment, and FIGS. 4 and 5. 6 are sectional views showing other embodiments of the present invention, and FIG. 6 is a perspective view of a conventional example. 1... Rack for straight lines, 2... Rack for curved lines, 3...
・Pinion, 4...Pinion contact surface.

Claims (1)

【特許請求の範囲】 1、ラックとピニオンとのそれぞれの歯型が接触して走
行する走行機構において、 前記ラック又は前記ピニオンのうち、少なくとも一方又
は両方の歯型が、相互に接触する歯面の幅方向の形状を
中央部で凸形に形成したものであることを特徴とする曲
線部走行機構。 2、ラックとピニオンとのそれぞれの歯型が接触して走
行する走行機構において、 前記ラック又は前記ピニオンのうち、少くとも一方又は
両方の歯型が、相互に接触する歯面の幅方向の形状を中
央部で凸形の円弧形状に形成したものであることを特徴
とする曲線部走行機構。 3、ラックとピニオンとのそれぞれの歯型が接触して走
行する走行機構において、 前記ラック又は前記ピニオンのうち、少くとも一方又は
両方の歯型が、相互に接触する歯面の幅方向の形状を中
央部で凸形の三角形状に形成したものであることを特徴
とする曲線部走行機構。 4、ラックとピニオンとのそれぞれの歯型が接触して走
行する走行機構において、 前記ラック又は前記ピニオンのうち、少くとも一方又は
両方の歯型が、相互に接触する歯面の幅方向の形状を中
央部で凸形の台形状に形成したものであることを特徴と
する曲線部走行機構。 5、ラックとピニオンとのそれぞれの歯型が接触して走
行する走行機構において、 前記ラック及び前記ピニオンは、それぞれの接触部の歯
型の幅が相異するものであることを特徴とする曲線部走
行機構。
[Claims] 1. In a traveling mechanism in which tooth profiles of a rack and a pinion are in contact with each other, the tooth profiles of at least one or both of the rack or the pinion have tooth surfaces in contact with each other. A curved section traveling mechanism characterized in that the shape in the width direction of the curved section is formed into a convex shape at the center. 2. In a traveling mechanism in which tooth profiles of a rack and a pinion are in contact with each other and run, the tooth profile of at least one or both of the rack or the pinion has a shape in the width direction of the tooth surfaces in contact with each other. A curved section traveling mechanism characterized in that the curved section traveling mechanism is formed into a convex arc shape at the center. 3. In a traveling mechanism in which tooth profiles of a rack and a pinion are in contact with each other, the tooth profile of at least one or both of the rack or the pinion has a shape in the width direction of the tooth surfaces in contact with each other. A curved section traveling mechanism characterized by having a triangular shape with a convex central portion. 4. In a traveling mechanism in which tooth profiles of a rack and a pinion are in contact with each other and run, at least one or both tooth profiles of the rack or the pinion have shapes in the width direction of the tooth surfaces in contact with each other. A curved section traveling mechanism characterized by having a trapezoidal shape with a convex central portion. 5. A traveling mechanism in which the rack and the pinion run while their respective tooth profiles are in contact with each other, wherein the rack and the pinion have different tooth profile widths at their respective contact portions. Part traveling mechanism.
JP11255390A 1990-04-27 1990-04-27 Traveling mechanism on curved line part Pending JPH0411556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11255390A JPH0411556A (en) 1990-04-27 1990-04-27 Traveling mechanism on curved line part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11255390A JPH0411556A (en) 1990-04-27 1990-04-27 Traveling mechanism on curved line part

Publications (1)

Publication Number Publication Date
JPH0411556A true JPH0411556A (en) 1992-01-16

Family

ID=14589546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11255390A Pending JPH0411556A (en) 1990-04-27 1990-04-27 Traveling mechanism on curved line part

Country Status (1)

Country Link
JP (1) JPH0411556A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6405003B2 (en) 2000-04-05 2002-06-11 Ricoh Company, Ltd. Seal structure providing an improved sealing function and reducing an amount of heat generated by friction
CN111677828A (en) * 2020-06-23 2020-09-18 南京安诺电梯有限公司 Arc helical tooth device for turning

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6405003B2 (en) 2000-04-05 2002-06-11 Ricoh Company, Ltd. Seal structure providing an improved sealing function and reducing an amount of heat generated by friction
CN111677828A (en) * 2020-06-23 2020-09-18 南京安诺电梯有限公司 Arc helical tooth device for turning
CN111677828B (en) * 2020-06-23 2021-06-29 南京安诺电梯有限公司 Arc helical tooth device for turning

Similar Documents

Publication Publication Date Title
US3371552A (en) Rolling contact gear
US20170292169A1 (en) Controlled deformations in metallic pieces
JPH0411556A (en) Traveling mechanism on curved line part
JPS61170517A (en) Heat treatment of welded structure
US4184796A (en) Globoid worm gear generating method
US2934967A (en) Belt and gear drive
JPH0376436B2 (en)
JP3733908B2 (en) Hypoid gear design method
JPS595309A (en) Control device of robot
DE102015103452B4 (en) Method for the time-discrete stopping of drivable axes, computer program product and device for carrying out such a method
DE19930287A1 (en) Joint arm machining center, with fast-moving work platform and slow moving joint arm device
EP0068633A2 (en) Method, apparatus and forming roll for forming material with a bidirectional periodicity
Turczyn The effect of the roll-gap shape factor on internal defects in rolling
EP0068814A1 (en) A bow-type continuous-casting method and apparatus
JPS6047017B2 (en) Press brake center opening correction device
JPH0411291B2 (en)
JPS62176651A (en) Combined using type dummy bar for continuous casting equipment
CA1328986C (en) Method for the production of a hardened guide shaft for a linear guide
JPS6252610A (en) Method for controlling speed of joint type robot
JPS6119981Y2 (en)
FR2346453A1 (en) PROCESS FOR THE MANUFACTURING OF LOW CARBON STEEL SHEETS BY CONTINUOUS CASTING
SU827213A1 (en) Method of straightening resiliently bent rods
SU751583A1 (en) Method of backing-off hob cutters
Kroisenbrunner Compound Steel Workpiece
DUDÁS ANALYSIS OF THE SPIROID DRIVINGS HAVING NEW PRODUCTION GEOMETRY