JPH04115420A - Superconductive strand - Google Patents

Superconductive strand

Info

Publication number
JPH04115420A
JPH04115420A JP2235374A JP23537490A JPH04115420A JP H04115420 A JPH04115420 A JP H04115420A JP 2235374 A JP2235374 A JP 2235374A JP 23537490 A JP23537490 A JP 23537490A JP H04115420 A JPH04115420 A JP H04115420A
Authority
JP
Japan
Prior art keywords
strand
predetermined
plating layer
coupling loss
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2235374A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yamada
清 山田
Yasuzo Tanaka
田中 靖三
Noboru Ito
登 伊藤
Akira Kohama
小浜 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KOUSHITSU GIKEN KK
Furukawa Electric Co Ltd
Original Assignee
NIPPON KOUSHITSU GIKEN KK
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KOUSHITSU GIKEN KK, Furukawa Electric Co Ltd filed Critical NIPPON KOUSHITSU GIKEN KK
Priority to JP2235374A priority Critical patent/JPH04115420A/en
Publication of JPH04115420A publication Critical patent/JPH04115420A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To reduce inter-strand coupling loss by dipping a complex element wire in a plating bath of predetermined ingredients for electroplating, and forming a Ni2O3 plating layer having a predetermined thickness, followed by heat-treatment. CONSTITUTION:A complex element wire consisting of an Nb wire of about 3.4mum diameter and Cu-about 4.3% Sn alloy is dipped in a predetermined plating bath having ammonium nickel sulfate as a main ingredient and is electroplated under a predetermined condition to form a Ni2O3 plating layer of about 3-30mum in thickness. Further, the strand made of these covered wire rod by heat- treatment at a predetermined temperature shows excellent results in respective electric characteristics such as a contact resistance value, residual resistance ratio, specific resistance value, coupling loss time constant of a conductor. Thereby it is possible to reduce an inter-strand coupling loss of a large current superconductive conductor.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超電導ストランドに関し、更に詳しくは、例え
ばその複数本をコンジット管に挿入してケーブル・イン
・コンジット導体を製造したとき、各超電導ストランド
間の接触抵抗が高く、その結果、超電導ストランド間の
結合損失の低減を可能にする超電導ストランドに関する
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to superconducting strands, and more particularly, when a cable-in-conduit conductor is manufactured by inserting a plurality of strands into a conduit pipe, each superconducting strand The present invention relates to superconducting strands that have a high contact resistance between the superconducting strands, thereby making it possible to reduce coupling loss between the superconducting strands.

(従来の技術) 核融合炉用の大電流超電導導体の1つにケーブル・イン
・コンジット導体がある。この導体は、直径が約1mm
程度の超電導ストランド(素線)を数百本束ねて撚線後
コンジット管の中に挿入し、管内に冷媒を導入した内部
冷却型の導体である。
(Prior Art) A cable-in-conduit conductor is one of the high-current superconducting conductors for fusion reactors. This conductor has a diameter of approximately 1 mm
It is an internally cooled conductor in which several hundred superconducting strands (strands) of about 100 liters are bundled together, twisted, inserted into a conduit pipe, and a refrigerant introduced into the pipe.

この導体は、冷却周囲長が非常に長く、高い安定性が得
られるとともに、各超電導ストランドの表面に絶縁被覆
を施すことにより、互いの交流損失(結合損失)を非常
に小さくすることができるという利点を備えている。
This conductor has a very long cooling perimeter, which provides high stability, and by applying an insulating coating to the surface of each superconducting strand, it is possible to extremely reduce mutual AC loss (coupling loss). It has advantages.

