JPH04115176A - Monitor - Google Patents

Monitor

Info

Publication number
JPH04115176A
JPH04115176A JP23475890A JP23475890A JPH04115176A JP H04115176 A JPH04115176 A JP H04115176A JP 23475890 A JP23475890 A JP 23475890A JP 23475890 A JP23475890 A JP 23475890A JP H04115176 A JPH04115176 A JP H04115176A
Authority
JP
Japan
Prior art keywords
monitoring area
electromagnetic wave
monitoring
wave power
monitoring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23475890A
Other languages
Japanese (ja)
Inventor
Hitoshi Shimizu
仁 清水
Yuji Ichinose
祐治 一ノ瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23475890A priority Critical patent/JPH04115176A/en
Publication of JPH04115176A publication Critical patent/JPH04115176A/en
Pending legal-status Critical Current

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

PURPOSE:To fully monitor all area to be monitored by a simple device by radiating an electromagnetic wave to the region to be monitored, surrounded by a material for reflecting the wave, and generating a space distribution of electromagnetic wave power in the region. CONSTITUTION:Since an electromagnetic wave oscillated by an oscillator 1 is emitted 4 to an area 10 to be monitored, reflected by a wall 6, a door 7, etc., and reflected on stands 8a, 8b, 8c to be repeated, a standing wave is generated in the region 10, and a space distribution of electromagnetic wave power in the area is determined according to the position of a structure to become a constant value in a timing manner. When the door 7 is opened or a person enters the inside, the reflecting position of the wave in the area 10 is varied, a space distribution of the wave power is altered, an electromagnetic wave power to be detected by a receiver 5 is varied thereby, and hence the variation in the space distribution can be detected. Accordingly, the entire area 10 to be monitored of a wide range can be fully monitored by a simple device structure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、監視領域内の状態が変化することによる異変
を検知するための装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for detecting abnormalities due to changes in conditions within a monitoring area.

〔従来の技術〕[Conventional technology]

従来の監視装置は、特開昭63−269032号公報に
記載のように、ボイラからの蒸気リークを検出する方法
として電磁波が蒸気中を伝播するときに、電力の減衰が
大きいことを利用している。
Conventional monitoring devices utilize the large attenuation of power when electromagnetic waves propagate through steam as a method for detecting steam leaks from boilers, as described in Japanese Patent Application Laid-Open No. 63-269032. There is.

すなわち、蒸気リークが起きる可能性のある場所に向け
て電磁波を放射し、ボイラで反射する電磁波の反射波電
力を測定する。反射電力が通常より小さい場合に蒸気の
リークがあると判断する蒸気リークの監視装置である。
That is, electromagnetic waves are emitted toward locations where steam leaks may occur, and the reflected wave power of the electromagnetic waves reflected by the boiler is measured. This is a steam leak monitoring device that determines that there is a steam leak when the reflected power is smaller than normal.

他の従来例として特開昭63−291190号公報が挙
げられる。この従来例も基本構成は上記従来例と同様で
あり、電磁波の放射器と受信器間の限定された経路内の
みの監視を行なう構造であった。
Another conventional example is JP-A-63-291190. This conventional example also has the same basic configuration as the above-mentioned conventional example, and has a structure in which only a limited path between an electromagnetic wave emitter and a receiver is monitored.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の各従来技術は、電磁波が直進性の高い波である性
質を利用したものであり、レーダ技術を応用した監視装
置である。レーダ技術を用いた監視装置は、電磁波を送
受信するアンテナに対して見通せない領域では原理的に
監視できないので、監視領域内に監視できない場所が存
在する。このため全領域を監視するためには、複数の監
視装置を設け、互いに監視領域を補完しあう必要が生し
、全領域を網羅する監視装置のシステム構成が複雑にな
る問題があった。すなわち、従来装置は装置構成の簡素
化について配慮がされておらず、簡単な装置構成で全監
視領域を網羅することができなかった。
Each of the above-mentioned conventional technologies utilizes the property that electromagnetic waves are highly straight-travel waves, and are monitoring devices that apply radar technology. A monitoring device using radar technology cannot, in principle, monitor an area where it cannot see through the antenna that transmits and receives electromagnetic waves, so there are places within the monitoring area that cannot be monitored. Therefore, in order to monitor the entire area, it is necessary to provide a plurality of monitoring devices and complement each other's monitoring areas, which poses a problem that the system configuration of the monitoring device that covers the entire area becomes complicated. That is, in the conventional device, no consideration was given to simplifying the device configuration, and it was not possible to cover the entire monitoring area with a simple device configuration.

本発明の目的は、簡単な装置構成で広範囲な監視領域を
くまなく監視できる、監視装置を提供することにある。
An object of the present invention is to provide a monitoring device that can thoroughly monitor a wide range of monitoring areas with a simple device configuration.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、電磁波が反射する材質で囲
われた監視領域内に、電磁波を放射し、監視領域内に電
磁波電力の空間分布を生じさせる。
To achieve the above object, electromagnetic waves are radiated into a monitoring area surrounded by a material that reflects electromagnetic waves, thereby creating a spatial distribution of electromagnetic wave power within the monitoring area.

