JPH0411510B2 - - Google Patents

Info

Publication number
JPH0411510B2
JPH0411510B2 JP58108411A JP10841183A JPH0411510B2 JP H0411510 B2 JPH0411510 B2 JP H0411510B2 JP 58108411 A JP58108411 A JP 58108411A JP 10841183 A JP10841183 A JP 10841183A JP H0411510 B2 JPH0411510 B2 JP H0411510B2
Authority
JP
Japan
Prior art keywords
weight
inorganic salts
graphite
parts
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58108411A
Other languages
Japanese (ja)
Other versions
JPS59232976A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58108411A priority Critical patent/JPS59232976A/en
Publication of JPS59232976A publication Critical patent/JPS59232976A/en
Publication of JPH0411510B2 publication Critical patent/JPH0411510B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、特に耐食性に優れた熱間補修用乾式
吹付材に関する。 従来から、転炉、電気炉等の金属精錬炉等の熱
間吹付補修には各種の湿式又は乾式の吹付材が用
いられているが、従来の吹付材には種々の欠点就
中耐食性に劣るという欠点がある。即ち、湿式吹
付材は粒度調整した耐火性骨材に、バインダーと
してリン酸塩、ケイ酸塩等の無水無機塩類を加
え、吹付ノズル中で水と混合させて粘着性を発現
させ付着させて使用されるものであるが、水を多
量に含んでいるため、吹付材の耐火物組織が多孔
質化して耐食性が劣化するのに加えて転炉等の内
張りに熱的なスポーリングを起こすという欠点が
ある。 また、乾式吹付材としては、バインダーとして
フエノール樹脂、ウレタン樹脂等の熱硬化性樹脂
粉末を使用したもの、上記樹脂粉末と石炭ピツ
チ、石油ピツチ等のピツチ粉末とを併用したも
の、硫酸マグネシウム、ホウ砂等の比較的低温で
溶融する含水無機系物質粉末を使用したもの等が
知られている。しかしながら、上記の内、熱硬化
性樹脂粉末を用いたものには、該樹脂の揮発分が
多く、揮発温度が低く、且つ引火温度も低いた
め、吹付時に発泡現象及び燃焼が起り吹付材の耐
火物組織が著しく多孔質化して耐食性が劣化する
という欠点がある。またピツチ粉末を併用したも
のには、ピツチは熱硬化性樹脂に比べれば揮発分
が少なく、揮発温度が高く、且つ引火温度も高い
とはいえ、該樹脂と同様の性質を有するため、や
はり上記と同様に多孔質化して耐食性が劣化する
という欠点がある。上記の様な、熱硬化性樹脂や
ピツチを用いることによる欠点を改善するため、
吹付キヤリアガスとして空気の代わりにN2ガス
を用い燃焼を抑制する方法が試みられているが、
充分な効果は得られていない。また、含水無機系
物質粉末を使用したものには、含水無機系物質は
一般に熱硬化性樹脂等に比べ溶融温度が著しく高
いため、熱硬化性樹脂等と同様な付着性を得るた
めには該物質を多量に使用する必要があり、その
場合該物質は含水量が非常に多いので、吹付時組
織中の水分量が増加し多孔質化して耐食性が低下
するという欠点がある。 本発明者は、従来の吹付材の上記の如き諸欠点
を解消するため、特に乾式吹付材のバインダーに
ついて鋭意研究し、熱硬化性樹脂に比べれば発泡
現象及び燃焼が少ないピツチ粉末を用いること、
ピツチ粉末のみでは発泡現象及び燃焼による組織
の多孔質化は避けられないため発泡等がなく、且
つ高粘性融液を生成する無機塩類を併用すること
を考えた。即ち、無機塩類融液の持つ高粘着力に
よりピツチの発泡を防止すること及びピツチを該
融液でコーテイングすることにより燃焼を防止す
ることを考えた。この場合、無機塩類は溶融温度
が非常に高いため、そのままでは熱間においても
融液が充分には生成せず、無機塩類を溶融するた
めには一定の工夫が必要となる。 本発明者は、更に研究を続け、無機塩類と黒鉛
とを複合化することにより無機塩類の溶融が容易
になることを見出した。即ち、吹付材に対する熱
量の供給を考察すると、輻射が伝熱の主体と考え
られるので、吹付材に用いられる耐火性材料に比
べ格段に輻射熱の吸収能が高く、且つ比重が小さ
いため耐火性材料等と同一粒度では比表面積が大
きくて吹付時に熱量吸収の大きい黒鉛に、無機塩
類を複合化することにより、無機塩類の溶融熱量
は充分に供給され、その結果ピツチの発泡及び燃
焼現象の防止効果が得られ、ひいては組織が緻密