ところで、上記したケーブル・イン・コンジット導体に
組込む超電導ストランドは概ね次のようにして製造され
る。例えば、Nb3Sn超電導体のストランドの場合、
まず、直径が5〜lOμm程度の複数本のNb細線が所
定量のSnを含有するCu合金のマトリックス中に埋込
まれた複合体素線を製造し、この複合体素線の表面に絶
縁被膜を形成したのち600〜700℃程度の温度に加
熱して、Nb細線とマトリックスとの界面でNbとSn
の界面反応を起させることにより、超電導性のNbzS
nをNb細線の表面に生成させるのである。
By the way, the superconducting strand to be incorporated into the cable-in-conduit conductor described above is generally manufactured as follows. For example, for a strand of Nb3Sn superconductor,
First, a composite wire in which multiple Nb thin wires with a diameter of about 5 to 10 μm are embedded in a Cu alloy matrix containing a predetermined amount of Sn is manufactured, and an insulating coating is applied to the surface of this composite wire. After forming, it is heated to a temperature of about 600 to 700°C to form Nb and Sn at the interface between the Nb thin wire and the matrix.
By causing an interfacial reaction, superconducting NbzS
n is generated on the surface of the Nb thin wire.

この場合、複合体素線の表面を被覆する絶縁被膜の材料
としては、NbaSnの生成に要する600〜700℃
程度の温度に耐え得る材料であることと、同時に、スト
ランドの安定化材であるCuまたはCu合金を汚染しな
い材料であることか必要とされる。
In this case, the material for the insulating film that covers the surface of the composite wire should be 600 to 700°C, which is required for the generation of NbaSn.
The material is required to be able to withstand a certain temperature and at the same time not to contaminate the Cu or Cu alloy that is the stabilizing material for the strands.

従来、このような絶縁被膜としては、硫化銅の膜や酸化
銅の膜が一般に採用されている。これは、硫化銅や酸化
銅は摩擦係数が小さいので、ストランド間の滑りがよく
なり、ケーブル・イン・コンジット導体を曲げたときの
歪みを小さくすることができるからである。
Conventionally, a copper sulfide film or a copper oxide film has generally been employed as such an insulating film. This is because copper sulfide and copper oxide have a small coefficient of friction, which improves the sliding between the strands and reduces distortion when the cable-in-conduit conductor is bent.

これら絶縁被膜のうち、例えば、硫化銅の絶縁被膜の場
合は、前記した複合体素線の表面に気相還元法を適用し
て表面部分を硫化銅にすることによって形成され、また
酸化銅の絶縁被膜の場合は複合体素線の表面に陽極酸化
法を適用することによって形成されている。
Among these insulating coatings, for example, the insulating coating of copper sulfide is formed by applying a vapor phase reduction method to the surface of the composite wire described above to convert the surface portion into copper sulfide. In the case of an insulating coating, it is formed by applying an anodic oxidation method to the surface of the composite wire.

(発明が解決しようとする課題) しかしながら、硫化銅や酸化銅の絶縁被膜で表面が被覆
されている上記複合体素線に対し、上記温度の熱処理を
施してNb3Sn超電導体を生成させた場合、素線表面
を被覆している硫化銅や酸化銅が昇華してしまうことが
ある。その結果、得られた超電導ストランドはその表面
絶縁か一部破壊され、大きな交流損失を引き起すことが
ある。
(Problem to be Solved by the Invention) However, when the composite wire whose surface is coated with an insulating film of copper sulfide or copper oxide is subjected to heat treatment at the above temperature to generate a Nb3Sn superconductor, Copper sulfide and copper oxide coating the surface of the wire may sublimate. As a result, the surface insulation of the obtained superconducting strands may be partially destroyed, causing large AC losses.

本発明は、このような問題を解決し、上記したNb3S
nの生成を目的とする熱処理によっても絶縁特性を失う
ことがなく、しかも安定化材であるCuやCu合金を汚
染することのない絶縁被覆で被覆されていて、大電流超
電導導体に組込んだとき、ストランド間の結合損失を低
減することができる超電導ストランドの提供を目的とす
る。
The present invention solves these problems, and the above-mentioned Nb3S
It is coated with an insulating coating that does not lose its insulating properties even when subjected to heat treatment for the purpose of generating n, and does not contaminate the stabilizing material Cu or Cu alloy. The present invention aims to provide a superconducting strand that can reduce coupling loss between the strands.