電力の空間分布は、監視領域内にある構造物の配置に依
存しているので、電磁波電力の空間分布は、監視領域内
にある全構造物の配置の情報を含んでいる。そこで、電
磁波電力の空間分布を測定し、空間分布の変化より監視
領域内の構造物の配置の変化を検知できるようにしたも
のである。
Since the spatial distribution of power depends on the arrangement of structures within the monitoring area, the spatial distribution of electromagnetic power includes information on the arrangement of all structures within the monitoring area. Therefore, the spatial distribution of electromagnetic wave power is measured, and changes in the arrangement of structures within the monitoring area can be detected from changes in the spatial distribution.

すなわち、本発明は、電磁波を発振する発振器と、発振
器からの発振電力を監視領域に放射する放射器と、前記
監視領域内の電磁波電力を測定する受信器と、この受信
器からの信号を受けて処理する検知部と、を備えた監視
装置において、監視領域は閉空間より成り該閉空間を仕
切る部材すべてが電磁波を反射する素材で形成され、受
信器は該監視領域の電磁波電力の空間分布を測定し、検
知部は前記空間分布の変化から監視領域内の状態変化を
検知するように形成されていることを特徴とするもので
ある。
That is, the present invention includes an oscillator that oscillates electromagnetic waves, a radiator that radiates oscillation power from the oscillator to a monitoring area, a receiver that measures electromagnetic wave power within the monitoring area, and a signal that is received from the receiver. In the monitoring device, the monitoring area consists of a closed space, all the members partitioning the closed space are made of a material that reflects electromagnetic waves, and the receiver detects the spatial distribution of electromagnetic wave power in the monitoring area. , and the detection unit is configured to detect a change in state within the monitoring area from a change in the spatial distribution.

また、本発明は、電磁波を発振する発振器と、発振器か
らの発振電力を監視領域に放射する放射器と、前記監視
領域内の電磁波電力を測定する受信器と、この受信器か
らの信号を受けて処理する検知部と、を備えた監視装置
において、放射器より監視領域内に放射された電磁波が
該監視領域内で多重反射された結果生ずる電磁波電力の
空間分布を受信器により測定し、検知部で前記空間分布
の変化から監視領域内の状態変化を検知するように形成
されていることを特徴とするものである。
The present invention also provides an oscillator that oscillates electromagnetic waves, a radiator that radiates oscillation power from the oscillator to a monitoring area, a receiver that measures electromagnetic wave power within the monitoring area, and a receiver that receives signals from the receiver. A monitoring device comprising: a detection unit that processes electromagnetic waves from a radiator into a monitoring area; the receiver measures and detects the spatial distribution of electromagnetic wave power that is generated as a result of multiple reflections within the monitoring area; The monitor is characterized in that it is configured to detect a change in the state within the monitoring area from a change in the spatial distribution.

前記監視装置において、閉空間を仕切る部材すべてが電
磁波を反射する素材で形成されていることに替えて、閉
空間を仕切る部材の一部が電磁波の非反射素材で形成さ
れているものでもよい。また、監視領域が閉空間である
ことに替えて、監視領域の一部は外部と連なる一部開空
間であるものでもよい。
In the monitoring device, instead of all the members partitioning the closed space being made of a material that reflects electromagnetic waves, some of the members partitioning the closed space may be made of a material that does not reflect electromagnetic waves. Further, instead of the monitoring area being a closed space, a part of the monitoring area may be a partially open space connected to the outside.

また、前記監視装置において、発振される電磁波の発振
周波数は特定の検知対象物による吸収の大きい周波数に
設定可能に形成されているものがよい。また、発振され
る電磁波は特定の検知対象物による吸収の大きい周波数
と吸収の小さい周波数のものの組み合わせ可能に形成さ
れているものがよい。
Further, in the monitoring device, it is preferable that the oscillation frequency of the electromagnetic waves to be oscillated can be set to a frequency that is largely absorbed by a specific object to be detected. Further, the oscillated electromagnetic waves are preferably formed so as to be able to combine frequencies with high absorption by a specific detection target and frequencies with low absorption.

また、前記監視装置において、監視領域は互いに連通さ
れた複数の小室よりなり、各小室に受信器が各々配設さ
れているものがよい。また、監視領域は互いに連通され
た複数の小室よりなり、各小室にテレビカメラが設置さ
れているものがよい。
Further, in the monitoring device, it is preferable that the monitoring area consists of a plurality of small chambers that communicate with each other, and that a receiver is disposed in each small chamber. Further, it is preferable that the monitoring area consists of a plurality of small rooms communicating with each other, and a television camera is installed in each small room.

また、監視領域内には回転体やピストン等の駆動物が配
設されているものでもよい。
Furthermore, a moving object such as a rotating body or a piston may be disposed within the monitoring area.

〔作用〕[Effect]

監視領域内に放射された電磁波は、反射を繰り返すこと
によって、領域内には定在波が生じる。
The electromagnetic waves radiated into the monitoring area are repeatedly reflected, thereby generating standing waves within the area.