化することを見出した。また、元来反応性の乏し
い無機塩類と黒鉛とを複合化させるためには、両
者を同時に粉砕混合することが必要なこと、即ち
一般に固体物質に摩砕、摩擦、切断等の手段で加
えられた機械的エネルギーは、一部熱エネルギ
ー、化学的エネルギーに変換されるが、ここでは
付着のエネルギーに変換され無機塩類と黒鉛とが
接着することを見出した。事実、粉砕処理された
黒鉛無機塩類混合粉砕物の微細構造観察によれば
両者の強固な接着が認められ、上記処理によつて
接着と黒鉛の微粉化が同時に遂行できることが判
つた。 本発明者は、上記の如き種々の知見に基づき更
に研究を続けた結果、ピツチ粉末と上記混合粉砕
物をそれぞれ特定量、バインダーとして用いたと
きには組織の多孔質化が防止できる(組織が緻密
化する)ことにより、特に耐食性に優れた乾式吹
付材が得られることを見出し、本発明を完成する
に至つた。 即ち本発明は、耐火性骨材100重量部に対して、
ピツチ粉末8〜30重量部及び無機塩類と黒鉛との
混合粉砕物2〜14重量部をバインダーとして配合
したことを特徴とする熱間補修用乾式吹付材に係
る。 本発明における耐火性骨材としては、特に限定
されることなく、この種の吹付材に通常用いられ
るものがいずれも使用でき、例えばマグネシア、
ドロマイト、石灰、クロム、アルミナ、スピネ
ル、炭化珪素、ろう石、珪石、シヤモツト、ジル
コン、金属アルミニウム、金属シリコン等を挙げ
ることができ、これらの1種又は2種以上を粒度
調整して用いる。粒度調整は、この種の吹付材に
おいて通常行なわれる調整と同様で良いが、念の
ために一例を挙げれば、5〜1mm程度の粒度のも
のを0〜60重量%程度、1〜0.074mm程度の粒度
のものを0〜80重量%程度、0.074mm以下程度の
粒度のものを10〜50重量%程度用いるのが普通で
ある。 本発明におけるピツチ粉末としては、固定炭素
量が55重量%以上のものが、カーボンボンドの生
成の点から好ましく、石炭系、石油系のいずれで
もよい。その粒度は3mm以下程度であるのが好ま
しい。その使用量は耐火性骨材100重量部に対し
て8〜30重量部である。8重量部より少ないと液
相不足により付着性が低下し、30重量部より多く
なると液相過多のため流下現象により付着性が低
下する。 本発明における黒鉛としては、例えば鱗状黒
鉛、土状黒鉛、電極用人造黒鉛等を挙げることが
でき、これらの少なくとも1種を用いる。 また、本発明における無機塩類とは、従来バイ
ンダーとして用いられている各種塩類のみでな
く、ホウ酸等の無機酸も包含する。又、無水のも
のが好ましいが、含水のものであつても使用量が
少ないため組織が多孔質化しないので使用でき、
例えばヘキサメタリン酸ソーダ、酸性ピロリン酸
ソーダ、テトラポリリン酸ソーダ、第一リン酸ソ
ーダ等のリン酸塩、ホウ酸、ホウ砂、ホウ酸ソー
ダ、ホウ酸カリウム、ホウ酸リチウム等のホウ酸
塩、メタケイ酸ソーダ、オルソケイ酸ソーダ、無
定形ケイ酸ソーダ等のケイ酸塩等を挙げることが
でき、これらの少なくとも1種を用いる。 本発明においては、上記の黒鉛及び無機塩類を
複合化して用いることが必要であり、それは両者
を混合して粉砕することにより達成できる。両者
の混合割合は、無機塩類:黒鉛が重量比で2:1
〜1:10程度であるのが、両者の接着性、無機塩
類の融液生成の点等から好ましい。混合物の粉砕
方法としては、特に限定されず公知の手段で行う
ことができるが、粉砕効果の大きい振動ミル、ボ
ールミル等を用いるのが好適である。また粉砕時
間等の粉砕条件は、用いた器機等により変動し一
定しないが、混合粉砕物の比表面積が10m2/g以
上程度の微粉末になるまで粉砕するのが接着性の
点から好ましい。 かくして、無機塩類と黒鉛とが強固に接着した
混合粉砕物が得られる。混合粉砕物の使用量は耐
火性骨材100重量部に対して2〜14重量部である。
2重量部より少ないと付着性が低下し、14重量部
より多いと組織が多孔質化する傾向があるので好
ましくない。 本発明の乾式吹付材によれば、無機塩類と黒鉛
との混合粉砕物を配合したことにより無機塩類の
溶融が容易になり、それによつて前述の如くピツ
チの発泡現象及び燃焼が防止できるので吹付材の
耐火物組織の多孔質化が防止でき(即ち、組織が
緻密化して)、結果として耐食性が著しく向上す
るという顕著な効果が得られる。また、本発明の
乾式吹付材は付着性、強度等の点においても極め
て良好である。 従つて、本発明の乾式吹付材は、転炉、電気
炉、AOD炉、VOD炉等の金属精錬炉、RH脱ガ
ス容器、DH脱ガス容器等の熱間補修に極めて好
適である。 以下、製造例、実施例及び比較例を挙げて、本
発明を更に具体的に説明する。 製造例 1 ヘキサメタリン酸ソーダと鱗状黒鉛とを1:
1、1:2、1:4又は1:8の重量比の割合で
混合したもの1.5Kgを振動ミル(中央化工機(株)製、
回分式)に入れ、振動モーターの振幅6mm、回転
数1700rpm(能力2.2kw)の条件で約2時間混合
粉砕した。得られた混合粉砕物の比表面積を下記
第1表に示す。