(課題を解決するための手段・作用) 上記した目的を達成するために、本発明においては、表
面がNi、O,めっき層で被覆されていることを特徴と
する超電導ストランドが提供される。
(Means and effects for solving the problems) In order to achieve the above-mentioned object, the present invention provides a superconducting strand whose surface is coated with Ni, O, and a plating layer.

本発明の超電導ストランドは、表面を被覆している絶縁
被膜が電気めっき法を適用して形成されたN!zoaめ
っき層であることを除いては、従来の超電導ストランド
と変ることはない。
The superconducting strand of the present invention has an insulating film covering the surface of the N! There is no difference from conventional superconducting strands except for the ZOA plating layer.

このN1zOsめっき層は、後述する理由で、若干ポー
ラスになっていて、そのため接触抵抗が高い。また、こ
のNLOaめっき層の厚みは3〜30μm程度であるこ
とが好ましい。その理由は、厚みが3μmより薄い場合
は、そのめっき層が有効な接触抵抗値を示さずストラン
ド間の結合損失の低減効果は小さくなり、また厚みが3
0μmより厚くなると、効果が飽和して不経済になるば
かりではなく、超電導ストランドの冷却効果が悪くなり
超電導特性に影響を与え、またケーブル・イン・コンジ
ット導体にするときにボイド率を確保できなくなるとい
うような問題が生ずるからである。
This N1zOs plating layer is slightly porous for reasons described later, and therefore has high contact resistance. Moreover, it is preferable that the thickness of this NLOa plating layer is about 3 to 30 μm. The reason for this is that if the thickness is less than 3 μm, the plating layer will not show an effective contact resistance value and the effect of reducing coupling loss between strands will be small;
If it becomes thicker than 0 μm, not only will the effect become saturated and become uneconomical, but the cooling effect of the superconducting strand will deteriorate, affecting the superconducting properties, and it will not be possible to secure the void ratio when making it into a cable-in-conduit conductor. This is because such problems arise.

好ましい厚みは5〜lOμmである。The preferred thickness is 5 to 10 μm.

このNi、O,めっき層は、前記した複合体素線に電気
めっき法を適用して形成される。
This Ni, O, plating layer is formed by applying an electroplating method to the composite wire described above.

このときの対象となる複合体素線としては、熱処理によ
って、Nb5Sn超電導体を生成する素線やV s G
 a超電導体を生成する素線をあげることができる。
The target composite wires at this time include wires that produce Nb5Sn superconductors through heat treatment and VsG
(a) The strands that produce superconductors can be mentioned.

電気めっきに用いるめっき浴としては、硫酸ニッケルア
ンモニウムを主体とする全塩化浴、例えば、硫酸ニッケ
ルアンモニウム60〜65g/f。
The plating bath used for electroplating is a fully chlorinated bath mainly containing nickel ammonium sulfate, for example, 60 to 65 g/f of nickel ammonium sulfate.

硫酸亜鉛60〜90g/l、硫青化ナトリウム100〜
200g/fの組成を有するめっき浴が好適である。
Zinc sulfate 60~90g/l, sodium sulfate cyanide 100~
A plating bath with a composition of 200 g/f is preferred.

また、めっき条件は、格別限定されるものではないが、
例えば、めっき浴として上記全塩化浴を用いた場合、浴
温:室温、電流密度、0.5〜10A/dm2.時間3
〜6分程度であればよい。
In addition, the plating conditions are not particularly limited, but
For example, when the above-mentioned fully chlorinated bath is used as a plating bath, bath temperature: room temperature, current density, 0.5 to 10 A/dm2. time 3
It is sufficient if the time is about 6 minutes.