この定在波は、領域内にある構造物の位置によって、そ
の領域内の電磁波の電力の空間分布が定まる性質をもっ
ている。また領域内に電磁波電力を測定する検出器を設
置し、電磁波電力の空間分布を測定する。もし、監視領
域内にある構造物の配置が変わると、電磁波電力の空間
分布が変化するので、測定する電磁波の電力も変化する
ことになる。すなわち、監視領域内にある構造物であれ
ば、どの構造物であっても配置が変化すれば、検出器で
検出する電磁波電力は変化する。このため、放射器・受
信器に対して見通し外にある構造物であっても、検出器
の出力は変化する。そこで、検出器の出力をモニタし、
検出器出力に時間変化が生じることを検出することによ
って、監視領域内のどこで異変が発生しても検知するこ
とができる。
This standing wave has the property that the spatial distribution of electromagnetic wave power within an area is determined by the position of structures within the area. Additionally, a detector will be installed within the area to measure the electromagnetic power, and the spatial distribution of electromagnetic power will be measured. If the arrangement of structures within the monitoring area changes, the spatial distribution of electromagnetic wave power will change, and therefore the power of the electromagnetic waves to be measured will also change. That is, if the arrangement of any structure within the monitoring area changes, the electromagnetic wave power detected by the detector will change. Therefore, even if a structure is out of line of sight to the radiator/receiver, the output of the detector changes. Therefore, we monitor the output of the detector and
By detecting a time change in the detector output, it is possible to detect an abnormality wherever it occurs within the monitoring area.

監視領域内を仕切る閉空間の一部に電磁波を吸収する部
材が含まれている場合、その吸収部材の部分の監視はで
きないが、他の部分に基づく電磁波電力の空間分布が形
成されるため、その部分の監視が可能となる。これは監
視領域の一部が外部に連なる一部開空間の場合について
も同様である。
If a member that absorbs electromagnetic waves is included in a part of the closed space that partitions the monitoring area, the part of the absorbing member cannot be monitored, but a spatial distribution of electromagnetic wave power is formed based on other parts. It becomes possible to monitor that part. This also applies to the case where a part of the monitoring area is a partially open space that extends outside.

ある特定の検知対象物に大きく吸収される周波数の電磁
波を発振させれば、監視領域内にその物が侵入したか否
かを監視できる。
By oscillating electromagnetic waves with a frequency that is largely absorbed by a certain object to be detected, it is possible to monitor whether or not that object has entered the monitoring area.

大きな監視領域を小室に区分して各小室毎に受信器を設
けておけば、大きい状態変化を検出した受信器のある小
室に状態変化があったことを同定できる。あるいはテレ
ビカメラを各小室を配設することにより、視覚的に各小
室の状態変化を把握することができる。
If a large monitoring area is divided into small rooms and a receiver is provided for each small room, it is possible to identify that a state change has occurred in the small room where the receiver that detected the large state change is located. Alternatively, by placing a television camera in each small room, it is possible to visually grasp changes in the state of each small room.

監視領域内に回転体やピストン等非静的な駆動物があっ
ても、その駆動物の存在を前提とする電磁波電力の空間
分布が形成されるため、同様に状態変化を検知できる。
Even if there is a non-static moving object such as a rotating body or a piston within the monitoring area, a change in state can be detected in the same way because a spatial distribution of electromagnetic wave power is formed based on the presence of the moving object.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。第1
図に示す実施例は、建物の侵入者監視装置である。建物
の外壁あるいは扉を電磁波が反射する材質にすると、建
物内全域を監視領域とすることができる。発振器1で発
振した電磁波を放射器4より監視領域10に放射する。
An embodiment of the present invention will be described below with reference to FIG. 1st
The illustrated embodiment is a building intruder monitoring device. If the outer wall or door of a building is made of a material that reflects electromagnetic waves, the entire interior of the building can be used as a surveillance area. Electromagnetic waves oscillated by an oscillator 1 are radiated from a radiator 4 to a monitoring area 10.

また監視領域10内の電磁波電力を測定するために受信
器5を固定して設置し、その受信した電磁波電力を検出
器2によって検出する。
Further, in order to measure the electromagnetic wave power within the monitoring area 10, a receiver 5 is fixedly installed, and the received electromagnetic wave power is detected by the detector 2.

監視領域10内に放射した電磁波は、壁6、扉7などで
反射し、また監視領域10内に置かれている衝立8a、
8b、8cで反射する。このため監視領域10内には定
在波が生じ、検出した電磁波電力は、時間的に一定な値
となる。ところが。
The electromagnetic waves radiated into the monitoring area 10 are reflected by the walls 6, doors 7, etc., and are also reflected by the screens 8a,
It is reflected by 8b and 8c. Therefore, standing waves are generated within the monitoring area 10, and the detected electromagnetic wave power has a constant value over time. However.

例えば監視領域10との境である扉7が開かれたり、あ
るいは内部に人が侵入すると、監視領域10内の電磁波
の反射位置が変わる。この結果、領域10内の電磁波電
力の空間分布が変わり、固定して設置した受信器5で検
出する電磁波電力も変化する。このため、電力の空間分
布を測定しなくても、1つの検出器2だけで、空間分布
の変化を検出できる。検知部3は、検出器2の出力が時
間的に変化したことを受けて、監視領域10内の構造物
の配置が変化したと判断する信号処理部である。
For example, when the door 7 that borders the monitoring area 10 is opened or a person enters the monitoring area 10, the reflection position of electromagnetic waves within the monitoring area 10 changes. As a result, the spatial distribution of electromagnetic wave power within the region 10 changes, and the electromagnetic wave power detected by the fixedly installed receiver 5 also changes. Therefore, even if the spatial distribution of power is not measured, changes in the spatial distribution can be detected using only one detector 2. The detection unit 3 is a signal processing unit that determines that the arrangement of structures within the monitoring area 10 has changed in response to a temporal change in the output of the detector 2.

