JPH04115459A - Preparation of positive electrode material for lithium battery - Google Patents

Preparation of positive electrode material for lithium battery

Info

Publication number
JPH04115459A
JPH04115459A JP23870790A JP23870790A JPH04115459A JP H04115459 A JPH04115459 A JP H04115459A JP 23870790 A JP23870790 A JP 23870790A JP 23870790 A JP23870790 A JP 23870790A JP H04115459 A JPH04115459 A JP H04115459A
Authority
JP
Japan
Prior art keywords
lioh
positive electrode
electrode material
mixture
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23870790A
Other languages
Japanese (ja)
Inventor
Kiyoshi Hanabusa
潔 花房
Hisashi Shioda
塩田 久
Hiroshi Kimura
寛 木村
Hiroaki Urushibata
広明 漆畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23870790A priority Critical patent/JPH04115459A/en
Publication of JPH04115459A publication Critical patent/JPH04115459A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Abstract

PURPOSE:Not to be affected by the content of contamination components in raw materials by using atmospheric gas dampened by steam at the time of firing a mixture of manganese dioxide and at least one of LiOH, LiOH.H2O, and Li2O3. CONSTITUTION:MnO2 and at least one of LiOH, LiOH.H2O, and Li2CO3 are mixed in a mole ratio of Mn to Li of (8/2)-(5/5). Then, the mixture is fired in atmospheric gas dampened by steam. At that time, the steam converts contamination components (Li2CO3) in the LiOH.H2O raw material into hydroxide and cancels them. Consequently, without affected by the contamination components, a positive electrode material with stable quality is prepared by a simple apparatus.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はリチウム電池用正極材料の製法に関する。[Detailed description of the invention] [Industrial application fields] The present invention relates to a method for producing a positive electrode material for lithium batteries.

[従来の技術] 従来、リチウム電池用正極材料は、二酸化マンガン(M
nO2)とLIOH−820との混合物を適当な温度で
焼成することにより製造されている。たとえば、Li2
MnOxやスピネル型LIMn204の合成がそれであ
り、通常350〜450”Cで2〜40時間の焼成が行
なわれる。Li0H−820のかわりにLi2COxを
用いることも行なわれている。(特開昭63−1117
569号公報参照) 前記焼成の際の昇温時の加熱にともない、1.I OI
t・H2Oからの脱水がまず50℃前後で開始して12
0℃附近で終了し、Li0I(含水物が無水L I O
Hに変換する。また、その温度域とほぼ重複して、Mn
O2中に含まれる蒸発しやすい水分の脱離も開始、終了
し、MnO2中の含水量も大巾に低下する。そうした変
化ののち、MnO2とLiOHが式: %式% に示されるように反応する。
[Prior art] Conventionally, the positive electrode material for lithium batteries is manganese dioxide (M
It is manufactured by firing a mixture of nO2) and LIOH-820 at an appropriate temperature. For example, Li2
This is the synthesis of MnOx and spinel-type LIMn204, which is usually fired at 350-450"C for 2-40 hours. Li2COx has also been used in place of Li0H-820. 1117
(See Publication No. 569) With the heating during the temperature rise during the firing, 1. IOI
Dehydration from tH2O first starts at around 50℃, and then 12
It finishes at around 0℃, and Li0I (water content becomes anhydrous LIO
Convert to H. Also, almost overlapping that temperature range, Mn
Desorption of moisture contained in O2, which is easily evaporated, also begins and ends, and the water content in MnO2 also decreases significantly. After such a change, MnO2 and LiOH react as shown in the formula: %Formula %.

[発明が解決しようとする課題] しかし、原料として用いるL i OH・H2Oは強ア
ルカリ性水酸化物の常として空気中からCO2を吸収し
やすく、常にコンタミネーション成分としてLi2CO
3を含有している。該L12CO3はMnO2と反応し
にくい物質であり、また原料中の含有率はコンタミネー
ションの常として一定しないため、焼成して製造された
正極材料の品質も一定しないという問題かある。
[Problem to be solved by the invention] However, LiOH・H2O used as a raw material easily absorbs CO2 from the air as a strong alkaline hydroxide, and Li2CO is always a contaminating component.
Contains 3. L12CO3 is a substance that hardly reacts with MnO2, and its content in raw materials is not constant due to contamination, so there is a problem that the quality of the cathode material produced by firing is not constant.