このようにして形成されたNi2O,めっき層で被覆さ
れている複合体素線に、所定の温度で熱処理を施して、
Nb、Snを生成せしめることにより、本発明の超電導
ストランドが得られる。
The composite wire coated with Ni2O and the plating layer thus formed is subjected to heat treatment at a predetermined temperature,
By generating Nb and Sn, the superconducting strand of the present invention can be obtained.

この熱処理の過程で、形成されているN i t O2
めっき層は変質せず、その絶縁特性が破壊されることは
ない。このめっき層中にはめっき浴からの硫黄成分が含
有されているが、上記熱処理によって硫黄成分はめっき
層から蒸発していく。その結果、得られた超電導ストラ
ンドの表面には、ポーラスなN1zOsめっき層のみが
残存し、その接触抵抗値が増大する。
During this heat treatment process, the formed N it O2
The plating layer is not altered and its insulating properties are not destroyed. This plating layer contains sulfur components from the plating bath, but the sulfur components are evaporated from the plating layer by the heat treatment. As a result, only the porous N1zOs plating layer remains on the surface of the obtained superconducting strand, and its contact resistance value increases.

(発明の実施例) マス、硫酸ニッケルアンモニウム62.5 g/β。(Example of the invention) Mass, nickel ammonium sulfate 62.5 g/β.

硫酸亜鉛78g/β、硫青化ナトリウム156g#から
成るめっき浴を建浴した。
A plating bath consisting of 78 g/β of zinc sulfate and 156 g of sodium sulfate cyanide was prepared.

直径3.4μmのNb線8000本と、Cu −14,
3%Sn合金から成る複合体素線を用意し、これを、上
記めっき浴に浸漬して、室温下において、電流密度5A
/dm2 (電圧1.IV、総電流0.2A)で電気め
っきを行なった。めっき時間を変えて、素線表面を3μ
m(3分の場合)、6μm(6分の場合)のNLOaめ
っき層で被覆した。
8000 Nb wires with a diameter of 3.4 μm, Cu-14,
A composite wire made of 3% Sn alloy was prepared, immersed in the above plating bath, and heated at a current density of 5 A at room temperature.
Electroplating was performed at /dm2 (voltage 1.IV, total current 0.2A). By changing the plating time, the surface of the wire is 3μ
It was coated with an NLOa plating layer of 6 μm (for 3 minutes) and 6 μm (for 6 minutes).

ついで、これらの被覆線材を700°Cで8日間加熱し
て、本発明の超電導ストランドを製造した。
These coated wires were then heated at 700°C for 8 days to produce superconducting strands of the present invention.

これらストランドの接触抵抗値はいずれも58μΩ/圓
2と非常に高い値を示した。
The contact resistance values of these strands were all as high as 58 μΩ/square.

また、これらストランドの残留抵抗比(室温における抵
抗値/4.2Kにおける抵抗値)は150〜200の間
にあり、比抵抗値(ρ)は1.5〜2.0XIO−’Ω
−■であった。このことから、Ni2O。
In addition, the residual resistance ratio (resistance value at room temperature/resistance value at 4.2K) of these strands is between 150 and 200, and the specific resistance value (ρ) is between 1.5 and 2.0XIO-'Ω
-■ From this, Ni2O.

めっき層は安定化Cuを汚染していないことが判明した
It was found that the plating layer did not contaminate the stabilized Cu.

つきに、めっき層の厚みがちかうこれらのストランドを
25%、40%のボイド率(冷媒流通部分の割合)でそ
れぞれコンジット管に挿入して4種類のケーブル・イン
・コンジット導体を製造し、これら導体の結合損失時定
数を測定した。その結果、いずれの導体の場合も、時定
数はlO〜2゜msの範囲にあり、良好な結果を示した
Finally, four types of cable-in-conduit conductors were manufactured by inserting these strands with different plating layer thicknesses into conduit pipes with void ratios of 25% and 40% (ratio of refrigerant flow area), respectively. The coupling loss time constant of the conductor was measured. As a result, the time constant was in the range of 10 to 2 mm for all conductors, showing good results.