また、本実施例では、電磁波強度の空間分布の変動を検
知できればよいので、電磁波をパルス状に放射した場合
でも、監視領域10内の異変を検知できる。
Further, in this embodiment, since it is sufficient to detect variations in the spatial distribution of electromagnetic wave intensity, abnormalities within the monitoring area 10 can be detected even when electromagnetic waves are emitted in a pulsed manner.

電磁波電力の空間分布は、監視領域10内にある構造物
の配置に依存するので、放射器4、受信器5を設置する
位置に対して見通し外にある構造物の配置が変化しても
、電力の空間分布は変化する。よって、本発明を用いれ
ばひとつの検出器2で監視領域10内すべての異変を検
知することができる効果がある。
Since the spatial distribution of electromagnetic wave power depends on the arrangement of structures within the monitoring area 10, even if the arrangement of structures outside the line of sight changes from where the radiator 4 and receiver 5 are installed, The spatial distribution of power changes. Therefore, by using the present invention, it is possible to detect all abnormalities within the monitoring area 10 with one detector 2.

異変を検知するための信号処理部の構成を、第2図にて
説明する。第2図は、第1図に示した実施例において発
振器1をパルス状に発振させて異変を検知する場合の検
知部の一実施例である。制御部9より送られるタイミン
グ信号14aによって発振’!+1が発振し、監視領域
10に電磁波電力を放射する。一方、監視領域10内の
電磁波電力を測定するために、検出器2の出力を発振器
1の発振パルスに同期したタイミング信号14bによっ
てサンプラ11でサンプリングする。サンプリングした
電磁波電力の信号15は、差分部12に送信し、直前の
電磁波電力の強度との差を求める。
The configuration of the signal processing section for detecting an abnormality will be explained with reference to FIG. FIG. 2 shows an embodiment of the detection unit in the embodiment shown in FIG. 1 in which the oscillator 1 is caused to oscillate in a pulsed manner to detect an abnormality. Oscillation'! by the timing signal 14a sent from the control section 9! +1 oscillates and radiates electromagnetic power to the monitoring area 10. On the other hand, in order to measure the electromagnetic wave power within the monitoring area 10, the output of the detector 2 is sampled by the sampler 11 using a timing signal 14b synchronized with the oscillation pulse of the oscillator 1. The sampled electromagnetic wave power signal 15 is transmitted to the difference section 12, and the difference between it and the previous electromagnetic wave power intensity is determined.

さらに求めた電力の差の信号16は、判断部13に送る
構成である。判断部13では、検出した電力に時間変化
がなければ正常であり、時間変化が起きたなら監視領域
10内に異変が発生したと判断するものである。本実施
例によれば、発振器11がパルス状に発振するものであ
っても、連続的に発振する発振器と同様に検知できる効
果がある。
Further, the obtained power difference signal 16 is sent to the determination section 13. The determination unit 13 determines that the detected power is normal if there is no time change, and that an abnormality has occurred within the monitoring area 10 if a time change occurs. According to this embodiment, even if the oscillator 11 oscillates in a pulsed manner, it can be detected in the same way as an oscillator that oscillates continuously.

尚、第1図において、衝立8bだけが電磁波吸収材で形
成されている場合、あるいはその衝立8bが植立されて
いる壁の一部が開口されている場合、それらの部分は監
視不可能となる。しかし。
In addition, in FIG. 1, if only the screen 8b is made of electromagnetic wave absorbing material, or if a part of the wall on which the screen 8b is installed is open, those parts cannot be monitored. Become. but.

他の部分に基〈電磁波電力の空間分布が生ずるので、そ
の変化から状態変化の有無を監視することができる。ま
た、監視領域10内にモータ等の駆動構造物がある場合
、すなわち動的な状態物がある場合でも、それの存在を
前提とした電磁波電力の空間分布が生ずるので、同様に
状態変化を監視することができる。
Since a spatial distribution of electromagnetic wave power is generated based on other parts, it is possible to monitor the presence or absence of a state change from the change. Furthermore, even if there is a drive structure such as a motor in the monitoring area 10, that is, if there is a dynamic state object, a spatial distribution of electromagnetic wave power will occur based on the existence of such a structure, so changes in state cannot be monitored in the same way. can do.

本発明を、蒸気リークの監視装置に応用した一実施例を
第3図にて説明する。
An embodiment in which the present invention is applied to a steam leak monitoring device will be described with reference to FIG.