一方LL2CO3too%の原料を用いると、Li2C
O3が遅反応性物質であるため、高い温度で長時間の焼
成か必要になる。
On the other hand, if LL2CO3too% raw material is used, Li2C
Since O3 is a slow-reacting substance, firing at high temperatures and for long periods of time is required.

本発明は前記のような問題点を解消するためになされた
ものであり、製造される正極材料の品質かLi0)1−
820原料中のコンタミネーション成分であるL i 
2COsの含有量に左右されない正極材料の製法をうる
ことを目的とする。
The present invention has been made to solve the above-mentioned problems, and the quality of the positive electrode material to be manufactured depends on Li0)1-
Li, a contamination component in the 820 raw material
The purpose of this invention is to provide a method for producing a positive electrode material that is not affected by the content of 2COs.

[課題を解決するための手段] 本発明は、二酸化マンガンとLiOH,LiOH・H2
0および1i2cOxのうちの1種以上との混合物を焼
成する際に、水蒸気による加湿を行なった雰囲気ガスを
用いることを特徴とするリチウム電池用正極材料の製法
に関する。
[Means for Solving the Problems] The present invention provides manganese dioxide, LiOH, LiOH・H2
The present invention relates to a method for producing a positive electrode material for a lithium battery, characterized in that an atmospheric gas humidified with water vapor is used when firing a mixture with one or more of 0 and 1i2cOx.

[作 用] 水蒸気はLi0H−H20原料中に存在するコンタミネ
ーション成分であるL12CO3に働きかけて、炭酸塩
を水酸化物化する。したがって、加湿焼成中にLi2C
O3が水酸化物に変換させられ、キャンセルさレルノで
、焼成前t:D Li0Il ・H20原料中(’)L
i2CO3含有量にかかわらず焼成後の正極材料はほと
んと同一の品質のものか再現性よく安定してえられる。
[Function] Water vapor acts on L12CO3, which is a contamination component present in the Li0H-H20 raw material, and converts carbonate into hydroxide. Therefore, Li2C during humidified firing
O3 is converted to hydroxide and canceled in Lerno, before calcination t:D Li0Il ・H20 in the raw material (')L
Regardless of the i2CO3 content, the cathode material after firing is of almost the same quality or can be obtained stably with good reproducibility.

なお、原料としT: LjOH−H20を用いずLi2
CO3100%のものを用いたばおいても、はとんど同
一の品質のものかえられる。
In addition, as a raw material T: Li2 without using LjOH-H20
Even if you use 100% CO3, you can always replace it with the same quality.

[実施例コ 本発明て用いられるMnO2とLjOHSLiOH・H
20およびLi2C0gのうちの1種以上との混合物に
おけるMnO2の割合はMnとLLがモル比て8/2〜
515となるような割合であるのが好ましい。
[Example MnO2 and LjOHSLiOH・H used in the present invention]
The ratio of MnO2 in the mixture with one or more of
Preferably, the ratio is 515.

本発明では、前記混合物の焼成が水蒸気による加湿を行
なった雰囲気ガスを用いて行なわれる。
In the present invention, the mixture is fired using an atmospheric gas humidified with water vapor.

前記雰囲気ガスの具体例としては、たとえばチッ素ガス
、空気、脱CO2化空気などがあげられる。
Specific examples of the atmospheric gas include nitrogen gas, air, CO2-free air, and the like.

前記加湿は、加湿器を用い、加湿器中の水温を一定(5
0℃、75℃、90℃など)に保ち、その中を通った雰
囲気ガスを焼成炉中に導入することにより行なわれる。
The humidification is performed by using a humidifier and keeping the water temperature in the humidifier constant (5
This is carried out by introducing the atmospheric gas that has passed through the temperature into the firing furnace.

前記加湿は、水温を50−100”cに保持して行なう
のか好ましい。
It is preferable that the humidification is performed while maintaining the water temperature at 50-100''c.

焼成温度、時間にはとくに限定はなく、たとえハ350
〜450℃で2〜40時間焼成を行なうなど、通常の条
件でよい。
There are no particular limitations on the firing temperature and time, even if
Normal conditions may be used, such as baking at ~450°C for 2 to 40 hours.

以上のような本発明の方法により、一定の品質の正極材
料を容易にうることができる。
By the method of the present invention as described above, a positive electrode material of constant quality can be easily obtained.

