JPH04115423A - Superconductive strand - Google Patents

Superconductive strand

Info

Publication number
JPH04115423A
JPH04115423A JP2235377A JP23537790A JPH04115423A JP H04115423 A JPH04115423 A JP H04115423A JP 2235377 A JP2235377 A JP 2235377A JP 23537790 A JP23537790 A JP 23537790A JP H04115423 A JPH04115423 A JP H04115423A
Authority
JP
Japan
Prior art keywords
plating layer
strand
wire
coupling loss
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2235377A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yamada
清 山田
Yasuzo Tanaka
田中 靖三
Noboru Ito
登 伊藤
Akira Kohama
小浜 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KOUSHITSU GIKEN KK
Furukawa Electric Co Ltd
Original Assignee
NIPPON KOUSHITSU GIKEN KK
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KOUSHITSU GIKEN KK, Furukawa Electric Co Ltd filed Critical NIPPON KOUSHITSU GIKEN KK
Priority to JP2235377A priority Critical patent/JPH04115423A/en
Publication of JPH04115423A publication Critical patent/JPH04115423A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Wire Processing (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To reduce inter-strand coupling loss by dipping a complex element wire in a plating bath of predetermined ingredients for electroplating, and forming a Ni-Cr plating layer having a predetermined thickness, follow by heat-treatment. CONSTITUTION:A complex element wire made of an Nb wire of about 3.4mum diameter and Cu-about 4.3% Sn alloy is electroplated in a plating bath of chromic acid anhydride and citric acid under a predetermined condition, and a Ni-Cr alloy plating layer is formed to be about 1-20mum in thickness. By setting the temperature of a plating bath at a high temperature of about 60 deg.C to make generated cracks exhibit an anchor effect so that an Ni-Cr plating layer having a high degree of adhesion is formed. Further, the strand made of this covered wire rod by heat-treatment at a predetermined temperature, shows excellent results in respective electric characteristics such as a contact resistance value, residual resistance ratio, specific resistance value, coupling loss time constant of a conductor. Thereby, it is possible to reduce an inter-strand coupling loss of a large current superconductive conductor.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超電導ストランドに関し、更に詳しくは、例え
ばその複数本をコンジット管に挿入してケーブル・イン
・コンジット導体を製造したとき、各超電導ストランド
間の接触抵抗が高く、その結果、超電導ストランド間の
結合損失の低減を可能にする超電導ストランドに関する
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to superconducting strands, and more particularly, when a cable-in-conduit conductor is manufactured by inserting a plurality of strands into a conduit pipe, each superconducting strand The present invention relates to superconducting strands that have a high contact resistance between the superconducting strands, thereby making it possible to reduce coupling loss between the superconducting strands.

(従来の技術) 核融合炉用の大電流超電導導体の1つにケーブル・イン
・コンジット導体がある。この導体は、直径が約1−程
度の超電導ストランド(素線)を数百本束ねて撚線後コ
ンジット管の中に挿入し、管内に冷媒を導入した内部冷
却型の導体である。
(Prior Art) A cable-in-conduit conductor is one of the high-current superconducting conductors for fusion reactors. This conductor is an internally cooled conductor in which several hundred superconducting strands (wires) with a diameter of about 1-100 mm are bundled together, twisted, inserted into a conduit pipe, and a refrigerant introduced into the pipe.

二の導体は、冷却周囲長が非常に長く、高い安定性が得
られるとともに、各超電導ストランドの表面に絶縁被覆
を施すことにより、互いの交流損失(結合損失)を非常
に小さくすることができるという利点を備えている。
The second conductor has a very long cooling perimeter, providing high stability, and by applying an insulating coating to the surface of each superconducting strand, mutual AC loss (coupling loss) can be extremely reduced. It has the advantage of

ところで、上記したケーブル・イン・コンジット導体に
組込む超電導ストランドは概ね次のようにして製造され
る。例えば、Nb5Sn超電導体のストランドの場合、
まず、直径が5〜10μm程度の複数本のNb細線が所
定量のSnを含宵するCu合金のマトリックス中に埋込
まれた複合体素線を製造し、この複合体素線の表面に絶
縁被膜を形成したのち600〜700℃程度の温度に加
熱して、Nb細線とマトリックスとの界面でNbとSn
の界面反応を起させることにより、超電導性のNt)s
SnをNb細線の表面に生成させるのである。
By the way, the superconducting strand to be incorporated into the cable-in-conduit conductor described above is generally manufactured as follows. For example, for a strand of Nb5Sn superconductor,
First, a composite wire in which multiple Nb thin wires with a diameter of about 5 to 10 μm are embedded in a Cu alloy matrix containing a predetermined amount of Sn is manufactured, and an insulating layer is placed on the surface of the composite wire. After forming the film, it is heated to a temperature of about 600 to 700°C, and Nb and Sn are separated at the interface between the Nb thin wire and the matrix.
By causing an interfacial reaction of superconducting Nt)s
Sn is generated on the surface of the Nb thin wire.