(発明の効果) 以上の説明で明らかなように、本発明の超電導ストラン
ドは、その表面を被覆するN i t Osめっき層の
接触抵抗値が高く絶縁特性に優れており、したがって、
このストランドを用いたケーブル・イン・コンジット導
体のような大電流超電導導体においては、そのストラン
ド間の結合損失を低減することが可能になる。
(Effects of the Invention) As is clear from the above explanation, the superconducting strand of the present invention has a high contact resistance value of the NitOs plating layer covering its surface and excellent insulation properties, and therefore,
In a high current superconducting conductor such as a cable-in-conduit conductor using this strand, it becomes possible to reduce the coupling loss between the strands.

Claims (1)

【特許請求の範囲】[Claims] 表面がNi_2O_3めっき層で被覆されていることを
特徴とする超電導ストランド。
A superconducting strand characterized in that its surface is coated with a Ni_2O_3 plating layer.
JP2235374A 1990-09-05 1990-09-05 Superconductive strand Pending JPH04115420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2235374A JPH04115420A (en) 1990-09-05 1990-09-05 Superconductive strand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2235374A JPH04115420A (en) 1990-09-05 1990-09-05 Superconductive strand

Publications (1)

Publication Number Publication Date
JPH04115420A true JPH04115420A (en) 1992-04-16

Family

ID=16985142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2235374A Pending JPH04115420A (en) 1990-09-05 1990-09-05 Superconductive strand

Country Status (1)

Country Link
JP (1) JPH04115420A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104962969A (en) * 2015-07-10 2015-10-07 哈尔滨工业大学 Preparation method for three-dimensional electrochromic nickel oxide thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104962969A (en) * 2015-07-10 2015-10-07 哈尔滨工业大学 Preparation method for three-dimensional electrochromic nickel oxide thin film
CN104962969B (en) * 2015-07-10 2018-01-30 哈尔滨工业大学 A kind of preparation method of three-dimensional electrochromic nickel oxide film

Similar Documents

Publication Publication Date Title
US3429032A (en) Method of making superconductors containing flux traps
DE1665554C3 (en) Cable-shaped superconductor
CA1036337A (en) Method of manufacturing an intermetallic superconductor
US3905839A (en) Liquid sintered cobalt-rare earth intermetallic product
US3731374A (en) Method of fabricating a hard intermetallic superconductor by means of diffusion
US4330347A (en) Resistive coating for current conductors in cryogenic applications
US3317286A (en) Composite superconductor body
US4053976A (en) Method of making Nb3 Sn composite wires and cables
US3676577A (en) Superconductors containing flux traps
JPH04115420A (en) Superconductive strand
Dietderich et al. The critical current density and microstructural state of an internal tin multifilamentary superconducting wire
Van Beijnen et al. Potential fabrication method of superconducting multifilament wires of the A-15 type
JPH04115423A (en) Superconductive strand
JPH04115422A (en) Superconductive strand
JPH04115421A (en) Superconductive strand
US4431862A (en) Multiwire conductor having increased interwire resistance and good mechanical stability and method for making same
JP2719155B2 (en) Superconducting stranded wire manufacturing method
JP2742436B2 (en) Method for producing compound superconducting stranded wire
JPH024931A (en) Manufacture of nb3x super conducting material
Adam et al. Fabrication and properties of Nb 3 Sn tapes by the" Bronze process" application to superconducting power transmission lines
Scanlan et al. Method of making Nb 3 Sn composite wires and cables
CA1036338A (en) Method and apparatus for the manufacture of a superconductor
JPH09134625A (en) Manufacture of insulated superconducting wire
JPH0660743A (en) Superconductive wire and its manufacture
JPH0612932A (en) Manufacture of a3 sn type superconductor