つぎに本発明を実施例に基づいてさらに具体的に説明す
る。
Next, the present invention will be explained in more detail based on examples.

実施例l MnO29,7gとLi0H−8202,(l gをめ
のう乳鉢で粉砕混合した。ついて、水温を5(1’cに
保持した水蒸気による加湿を行なったチッ素雰囲気中で
、この混合物を375℃で20時間焼成した。
Example 1 29.7 g of MnO and 1 g of Li0H-8202 were pulverized and mixed in an agate mortar.Then, this mixture was heated to 375 ml in a nitrogen atmosphere humidified with water vapor at a water temperature of 5 (1'C). It was baked at ℃ for 20 hours.

えられた焼成物のX線回折パターンを調べた。The X-ray diffraction pattern of the obtained fired product was examined.

結果を第1図のくωに示す。なお、第1図には、A37
Mカードに示されティるLiMn204 、Li2 M
nO3、MnO2のパターンも示した。
The results are shown in ω in Figure 1. In addition, in Fig. 1, A37
LiMn204, Li2M shown on M card
The patterns of nO3 and MnO2 are also shown.

実施例2 水温を75℃に保持したほかは実施例1と同様にして焼
成し、焼成物のX線回折パターンを調べた。
Example 2 Baking was carried out in the same manner as in Example 1 except that the water temperature was maintained at 75°C, and the X-ray diffraction pattern of the fired product was examined.

結果を第1図の+b+に示す。The results are shown at +b+ in FIG.

実施例3 水温を90℃に保持したほかは実施例1と同様にして焼
成し、焼成物のX線回折パターンを調べた。
Example 3 Baking was carried out in the same manner as in Example 1 except that the water temperature was maintained at 90°C, and the X-ray diffraction pattern of the fired product was examined.

結果を第1図の(C)に示す。The results are shown in FIG. 1(C).

比較例1 加湿しなかったほかは実施例1と同様にして焼成し、焼
成物のX線回折パターンを調べた。結果を第1図の(c
bに示す。
Comparative Example 1 Baking was performed in the same manner as in Example 1 except that humidification was not performed, and the X-ray diffraction pattern of the fired product was examined. The results are shown in Figure 1 (c
Shown in b.

実施例4 Mn025.5gとLi2COx 2.Ogをめのう乳
鉢で粉砕混合した。ついで、水温を90℃に保持した水
蒸気による加湿を行なったチッ素雰囲気中で、この混合
物を375℃で20時間焼成した。
Example 4 Mn025.5g and Li2COx 2. Og was ground and mixed in an agate mortar. Next, this mixture was fired at 375° C. for 20 hours in a nitrogen atmosphere humidified with water vapor while keeping the water temperature at 90° C.

えられた焼成物のX線回折パターンを調べた。The X-ray diffraction pattern of the obtained fired product was examined.

結果を第2図の(a)に示す。なお、第2図には、A3
7Mカードに示されているL i M n z O4、
Li2MnOs、MnO2のパターンも示した。
The results are shown in FIG. 2(a). In addition, in Fig. 2, A3
L i M n z O4 shown on the 7M card,
Patterns of Li2MnOs and MnO2 are also shown.

実施例5 水温を75℃に保持したほかは実施例4と同様にして焼
成し、焼成物のX線回折パターンを調べた。
Example 5 Baking was carried out in the same manner as in Example 4 except that the water temperature was maintained at 75°C, and the X-ray diffraction pattern of the fired product was examined.

結果を第2図の曲に示す。The results are shown in the song in Figure 2.

実施例6 水温を50℃に保持したほかは実施例4と同様にして焼
成し、焼成物のX線回折パターンを調べた。
Example 6 Baking was carried out in the same manner as in Example 4 except that the water temperature was maintained at 50°C, and the X-ray diffraction pattern of the fired product was examined.

結果を第2図の(C)に示す。The results are shown in FIG. 2(C).

比較例2 加湿しなかったほかは実施例4と同様にして焼成し、焼
成物のX線回折パターンを調べた。結果を第2図のく小
に示す。
Comparative Example 2 Baking was performed in the same manner as in Example 4 except that humidification was not performed, and the X-ray diffraction pattern of the fired product was examined. The results are shown in the small part of Figure 2.