この場合、複合体素線の表面を被覆する絶縁被膜の材料
としては、N b x S nの生成に要する600〜
700℃程度の温度に耐え得る材料であることと、同時
に、ストランドの安定化材であるCuまたはCu合金を
汚染しない材料であることが必要とされる。
In this case, the material for the insulating film that covers the surface of the composite wire should be the 600~
The material is required to be able to withstand temperatures of about 700° C., and at the same time, it must be a material that does not contaminate the Cu or Cu alloy that is the stabilizing material for the strands.

従来、このような絶縁被膜としては、硫化銅の膜や酸化
銅の膜か一般に採用されている。これは、硫化銅や酸化
銅は摩擦係数が小さいので、ストランド間の滑りがよく
なり、ケーブル・イン・コンジット導体を曲げたときの
歪みを小さくすることができるからである。
Conventionally, as such an insulating film, a film of copper sulfide or a film of copper oxide has generally been adopted. This is because copper sulfide and copper oxide have a small coefficient of friction, which improves the sliding between the strands and reduces distortion when the cable-in-conduit conductor is bent.

これら絶縁被膜のうち、例えば、硫化銅の絶縁被膜の場
合は、前記した複合体素線の表面に気相還元法を適用し
て表面部分を硫化銅にすることによって形成され、また
酸化銅の絶縁被膜の場合は複合体素線の表面に陽極酸化
法を適用することによって形成されている。
Among these insulating coatings, for example, the insulating coating of copper sulfide is formed by applying a vapor phase reduction method to the surface of the composite wire described above to convert the surface portion into copper sulfide. In the case of an insulating coating, it is formed by applying an anodic oxidation method to the surface of the composite wire.

(発明が解決しようとする課題) しかしながら、硫化銅や酸化銅の絶縁被膜で表面が被覆
されている上記複合体素線に対し、上記温度の熱処理を
施してNbaSn超電導体を生成させた場合、素線表面
を被覆している硫化銅や酸化銅か昇華してしまうことが
ある。その結果、得られた超電導ストランドはその表面
絶縁が一部破壊され、大きな交流損失を引き起すことが
ある。
(Problem to be Solved by the Invention) However, when the above composite wire whose surface is coated with an insulating film of copper sulfide or copper oxide is subjected to heat treatment at the above temperature to generate an NbaSn superconductor, Copper sulfide or copper oxide coating the wire surface may sublimate. As a result, the surface insulation of the obtained superconducting strands may be partially destroyed, causing large AC losses.

本発明は、このような問題を解決し、上記したNbaS
nの生成を目的とする熱処理によっても絶縁特性を失う
ことがなく、しかも安定化材であるCuやCu合金を汚
染することのない絶縁被膜で被覆されていて、大電流超
電導導体に組込んだとき、ストランド間の結合損失を低
減することができる超電導ストランドの提供を目的とす
る。
The present invention solves these problems, and the above-mentioned NbaS
It does not lose its insulating properties even when subjected to heat treatment for the purpose of generating n, and is coated with an insulating film that does not contaminate the stabilizing material Cu or Cu alloy. The present invention aims to provide a superconducting strand that can reduce coupling loss between the strands.

(課題を解決するための手段・作用) 上記した目的を達成するために、本発明においては、表
面がNi−Cr合金めっき層で被覆されていることを特
徴とする超電導ストランドが提供される。
(Means and effects for solving the problems) In order to achieve the above-described object, the present invention provides a superconducting strand whose surface is coated with a Ni-Cr alloy plating layer.

本発明の超電導ストランドは、表面を被覆している絶縁
被膜が電気めっき法を適用して形成されたNi −Cr
合金めっき層であることを除いては、従来の超電導スト
ランドと変ることはない。
The superconducting strand of the present invention has a Ni-Cr insulating film covering the surface formed by electroplating.
There is no difference from conventional superconducting strands except for the alloy plating layer.