The present invention particularly relates to a dry spraying material for hot repairs that has excellent corrosion resistance. Conventionally, various wet or dry spraying materials have been used for hot spraying repairs of metal smelting furnaces such as converters and electric furnaces, but conventional spraying materials have various drawbacks, including poor corrosion resistance. There is a drawback. In other words, wet spraying materials are used by adding anhydrous inorganic salts such as phosphates and silicates as binders to refractory aggregate whose particle size has been adjusted, and mixing it with water in a spray nozzle to develop stickiness and make it adhere. However, because it contains a large amount of water, the refractory structure of the sprayed material becomes porous, deteriorating its corrosion resistance, and it also has the disadvantage of causing thermal spalling on the lining of converters, etc. There is. In addition, dry spraying materials include those using thermosetting resin powder such as phenolic resin or urethane resin as a binder, those using a combination of the above resin powder and pitch powder such as coal pitch or petroleum pitch, magnesium sulfate, or borosilicate powder. There are known methods that use powdered water-containing inorganic substances such as sand that melt at relatively low temperatures. However, among the above, those using thermosetting resin powder have a large volatile content, low volatilization temperature, and low ignition temperature, so foaming and combustion occur during spraying, making the sprayed material fireproof. The disadvantage is that the material structure becomes extremely porous and corrosion resistance deteriorates. In addition, although Pituchi has lower volatile content, higher volatilization temperature, and higher ignition temperature than thermosetting resins, it has properties similar to those of thermosetting resins, so it is still necessary to use Pituchi powder. Similarly, it has the disadvantage that it becomes porous and its corrosion resistance deteriorates. In order to improve the drawbacks of using thermosetting resin and pitch, as mentioned above,
Attempts have been made to suppress combustion by using N2 gas instead of air as the blown carrier gas.