実施例1〜3でえられた焼成物はLi2MnOxを主と
し、その他L4Mn20<などを含むリチウムマンガン
酸化物であり、かつ未反応のMnO2を含む物質である
。この物質は第1図に示されるように20が18″およ
び45″のピークか加湿なしの比較例1のものと比較し
て高くなっていることから、リチウムマンガン酸化物が
多く生成していることがわかる。また加湿することによ
り2θが45°のピークが増大することは、焼成物に含
まれるLi2 MnO3の量が多くなっていることを示
しており、不純物L i 2C03から生じるLiMn
20aの量か減少していることを示している。
The fired products obtained in Examples 1 to 3 are lithium manganese oxides containing mainly Li2MnOx and other substances such as L4Mn20<, and also contain unreacted MnO2. As shown in Figure 1, this material has higher peaks at 18'' and 45'' than in Comparative Example 1 without humidification, indicating that a large amount of lithium manganese oxide is produced. I understand that. Furthermore, the increase in the peak at 2θ of 45° due to humidification indicates that the amount of Li2MnO3 contained in the fired product is increased, and LiMn generated from impurities Li2C03
This shows that the amount of 20a is decreasing.

また、実施例1〜3てえられた焼成物を正極活物質とし
て用いたリチウム二次電池は、優良な二次電池特性を示
した。
In addition, lithium secondary batteries using the fired products obtained in Examples 1 to 3 as positive electrode active materials exhibited excellent secondary battery characteristics.

実施例4〜6てえられた焼成物はIjMn20tを生と
し、その他L I 2 M n 03などを含むリチウ
ムマンガン酸化物であり、かつ未反応のMnO2を含む
物質である。この物質は第2図に示されるように比較例
2のものと比較してリチウムマンガン酸化物が多く生成
していることがわかる。また、比較例2てはLiMn2
0<特有の2θが38.5°のピークが1ってているが
、75℃、90℃加湿では36.5’のピークとは別に
37°のLi2MnO3特有のピークがでてきている。
The fired products obtained in Examples 4 to 6 are lithium manganese oxides containing IjMn20t, other materials such as L I 2 M n 03, and unreacted MnO2. As shown in FIG. 2, it can be seen that more lithium manganese oxide is produced in this material than in Comparative Example 2. Moreover, in Comparative Example 2, LiMn2
There is one peak at 38.5° with a 2θ characteristic of 0<0, but when humidified at 75°C and 90°C, a peak unique to Li2MnO3 of 37° appears in addition to the peak at 36.5'.

これは、加湿することにより、L i 2COxの一部
がLloHに変化するため、LIOHとMnO2が反応
してLiz MnOsがL I M n 204に混し
って生成したことを示している。
This indicates that, due to humidification, a part of L i 2COx changes to LloH, so that LIOH and MnO2 react and Liz MnOs is mixed with L I M n 204 and generated.

実施例4〜6でえられた焼成物を正極活物質として用い
たリチウム二次電池は、優良な二次電池特性を示した。
Lithium secondary batteries using the fired products obtained in Examples 4 to 6 as positive electrode active materials exhibited excellent secondary battery characteristics.

[発明の効果] 以上のように、本発明では焼成を加湿条件下で行なうよ
うにしたので、 (1)焼結体の品質がLi2CO3コンタミネーション
成分の影響をうけない、 0安定した品質のリチウム電池用正極材料を容易に製造
することができる、 に)設備が簡便である という効果を奏する。
[Effects of the Invention] As described above, in the present invention, sintering is performed under humidified conditions, so that (1) the quality of the sintered body is not affected by Li2CO3 contamination components, and the quality of lithium is stable. The positive electrode material for batteries can be easily manufactured, and (2) the equipment is simple.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、それぞれ焼成物のX線回折パタ
ーンとASTMカードに示されているX線回折結果を示
すグラフである。 オ 1 図 代  理  人     大  岩  増  雄+0 
20 30 40 50 60 702e (Cukg
FIGS. 1 and 2 are graphs showing the X-ray diffraction pattern of the fired product and the X-ray diffraction results shown on the ASTM card, respectively. O 1 Masuo Tsuyo Oiwa Masuo +0
20 30 40 50 60 702e (Cukg
)

Claims (1)