このN1−(:「合金めっき層の厚みは1〜2゜μm程
度であることが好ましい。その理由は、厚みが1μmよ
り薄い場合は、そのめっき層が有効な接触抵抗値を示さ
ずストランド間の結合損失の低減効果は小さくなり、ま
た厚みが20μmより厚くなると、効果が飽和して不経
済になるばかりではなく、超電導ストランドの冷却効果
が悪くなって超電導特性に影響を与えるような問題が生
ずるからである。より好ましい厚みは5〜10μmであ
る。
It is preferable that the thickness of this N1-(: "alloy plating layer is about 1 to 2 μm. The reason is that if the thickness is thinner than 1 μm, the plating layer will not show an effective contact resistance value and will cause damage between the strands. The coupling loss reduction effect of the superconducting strand becomes small, and when the thickness becomes thicker than 20 μm, the effect not only becomes saturated and becomes uneconomical, but also the cooling effect of the superconducting strand deteriorates, causing problems such as affecting the superconducting properties. The more preferable thickness is 5 to 10 μm.

このNi−Cr合金めっき層は、前記した複合体素線に
電気めっき法を適用して形成される。
This Ni-Cr alloy plating layer is formed by applying an electroplating method to the above-described composite wire.

このときの対象となる複合体素線としては、熱処理によ
って、Nb5Sn超電導体を生成する素線やVaGa超
電導体を生成する素線をあげることができる。
Examples of the composite wire to be used in this case include a wire that produces a Nb5Sn superconductor and a wire that produces a VaGa superconductor by heat treatment.

電気めっきに用いるめっき浴としては、クエン酸を含む
ものが好ましく、具体的には、無水クロム酸8〜150
g#!、  クエン酸250〜300g/l、硫酸ニッ
ケル70〜130g/l、 クエン酸ソーダ50〜90
g/12の組成を有するめっき浴が好適である。
As a plating bath used for electroplating, one containing citric acid is preferable, and specifically, chromic anhydride 8-150
g#! , citric acid 250-300g/l, nickel sulfate 70-130g/l, sodium citrate 50-90g/l
A plating bath with a composition of g/12 is preferred.

電気めっきの過程では、まず無水クロム酸の電気分解に
よって複合体素線の表面に水素化クロムが析出する。こ
の水素化クロムは不安定であるため、析出後に金属クロ
ムと水素に分解して、その過程で析出した被膜の収縮が
起り、その結果、Crめっき面にクラックが発現する。
In the electroplating process, chromium hydride is first deposited on the surface of the composite wire by electrolysis of chromic anhydride. Since this chromium hydride is unstable, it decomposes into metallic chromium and hydrogen after precipitation, and during this process, the deposited film shrinks, resulting in cracks appearing on the Cr-plated surface.

そして、この水素化クロムの上記分解は、浴温が高けれ
ば高いほど迅速に進行する。
The decomposition of chromium hydride proceeds more quickly as the bath temperature is higher.

このようなりラックが発生している複合体素線に、後述
する熱処理を施してNb3Sn超電体を生成させようと
した場合には、このクラックの部分から素線の酸化が進
行して絶縁被膜の素線との密着性が低下するという不都
合を招く。
When attempting to generate a Nb3Sn superconductor by subjecting a composite wire with such cracks to the heat treatment described below, the oxidation of the wire progresses from the cracked portion and the insulation coating is removed. This results in the inconvenience that the adhesion with the strands decreases.

したがって、このクラックの発生を防止するために、水
素化クロムが素線の表面に析出すると同時にこれを分解
し、そのときに発生するクラックの部分にただちにNi
−Crを埋め込むという対応をとることが好ましくなる
Therefore, in order to prevent the occurrence of cracks, chromium hydride is decomposed at the same time as it precipitates on the surface of the wire, and Ni is immediately applied to the cracks that occur at that time.
It is preferable to embed -Cr.

そのため、本発明においては、めっき浴の浴温を55〜
65℃と高く設定して、析出した水素化クロムの分解を
迅速に行なわせる処置を講じ、このときに発生したクラ
ックにNi−Crを沈着させ、前記クラックにアンカー
効果を発揮させる。
Therefore, in the present invention, the bath temperature of the plating bath is set at 55 to
The temperature is set as high as 65° C. to rapidly decompose the precipitated chromium hydride, and Ni-Cr is deposited on the cracks generated at this time to exert an anchoring effect on the cracks.