Not enough effect has been obtained. In addition, for products using powdered hydrated inorganic substances, since hydrated inorganic substances generally have a significantly higher melting temperature than thermosetting resins, it is necessary to It is necessary to use a large amount of the substance, and in that case, the substance has a very high water content, which has the disadvantage that the water content in the structure increases during spraying, making it porous and reducing corrosion resistance. In order to eliminate the above-mentioned drawbacks of conventional spray materials, the present inventor has conducted intensive research on binders for dry spray materials, and has developed a method to use pitch powder, which has less foaming and combustion than thermosetting resins.
Since the foaming phenomenon and the formation of porous structure due to combustion cannot be avoided with only pitch powder, we considered using inorganic salts that do not cause foaming and produce a highly viscous melt. That is, we considered preventing foaming of the pitch by using the high adhesive strength of the inorganic salt melt, and preventing combustion by coating the pitch with the melt. In this case, since the melting temperature of the inorganic salts is very high, a sufficient melt cannot be generated even in hot conditions, and certain measures are required to melt the inorganic salts. The present inventor further continued his research and discovered that the inorganic salts can be easily melted by compounding the inorganic salts and graphite. In other words, when considering the supply of heat to sprayed materials, radiation is considered to be the main source of heat transfer, so fire-resistant materials have a much higher ability to absorb radiant heat than the fire-resistant materials used for sprayed materials, and have a lower specific gravity. By combining inorganic salts with graphite, which has a large specific surface area and absorbs a large amount of heat during spraying, the heat of fusion of the inorganic salts is sufficiently supplied, and as a result, it has the effect of preventing foaming and combustion phenomena in pitch. was obtained, and the structure was found to become denser. In addition, in order to compound inorganic salts and graphite, which are inherently less reactive, it is necessary to simultaneously grind and mix the two. The mechanical energy generated is partially converted into thermal energy and chemical energy, but it was discovered that in this case, it was converted into adhesion energy, which caused the inorganic salts and graphite to adhere. In fact, observation of the fine structure of the pulverized mixture of graphite and inorganic salts revealed strong adhesion between the two, and it was found that adhesion and pulverization of graphite could be achieved simultaneously by the above treatment. As a result of further research based on the above-mentioned various findings, the present inventor found that when specific amounts of pitch powder and the above-mentioned mixed pulverized product are used as binders, it is possible to prevent the structure from becoming porous (the structure becomes denser). The inventors have discovered that a dry spray material with particularly excellent corrosion resistance can be obtained by doing this, and have completed the present invention. That is, in the present invention, for 100 parts by weight of the refractory aggregate,
The present invention relates to a dry spraying material for hot repair characterized in that 8 to 30 parts by weight of pitch powder and 2 to 14 parts by weight of a mixed pulverized mixture of inorganic salts and graphite are blended as a binder. The fire-resistant aggregate in the present invention is not particularly limited, and any materials commonly used for this type of spray material can be used, such as magnesia,
Examples include dolomite, lime, chromium, alumina, spinel, silicon carbide, silica, silica, zircon, metallic aluminum, metallic silicon, etc., and one or more of these are used after adjusting the particle size. The particle size adjustment may be the same as the adjustment normally performed for this type of spray material, but just to be sure, to give an example, for particles with a particle size of about 5 to 1 mm, it is about 0 to 60% by weight, and about 1 to 0.074 mm. It is common to use particles with a particle size of about 0 to 80% by weight, and about 10 to 50% by weight of particles with a particle size of about 0.074 mm or less. The pitch powder used in the present invention preferably has a fixed carbon content of 55% by weight or more from the viewpoint of carbon bond formation, and may be either coal-based or petroleum-based. The particle size is preferably about 3 mm or less. The amount used is 8 to 30 parts by weight per 100 parts by weight of the refractory aggregate. If it is less than 8 parts by weight, the adhesion will be reduced due to insufficient liquid phase, and if it is more than 30 parts by weight, the adhesion will be reduced due to the flow-down phenomenon due to excess liquid phase. Examples of the graphite in the present invention include scale graphite, earthy graphite, and artificial graphite for electrodes, and at least one of these is used. Moreover, the inorganic salts in the present invention include not only various salts conventionally used as binders but also inorganic acids such as boric acid. In addition, anhydrous materials are preferable, but even water-containing materials can be used because the amount used is small and the structure does not become porous.