本実施例は、異なる周波数をもつ2つの電磁波を用いた
監視装置であり、2つの周波数をそれぞれfa、fbと
する。使用する周波数は、faの周波数を蒸気による電
磁波電力の吸収が大きい周波数に、fbの周波数を蒸気
による電磁波電力の吸収が小さい周波数に選択する。選
択する周波数の例を第4@にて説明する(rPrinc
iple and Ap−plication of 
M几LIMETERJAVE RADAR,PP9Jよ
り引用)。第4図は、電磁波の周波数に対する減衰率を
示した図で、縦軸は1b電磁波が進む間に減衰する割合
を示したものである。第4図は、周波数が22GHz、
170GHzに水による吸収帯が存在していることを示
している。すなわちfaを170GHzとし、fbをそ
れ以外の周波数である例えば90GHzとする。
This embodiment is a monitoring device that uses two electromagnetic waves having different frequencies, and the two frequencies are designated fa and fb, respectively. As for the frequencies to be used, the frequency fa is selected to be a frequency at which the absorption of electromagnetic wave power by steam is large, and the frequency fb is selected to be a frequency at which absorption of electromagnetic wave power by steam is small. An example of the frequency to be selected is explained in the 4th @ (rPrinc
iple and ap-plication of
Quoted from LIMETER JAVE RADAR, PP9J). FIG. 4 is a diagram showing the attenuation rate with respect to the frequency of the electromagnetic wave, and the vertical axis shows the rate at which the 1b electromagnetic wave attenuates as it travels. In Figure 4, the frequency is 22GHz,
This shows that there is an absorption band due to water at 170 GHz. That is, fa is set to 170 GHz, and fb is set to another frequency, for example, 90 GHz.

このような周波数帯に選ぶと、周波数faの電磁波では
、蒸気は異物とみなせるので、電磁波電力の空間分布は
変化するが、周波数fbの電磁波では蒸気は透明であり
、電磁波電力の空間分布は変化しない。
If such a frequency band is selected, for electromagnetic waves with frequency fa, steam can be considered a foreign substance, so the spatial distribution of electromagnetic wave power will change, but with electromagnetic waves of frequency fb, steam is transparent, and the spatial distribution of electromagnetic wave power will change. do not.

発振周波数が、faとfbである2つの発振器la、l
bは、タイミング信号14a、14bによってパルス状
に発振し、2つの発振器1a、1bで発振した電磁波電
力を加算器17で加えあわせた後、監視領域10に放射
する。放射電磁波の電力は、検出器2の出力をサンプリ
ングし、周波数毎の電磁波電力を得、また周波数毎の時
間変動を差分部12で求めた後、判断部13に送る構成
である。
Two oscillators la and l whose oscillation frequencies are fa and fb
b is oscillated in a pulsed manner by the timing signals 14a and 14b, and after adding the electromagnetic wave powers oscillated by the two oscillators 1a and 1b in an adder 17, it is radiated to the monitoring area 10. The power of the radiated electromagnetic wave is determined by sampling the output of the detector 2 to obtain the electromagnetic wave power for each frequency, and after determining the time variation for each frequency in the difference section 12, the power is sent to the judgment section 13.

判断部13では、周波数毎の検出器2の出力の時間変動
から、監視領域10内の異変を検知する。
The determining unit 13 detects an abnormality within the monitoring area 10 based on the temporal fluctuation of the output of the detector 2 for each frequency.

検知方法としては、faに対する電磁波電力の変化があ
り、かつfaに対する電磁波電力の変化がなければ、監
視領域10内の異変は、蒸気のリークだと判断し、fa
、fbとも電磁波電力が変化したならば、物体の移動だ
と判断する。これは、前述したように、蒸気は、faに
対しては異物とみなせるが−fbに対しては透明とみな
せるためである。
The detection method is that if there is a change in the electromagnetic wave power relative to fa, and there is no change in the electromagnetic wave power relative to fa, the abnormality within the monitoring area 10 is determined to be a steam leak, and the fa
, fb, if the electromagnetic wave power changes, it is determined that the object is moving. This is because, as described above, vapor can be regarded as a foreign substance to fa, but can be regarded as transparent to -fb.

本実施例によれば、複数の周波数を用い、検知するガス
の電磁波吸収帯に選択した周波数と、吸収帯から大きく
はずれた周波数帯に選択し、周波数毎の電磁波電力の時
間変化から、リークしたガスの種類を同定できる効果が
ある。
According to this example, a plurality of frequencies are used, one is selected as the electromagnetic wave absorption band of the gas to be detected, and the other is selected as a frequency band that is significantly deviated from the absorption band. This has the effect of identifying the type of gas.

建物の侵入者監視装置において、建物が複数の小部屋に
わかれている場合の、侵入者監視装置の実施例を第5図
にて説明する。制御部9のタイミング信号によって発振
器1で発振した電磁波電力を、監視領域10内に放射す
る。電磁波は小部屋毎に定在波をもつ。また全監視領域
10にとってみると、小部屋は小さな監視領域1oが直
並列に接続した構成と等価だとみなせる。このため、電
磁波電力は小部屋毎に空間分布をもち、1つの小部屋は
接続されている他の小部屋の電磁波電力の空間分布に影
響を与えることになる。
An embodiment of the intruder monitoring device for a building in which the building is divided into a plurality of small rooms will be described with reference to FIG. Electromagnetic wave power oscillated by the oscillator 1 in response to a timing signal from the control unit 9 is radiated into the monitoring area 10 . Electromagnetic waves have standing waves in each small room. Furthermore, when considering the entire monitoring area 10, a small room can be considered to be equivalent to a configuration in which small monitoring areas 1o are connected in series and parallel. Therefore, electromagnetic wave power has a spatial distribution for each small room, and one small room influences the spatial distribution of electromagnetic wave power in other connected small rooms.