【特許請求の範囲】[Claims] (1)二酸化マンガンとLiOH、LiOH−H_2O
およびLi_2CO_3のうちの1種以上との混合物を
焼成する際に、水蒸気による加湿を行なった雰囲気ガス
を用いることを特徴とするリチウム電池用正極材料の製
法。
(1) Manganese dioxide and LiOH, LiOH-H_2O
A method for producing a positive electrode material for a lithium battery, characterized in that an atmospheric gas humidified with water vapor is used when firing a mixture with one or more of Li_2CO_3 and Li_2CO_3.
JP23870790A 1990-09-05 1990-09-05 Preparation of positive electrode material for lithium battery Pending JPH04115459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23870790A JPH04115459A (en) 1990-09-05 1990-09-05 Preparation of positive electrode material for lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23870790A JPH04115459A (en) 1990-09-05 1990-09-05 Preparation of positive electrode material for lithium battery

Publications (1)

Publication Number Publication Date
JPH04115459A true JPH04115459A (en) 1992-04-16

Family

ID=17034086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23870790A Pending JPH04115459A (en) 1990-09-05 1990-09-05 Preparation of positive electrode material for lithium battery

Country Status (1)

Country Link
JP (1) JPH04115459A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0730314A1 (en) * 1995-03-03 1996-09-04 Matsushita Electric Industrial Co., Ltd. Method of producing cathode active material for non-aqueous electrolyte secondary battery
WO1997005062A1 (en) * 1995-08-02 1997-02-13 Union Miniere S.A. Synthesis of lithiated transition metal oxides
WO2023276872A1 (en) * 2021-06-28 2023-01-05 住友化学株式会社 Method for producing lithium metal composite oxide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0730314A1 (en) * 1995-03-03 1996-09-04 Matsushita Electric Industrial Co., Ltd. Method of producing cathode active material for non-aqueous electrolyte secondary battery
US5770173A (en) * 1995-03-03 1998-06-23 Matsushita Electric Industrial Co., Ltd. Method of producing cathode active material for non-aqueous electrolyte secondary battery
WO1997005062A1 (en) * 1995-08-02 1997-02-13 Union Miniere S.A. Synthesis of lithiated transition metal oxides
WO2023276872A1 (en) * 2021-06-28 2023-01-05 住友化学株式会社 Method for producing lithium metal composite oxide

Similar Documents

Publication Publication Date Title
JP2729176B2 (en) Method for producing LiM3 + O2 or LiMn2O4 and LiNi3 + O2 for cathode material of secondary battery
Yamada Lattice instability in Li (LixMn2− x) O4
Zhecheva et al. Stabilization of the layered crystal structure of LiNiO2 by Co-substitution
CA2209531C (en) Lithium secondary battery
US6017654A (en) Cathode materials for lithium-ion secondary cells
AU733390B2 (en) Method of preparing li1+xmn2-xo4 for use as secondary battery electrode
US5565688A (en) Method for preparing an active substance of lithium secondary cells
Xia et al. Studies on Li Mn O spinel system (obtained from melt-impregnation method) as a cathode for 4 V lithium batteries Part II. Optimum spinel from γ-MnOOH
GB2270195A (en) Lithium-manganese oxides as active electrode material for electrochemical cell
Julien et al. Layered LiNi0. 5Co0. 5O2 cathode materials grown by soft-chemistry via various solution methods
KR960034080A (en) Method for preparing lithium insertion compound
US5874058A (en) Method of preparing Li1+x MN2-x O4 for use as secondary battery electrode
JP4124522B2 (en) Lithium / manganese composite oxide, production method and use thereof
JPH09309727A (en) Lithium titanate, its production and lithium battery using the same
EP0913876A1 (en) A method of preparing positive material for lithium secondary cell by microwave energy
JPH09309728A (en) Lithium titanate, its production and lithium battery using the same
KR100366226B1 (en) Preparation methode of cathode materials for Li-secondary battery
Fey et al. A new preparation method for a novel high voltage cathode material: LiNiVO4
US6361755B1 (en) Low temperature synthesis of Li4Mn5O12 cathodes for lithium batteries
Richardson et al. FTIR spectroscopy of metal oxide insertion electrodes: thermally induced phase transitions in LixMn2O4 spinels
JPH04115459A (en) Preparation of positive electrode material for lithium battery
JP2000323122A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and manufacture thereof
JPH10182159A (en) Lithium manganate and its production and lithium secondary battery using lithium manganate as anode
JP2001114521A (en) Trimanganese tetraoxide and method for its production
JP3671531B2 (en) Lithium nickelate as positive electrode active material for lithium secondary battery and method for producing the same