Examples include phosphates such as sodium hexametaphosphate, sodium acid pyrophosphate, sodium tetrapolyphosphate, and monobasic sodium phosphate; borates such as boric acid, borax, sodium borate, potassium borate, and lithium borate; Examples include silicates such as acid soda, orthosilicate sodium, and amorphous sodium silicate, and at least one of these is used. In the present invention, it is necessary to use the above-mentioned graphite and inorganic salts in a composite form, which can be achieved by mixing and pulverizing the two. The mixing ratio of both is 2:1 by weight of inorganic salts: graphite.
A ratio of about 1:10 to about 1:10 is preferable from the viewpoints of adhesiveness between the two and formation of a melt of inorganic salts. The method of pulverizing the mixture is not particularly limited and can be carried out by any known means, but it is preferable to use a vibrating mill, a ball mill, etc., which have a large pulverizing effect. Although the grinding conditions such as the grinding time vary depending on the equipment used and are not constant, it is preferable from the viewpoint of adhesion to grind the mixed pulverized product until it becomes a fine powder with a specific surface area of about 10 m 2 /g or more. In this way, a pulverized mixture of inorganic salts and graphite firmly adhered to each other is obtained. The amount of the mixed pulverized product used is 2 to 14 parts by weight per 100 parts by weight of the refractory aggregate.
If the amount is less than 2 parts by weight, the adhesion will decrease, and if it is more than 14 parts by weight, the structure will tend to become porous, which is not preferable. According to the dry spraying material of the present invention, by blending the mixed pulverized product of inorganic salts and graphite, the inorganic salts can be easily melted, thereby preventing the foaming phenomenon and combustion of the pitch as described above. It is possible to prevent the refractory structure of the material from becoming porous (that is, the structure becomes dense), resulting in the remarkable effect of significantly improving corrosion resistance. Further, the dry spray material of the present invention is extremely good in terms of adhesion, strength, etc. Therefore, the dry spraying material of the present invention is extremely suitable for hot repair of metal refining furnaces such as converters, electric furnaces, AOD furnaces, and VOD furnaces, RH degassing vessels, DH degassing vessels, and the like. Hereinafter, the present invention will be explained in more detail with reference to Production Examples, Examples, and Comparative Examples. Production example 1 Sodium hexametaphosphate and scaly graphite were mixed in 1 part
1.5 kg of the mixture at a weight ratio of 1, 1:2, 1:4, or 1:8 was placed in a vibration mill (manufactured by Chuo Kakoki Co., Ltd.,
The mixture was mixed and pulverized for about 2 hours under the conditions of a vibration motor with an amplitude of 6 mm and a rotation speed of 1700 rpm (capacity 2.2 kW). The specific surface area of the obtained mixed pulverized product is shown in Table 1 below.