電磁波電力の測定は、小部屋毎に設置した受信部58〜
5gとこの受信部に接続する検出器2a〜2gを用い、
小部屋毎に検出し、異変を検知する。検知方法は、第2
図にて説明した実施例での構成を用い、同じ方法により
、異常の検知をする。
The electromagnetic wave power is measured by the receiving section 58 installed in each small room.
5g and detectors 2a to 2g connected to this receiver,
Detects each small room and detects abnormalities. The detection method is the second
Abnormalities are detected using the same method as in the embodiment described in the figures.

この場合、いづれかの小部屋に異変が生じると、その小
部屋の電磁波電力分布が変化すると共に隣接した小部屋
にも電磁波電力分布に変化が生し、監視領域10全体の
電力分布も変化する。
In this case, if an abnormality occurs in any of the small rooms, the electromagnetic wave power distribution of that small room changes, and the electromagnetic wave power distribution of the adjacent small room also changes, and the power distribution of the entire monitoring area 10 also changes.

したがって、検出器2の出力値に時間変化を生ずるので
、小部屋に分かれている建物であっても、すへての検出
器2の出力値に時間変化が発生し、異変を検知すること
ができる。一方、電磁波電力の変化の度合いは、異変を
生じた小部屋の検出器2が最大になる。これは、それぞ
れの小部屋の電力分布は隣接した小部屋と影響しあって
いるので、相対的に異変が発生した部屋に近い程、その
影響は大きくなるためである。このことより、検出器2
の時間変化が大きい小部屋に異変が発生したことがわか
り、異変場所の同定ができる。
Therefore, since the output value of the detector 2 changes over time, even in a building divided into small rooms, the output value of all the detectors 2 changes over time, making it difficult to detect abnormalities. can. On the other hand, the degree of change in electromagnetic wave power is greatest at the detector 2 in the small room where the abnormality has occurred. This is because the power distribution of each small room influences the neighboring small rooms, so the closer the abnormality is to the room where the abnormality occurs, the greater the influence. From this, detector 2
It can be seen that an abnormality has occurred in a small room with a large temporal change, and the location of the abnormality can be identified.

本実施例によれば、複数の部屋に分かれている建物内の
侵入者の監視は、1カ所で電磁波を放射し、1カ所で電
力の測定をするだけで、全体の監視ができる効果がある
。また、小部屋毎に検出器2を設置し、小部屋毎の電磁
波の電力分布を測定すれば、異変が発生した場所の同定
ができるので、監視装置の構成が簡単にできる効果があ
る。
According to this embodiment, when monitoring intruders in a building divided into multiple rooms, it is possible to monitor the entire building simply by emitting electromagnetic waves at one location and measuring power at one location. . Further, by installing the detector 2 in each small room and measuring the power distribution of electromagnetic waves in each small room, the location where an abnormality has occurred can be identified, which has the effect of simplifying the configuration of the monitoring device.

第5図にて説明した小部屋にわかれている建物の侵入者
監視装置の他の実施例を第6図にて説明する。制御部9
のタイミング信号によって発振器11から発振された電
磁波電力を、監視領域10内に放射する。電磁波電力の
測定は、ある小部屋に設置した1つの受信部5とこの受
信部に接続する検出器2を用いる。また検知部3では第
2図にて説明した実施例と同様の信号処理を行なう構成
である。第5図にて説明した実施例にて記述したように
、どこの小部屋でも異変が発生すると、全部の小部屋の
電磁波電力の空間分布が変わるので、1つの検出器2で
、全監視領域10内に発生した異変の有無を検知できる
。異変を検知したら場所同定部19に信号を送り、各小
部屋毎に設置しであるテレビカメラ18を駆動し、異変
の場所の同定を行なう。テレビカメラ18で得た画像デ
ータは、直前に得た画像データとに差が生じた場所に異
変が発生しているので、場所の同定は容易にでき、かつ
正確に検知することができる。
Another embodiment of the intruder monitoring device for a building divided into small rooms described in FIG. 5 will be described with reference to FIG. 6. Control unit 9
The electromagnetic wave power oscillated from the oscillator 11 according to the timing signal is radiated into the monitoring area 10. The measurement of electromagnetic wave power uses one receiving section 5 installed in a certain small room and a detector 2 connected to this receiving section. Furthermore, the detection section 3 is configured to perform signal processing similar to that of the embodiment described in FIG. As described in the embodiment explained in FIG. It is possible to detect the presence or absence of an abnormality that has occurred within 10 days. When an abnormality is detected, a signal is sent to the location identifying section 19, which drives the television camera 18 installed in each small room to identify the location of the abnormality. Since the abnormality has occurred in the image data obtained by the television camera 18 at a location where there is a difference from the image data obtained immediately before, the location can be easily identified and accurately detected.

本実施例によれば、異変の有無の判断は電磁波電力の時
間変化の測定で行なわれるので、信号処理が簡単にでき
る効果があり、かつ場所の同定な画像データで行なうの
で、場所の同定精度が良いという効果がある。
According to this embodiment, the presence or absence of an abnormality is determined by measuring the temporal change in electromagnetic wave power, which has the effect of simplifying signal processing, and since it is performed using image data that identifies the location, the accuracy of location identification is improved. It has the effect of being good.