その結果、素線の表面との密着度が高いNi−Cr合金
めっき層が形成される。
As a result, a Ni-Cr alloy plating layer with high adhesion to the surface of the wire is formed.

なお、めっき時の電流密度は20〜50A/dm2めっ
き時間は、複合めっき層の厚みにもよるか、3〜6分程
度であればよい。
The current density during plating is 20 to 50 A/dm2. The plating time may be about 3 to 6 minutes depending on the thickness of the composite plating layer.

上記したNi −Cr合金めっき層で被覆されている複
合体素線に、所定の温度で熱処理を施して、Nb、Sn
を生成せしめることにより、本発明の超電導ストランド
が得られる。
The composite wire coated with the Ni-Cr alloy plating layer described above is heat-treated at a predetermined temperature to produce Nb, Sn,
The superconducting strand of the present invention can be obtained by producing the superconducting strand of the present invention.

その超電導ストランドは、Ni−Cr合金めっき層には
クラック等が発生していないので素線内部の酸化は発生
することなく、Nb、Sn超電導体が生成しており、か
つその表面がNi−Cr合金から成る絶縁被膜で被覆さ
れている。
In the superconducting strand, there are no cracks or the like in the Ni-Cr alloy plating layer, so oxidation does not occur inside the wire, and Nb and Sn superconductors are formed, and the surface is made of Ni-Cr. Covered with an insulating film made of an alloy.

(発明の実施例) まず、無水クロム酸100g/ l 、  クエン酸3
00g/l、硫酸ニッケル100g/ l 、  クエ
ン酸ソーダ70g/lから成るめっき浴を建浴した。
(Example of the invention) First, chromic anhydride 100g/l, citric acid 3
A plating bath was prepared containing 00 g/l of nickel sulfate, 100 g/l of nickel sulfate, and 70 g/l of sodium citrate.

直径3.4μmのNb線8000本と、Cu −14,
3%Snから成る複合体素線を用意し、これを、上記め
っき浴に浸漬して、60±5℃の温度下において、電流
密度40A/dm2 (電圧3.8V、総電流2A)で
電気めっきを行なった。めっき時間を変えて、素線表面
を2.5μm(3分の場合)、5μm(6分の場合)の
Ni−Cr合金めっき層で被覆した。
8000 Nb wires with a diameter of 3.4 μm, Cu-14,
A composite wire consisting of 3% Sn was prepared, immersed in the above plating bath, and electrically applied at a current density of 40 A/dm2 (voltage 3.8 V, total current 2 A) at a temperature of 60 ± 5°C. Plating was performed. The surface of the wire was coated with a Ni-Cr alloy plating layer of 2.5 μm (in the case of 3 minutes) and 5 μm (in the case of 6 minutes) by changing the plating time.

ついで、これらの被覆線材を700℃で8日間加熱して
、本発明の超電導ストランドを製造した。
These coated wires were then heated at 700° C. for 8 days to produce superconducting strands of the present invention.

これらストランドの接触抵抗値はいずれも50μΩ/ 
mm ’と非常に高い値を示した。
The contact resistance value of these strands is 50μΩ/
It showed a very high value of mm'.

また、これらストランドの残留抵抗比(室温における抵
抗値/4.2Kにおける抵抗値)は150〜200の間
にあり、このときの比抵抗値(ρ)ハ1.4〜1.7X
10−’Ω−口であった。このことから、Ni−Cr合
金めっき層は安定化Cuを汚染していないことが判明し
た。
In addition, the residual resistance ratio (resistance value at room temperature/resistance value at 4.2K) of these strands is between 150 and 200, and the specific resistance value (ρ) at this time is 1.4 to 1.7X.
It was 10-'Ω-mouth. This revealed that the Ni-Cr alloy plating layer did not contaminate the stabilized Cu.