〔発明の効果〕〔Effect of the invention〕

本発明は、監視領域に放射する電磁波電力の空間分布が
、監視領域内に存在する構造物の位置に依存する現象を
用いるものである。このため、電磁波電力の空間分布の
時間変化は構造物の位置の変化や内部への異物の侵入等
の状態変化に対応できるので、構造物の移動等の各種状
態変化を検知でき、見通し外の構造物であっても移動等
の検知ができる効果がある。
The present invention uses a phenomenon in which the spatial distribution of electromagnetic wave power radiated into a monitoring area depends on the position of structures existing within the monitoring area. Therefore, the temporal change in the spatial distribution of electromagnetic power can correspond to changes in the structure's position, foreign objects entering the structure, etc., so it is possible to detect various changes in the structure, such as the movement of the structure, and This has the effect of being able to detect the movement of even structures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る侵入者監視装置の一実施例の全体
構成図、第2図は第1図の検知部の構成を示した信号処
理部の一実施例の構成図、第3図は本発明による蒸気リ
ーク監視装置の一実施例の全体構成図、第4図は電磁波
の吸収率の周波数依存性を示した図、第5図は侵入者監
視装置の他の実施例の全体構成図、第6図は侵入者監視
装置の他の方式と組み合わせた一実施例の全体構成図で
ある。 1・・・発振器、2・・検出器、3・・・検知部、4・
・・放射器、5・・・受信器、10・・・監視領域。
FIG. 1 is an overall configuration diagram of an embodiment of an intruder monitoring device according to the present invention, FIG. 2 is a configuration diagram of an embodiment of a signal processing section showing the configuration of the detection section in FIG. 1, and FIG. 3 is an overall configuration diagram of one embodiment of the steam leak monitoring device according to the present invention, FIG. 4 is a diagram showing frequency dependence of electromagnetic wave absorption rate, and FIG. 5 is an overall configuration diagram of another embodiment of the intruder monitoring device. 6 are overall configuration diagrams of an embodiment of the intruder monitoring device combined with other systems. DESCRIPTION OF SYMBOLS 1... Oscillator, 2... Detector, 3... Detection part, 4...
...Radiator, 5...Receiver, 10...Monitoring area.

Claims (1)

【特許請求の範囲】 1、電磁波を発振する発振器と、発振器からの発振電力
を監視領域に放射する放射器と、前記監視領域内の電磁
波電力を測定する受信器と、この受信器からの信号を受
けて処理する検知部と、を備えた監視装置において、監
視領域は閉空間より成り該閉空間を仕切る部材すべてが
電磁波を反射する素材で形成され、受信器は該監視領域
の電磁波電力の空間分布を測定し、検知部は前記空間分
布の変化から監視領域内の状態変化を検知するように形
成されていることを特徴とする監視装置。 2、電磁波を発振する発振器と、発振器からの発振電力
を監視領域に放射する放射器と、前記監視領域内の電磁
波電力を測定する受信器と、この受信器からの信号を受
けて処理する検知部と、を備えた監視装置において、放
射器より監視領域内に放射された電磁波が該監視領域内
で多重反射された結果生ずる電磁波電力の空間分布を受
信器により測定し、検知部で前記空間分布の変化から監
視領域内の状態変化を検知するように形成されているこ
とを特徴とする監視装置。 3、請求項1において、閉空間を仕切る部材すべてが電
磁波を反射する素材で形成されていることに替えて、閉
空間を仕切る部材の一部が電磁波の非反射素材で形成さ
れている監視装置。 4、請求項1又は3において、監視領域が閉空間である
ことに替えて、監視領域の一部は外部と連なる一部開空
間である監視装置。 5、請求項1〜4のいずれかにおいて、発振される電磁
波の発振周波数は特定の検知対象物による吸収の大きい
周波数に設定可能に形成されている監視装置。 6、請求項1〜4のいずれかにおいて、発振される電磁
波は特定の検知対象物による吸収の大きい周波数と吸収
の小さい周波数のものの組み合わせ可能に形成されてい
る監視装置。 7、請求項1〜6のいずれかにおいて、監視領域は互い
に連通された複数の小室よりなり、各小室に受信器が各
々配設されている監視装置。 8、請求項1〜6のいずれかにおいて、監視領域は互い
に連通された複数の小室よりなり、各小室にテレビカメ
ラが設置されている監視装置。 9、請求項1〜6のいずれかにおいて、監視領域内に駆
動物が配置されている監視装置。
[Claims] 1. An oscillator that oscillates electromagnetic waves, a radiator that radiates oscillation power from the oscillator to a monitoring area, a receiver that measures electromagnetic wave power within the monitoring area, and a signal from this receiver. In the monitoring device, the monitoring area consists of a closed space, all the members partitioning the closed space are made of materials that reflect electromagnetic waves, and the receiver detects the electromagnetic wave power in the monitoring area. A monitoring device that measures a spatial distribution, and a detection unit is configured to detect a change in state within a monitoring area from a change in the spatial distribution. 2. An oscillator that oscillates electromagnetic waves, a radiator that radiates the oscillated power from the oscillator to a monitoring area, a receiver that measures the electromagnetic wave power within the monitoring area, and a detector that receives and processes signals from this receiver. In the monitoring device, the receiver measures the spatial distribution of electromagnetic wave power generated as a result of multiple reflections of the electromagnetic waves emitted from the radiator into the monitoring area within the monitoring area, and the sensing unit measures the spatial distribution of the electromagnetic wave power in the monitoring area. A monitoring device characterized in that it is configured to detect a change in state within a monitoring area from a change in distribution. 3. The monitoring device according to claim 1, wherein instead of all the members partitioning the closed space being made of a material that reflects electromagnetic waves, some of the members partitioning the closed space are made of a material that does not reflect electromagnetic waves. . 4. The monitoring device according to claim 1 or 3, wherein instead of the monitoring area being a closed space, a part of the monitoring area is a partially open space connected to the outside. 5. The monitoring device according to any one of claims 1 to 4, wherein the oscillation frequency of the oscillated electromagnetic waves can be set to a frequency at which absorption by a specific detection object is large. 6. The monitoring device according to any one of claims 1 to 4, wherein the oscillated electromagnetic waves are configured to be able to combine frequencies that are more absorbed by a specific detection object and those that are less absorbed. 7. The monitoring device according to any one of claims 1 to 6, wherein the monitoring area is made up of a plurality of small chambers that are communicated with each other, and a receiver is disposed in each small chamber. 8. The monitoring device according to any one of claims 1 to 6, wherein the monitoring area consists of a plurality of small rooms that communicate with each other, and a television camera is installed in each small room. 9. The monitoring device according to any one of claims 1 to 6, wherein a moving object is disposed within the monitoring area.
JP23475890A 1990-09-05 1990-09-05 Monitor Pending JPH04115176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23475890A JPH04115176A (en) 1990-09-05 1990-09-05 Monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23475890A JPH04115176A (en) 1990-09-05 1990-09-05 Monitor

Publications (1)

Publication Number Publication Date
JPH04115176A true JPH04115176A (en) 1992-04-16

Family

ID=16975896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23475890A Pending JPH04115176A (en) 1990-09-05 1990-09-05 Monitor

Country Status (1)

Country Link
JP (1) JPH04115176A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007058302A1 (en) * 2005-11-21 2009-05-07 日本電気株式会社 POSITION ESTIMATION SYSTEM, POSITION ESTIMATION METHOD, AND POSITION ESTIMATION PROGRAM
JP5170389B2 (en) * 2005-11-21 2013-03-27 日本電気株式会社 Identification target / position estimation system, method and program thereof
JP2017003348A (en) * 2015-06-08 2017-01-05 日本電信電話株式会社 Position estimation method, position estimation device, and position estimation program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007058302A1 (en) * 2005-11-21 2009-05-07 日本電気株式会社 POSITION ESTIMATION SYSTEM, POSITION ESTIMATION METHOD, AND POSITION ESTIMATION PROGRAM
US7948430B2 (en) 2005-11-21 2011-05-24 Nec Corporation Position estimating system, position estimating method, position estimating device and its program
JP4868169B2 (en) * 2005-11-21 2012-02-01 日本電気株式会社 POSITION ESTIMATION SYSTEM, POSITION ESTIMATION METHOD, AND POSITION ESTIMATION PROGRAM
JP5170389B2 (en) * 2005-11-21 2013-03-27 日本電気株式会社 Identification target / position estimation system, method and program thereof
US8624707B2 (en) 2005-11-21 2014-01-07 Nec Corporation Detection target identifying/position estimating system, its method, and program
JP2017003348A (en) * 2015-06-08 2017-01-05 日本電信電話株式会社 Position estimation method, position estimation device, and position estimation program

Similar Documents

Publication Publication Date Title
US7417581B2 (en) System and method for intrusion detection using a time domain radar array
US4382291A (en) Surveillance system in which a reflected signal pattern is compared to a reference pattern
US3691558A (en) Moving object microwave detection system
US5225810A (en) Fire detector for discriminating smoke and flame based on optically measured distance
US7834309B2 (en) Offset optical security sensor for a door
US7714718B2 (en) Optical security sensor for a door
CN201053902Y (en) Infrared reflection type security-monitoring detector
US11041947B2 (en) Radar detection methods and systems for identifying moving objects
US3955184A (en) Passive infrared room intrusion detector
WO2020259916A1 (en) Indirect radar detection
RU2133971C1 (en) Method of remote detection of objects concealed under man clothes and device to implement it
JPH04115176A (en) Monitor
JPH07160956A (en) Intrusion supervisory equipment
US6169512B1 (en) Signal wave based detection system and method, with direction dependent transmission parameter
US5220328A (en) Target motion detecting impulse doppler radar system
US3022496A (en) Testing of apparatus for detecting disturbances in an enclosure
US3406385A (en) Intruder detection system
JPS635290A (en) Body detection sensor
GB2081545A (en) Radar apparatus
US4424701A (en) Ultrasonic measuring sensor for the fixing station of a non-mechanical printing or copying device
JP2000098053A (en) Detection device
RU2614134C2 (en) Method of detecting three-dimensional changes within observed limited space independently from place of occurrence of these changes within this space
JP2871123B2 (en) Human body detection device
SU1742840A1 (en) Signaling device
Williams et al. The potential use of domestic safeguards interior monitors in International Safeguards