つぎに、めっき層の厚みがちがうこれらのストランドを
35%、20%のボイド率(冷媒流通部分の割合)でそ
れぞれコンジット管に挿入して4種類のケーブル・イン
・コンジット導体を製造し、これら導体の結合損失時定
数を測定した。その結果、いずれの導体の場合も、時定
数は10〜20m5の範囲にあり、良好な結果を示した
Next, four types of cable-in-conduit conductors were manufactured by inserting these strands with different plating layer thicknesses into conduit pipes with void ratios of 35% and 20% (ratio of refrigerant flow area), respectively. The coupling loss time constant of the conductor was measured. As a result, the time constant was in the range of 10 to 20 m5 for all conductors, showing good results.

(発明の効果) 以上の説明で明らかなように、本発明の超電導ストラン
ドは、その表面を被覆するNi−Cr合金めっき層の接
触抵抗値が高く絶縁特性に優れており、したがって、こ
のストランドを用いたケーブル・イン・コンジット導体
のような大電流超電導導体においては、そのストランド
間の結合損失を低減することが可能になる。
(Effects of the Invention) As is clear from the above explanation, the superconducting strand of the present invention has a high contact resistance value of the Ni-Cr alloy plating layer covering its surface and excellent insulation properties. In the high current superconducting conductor such as the cable-in-conduit conductor used, it becomes possible to reduce the coupling loss between the strands.

Claims (1)

【特許請求の範囲】[Claims] 表面がNi−Cr合金めっき層で被覆されていることを
特徴とする超電導ストランド。
A superconducting strand characterized in that its surface is coated with a Ni-Cr alloy plating layer.
JP2235377A 1990-09-05 1990-09-05 Superconductive strand Pending JPH04115423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2235377A JPH04115423A (en) 1990-09-05 1990-09-05 Superconductive strand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2235377A JPH04115423A (en) 1990-09-05 1990-09-05 Superconductive strand

Publications (1)

Publication Number Publication Date
JPH04115423A true JPH04115423A (en) 1992-04-16

Family

ID=16985182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2235377A Pending JPH04115423A (en) 1990-09-05 1990-09-05 Superconductive strand

Country Status (1)

Country Link
JP (1) JPH04115423A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0755562A1 (en) * 1994-04-11 1997-01-29 New England Electric Wire Corporation Superconductor cable and method of making
CN113445088A (en) * 2021-06-28 2021-09-28 沈伟 Vapor chamber with high heat absorption and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0755562A1 (en) * 1994-04-11 1997-01-29 New England Electric Wire Corporation Superconductor cable and method of making
EP0755562A4 (en) * 1994-04-11 1998-05-06 New England Electric Wire Superconductor cable and method of making
CN113445088A (en) * 2021-06-28 2021-09-28 沈伟 Vapor chamber with high heat absorption and preparation method thereof

Similar Documents

Publication Publication Date Title
DE1665554C3 (en) Cable-shaped superconductor
US3429032A (en) Method of making superconductors containing flux traps
CA1036337A (en) Method of manufacturing an intermetallic superconductor
DE69026659T2 (en) Ceramic superconducting wire and process for its manufacture
US3838503A (en) Method of fabricating a composite multifilament intermetallic type superconducting wire
Mueller et al. Superconducting aluminum heat switch and plated press‐contacts for use at ultralow temperatures
US3317286A (en) Composite superconductor body
US4053976A (en) Method of making Nb3 Sn composite wires and cables
JPH04115423A (en) Superconductive strand
US3676577A (en) Superconductors containing flux traps
US3346467A (en) Method of making long length superconductors
JPH04115422A (en) Superconductive strand
JPH04115420A (en) Superconductive strand
CA1036801A (en) Method for the manufacture of a superconductor having an intermetallic two element compound
JPH04115421A (en) Superconductive strand
JP2003297162A (en) METHOD FOR MANUFACTURING Nb3Ga EXTRAFINE MULTI-CORE WIRE ROD
RU2076363C1 (en) Method for manufacturing of multiple-conductor superconducting wire using nb*003sn compound
US2465105A (en) Oxide insulating coating for nickel chromium resistance wire
Adam et al. Fabrication and properties of Nb 3 Sn tapes by the" Bronze process" application to superconducting power transmission lines
CN115910475A (en) Combined tinned copper stranded wire
Scanlan et al. Method of making Nb 3 Sn composite wires and cables
Dietderich et al. The relationship between critical current and microstructure of internal tin wire
JP2719155B2 (en) Superconducting stranded wire manufacturing method
JP3257703B2 (en) Pulse or AC current lead and method for connecting A15 type compound superconducting stranded wire to said current lead
JPH0660743A (en) Superconductive wire and its manufacture