【表】 実施例1〜14及び比較例1〜6 第2表、第3表及び第4表に示す配合の本発明
又は比較の乾式吹付材(表中の数値は重量部を示
す)を吹付けガンを使用して炉内温度1200℃に保
持した実験炉のマグネシア質パネルレンガに吹付
けた。各吹付材の付着性を調べるため、吹付時の
パネルレンガへの付着率を測定するとともに、吹
付後のパネルレンガとの接着強さを判定した。さ
らに吹付後のサンプルを採取して組織の緻密度、
圧縮強度及び耐食性を調べた。試験方法を下記に
示す。 Γ付着率…リバウンドロスを回収して重量測定
し、下記式に従つて算出した。 付着率(%)=吹付量−リバウンドロス量/吹付量×10
0 Γ接着強さ…下記基準によつた。 ○:非常に強固(小ハンマーで打撃しても剥離し
ない)。 △:中間(小ハンマーで打撃すると剥離する)。 ×:弱い(手で触ると剥離する)。 Γ気孔率…JIS R2205に従つて測定した。 Γ吸水率…JIS R2205に従つて測定した。 Γ見掛比重…JIS R2205に従つて測定した。 Γカサ比重…JIS R2205に従つて測定した。 Γ圧縮強度…JIS R2206に従つて測定した。 Γ耐食性試験…40×40×115mmの形状のサンプル
を高周波誘導加熱炉の内張りに用いて、1750℃
で3時間保持したときの40mm方向の最大溶損厚
さ(mm)で示した。スラグとしては、転炉スラ
グを2Kg使用した。 各試験結果を第5表、第6表及び第7表に示
す。
[Table] Examples 1 to 14 and Comparative Examples 1 to 6 The present invention or comparative dry spray materials having the formulations shown in Tables 2, 3, and 4 (numbers in the tables indicate parts by weight) were sprayed. A spray gun was used to spray the magnesia panel bricks of an experimental furnace maintained at an internal temperature of 1200°C. In order to examine the adhesion of each sprayed material, the adhesion rate to the panel bricks during spraying was measured, and the adhesive strength with the panel bricks after spraying was determined. Furthermore, samples were taken after spraying to determine the density of the structure.
Compressive strength and corrosion resistance were investigated. The test method is shown below. Γ Adhesion rate: Rebound loss was collected and weighed, and calculated according to the following formula. Adhesion rate (%) = Spray amount - Rebound loss amount / Spray amount x 10
0 Γ Adhesive strength...Based on the following criteria. ○: Very strong (does not peel off even when hit with a small hammer). △: Intermediate (peel off when hit with a small hammer). ×: Weak (peels off when touched). Γ Porosity: Measured according to JIS R2205. Γ Water absorption rate: Measured according to JIS R2205. Γ Apparent specific gravity...Measured in accordance with JIS R2205. Γ Bulk specific gravity: Measured according to JIS R2205. Γ Compressive strength...Measured according to JIS R2206. Γ Corrosion resistance test...A sample with a shape of 40 x 40 x 115 mm was used as the lining of a high frequency induction heating furnace, and heated to 1750℃.
It is expressed as the maximum melting thickness (mm) in the 40mm direction when held for 3 hours. As the slag, 2 kg of converter slag was used. The results of each test are shown in Tables 5, 6 and 7.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 第5表、第6表及び第7表から明らかなよう
に、本発明の乾式吹付材は比較のものに比べ、い
ずれも付着性が良好であり、緻密化しており、特
に耐食性及び強度において優れていることがわか
る。また、本発明の乾式吹付材は吹付時のピツチ
の発泡現象及び燃焼も見られなかつた。 次に、実施例6及び比較例2の各乾式吹付材を
用いて、上吹き転炉にて実際に使用した結果を第
8表に示す。
[Table] As is clear from Tables 5, 6, and 7, the dry sprayed materials of the present invention have better adhesion and densification than the comparative materials, and are particularly corrosion resistant and It can be seen that the strength is excellent. Furthermore, with the dry spraying material of the present invention, neither pitch foaming nor combustion was observed during spraying. Next, Table 8 shows the results of actually using the dry spray materials of Example 6 and Comparative Example 2 in a top-blowing converter.

【表】【table】

【表】 以上、示した通り、本発明の乾式吹付材は、従
来のものに比べて、特に耐食性に優れ、付着性、
強度等も優れているので、耐用性が格段に向上し
ていることが明らかである。
[Table] As shown above, the dry spraying material of the present invention has particularly excellent corrosion resistance, adhesion, and
It is clear that the durability is significantly improved since the strength etc. are also excellent.

Claims (1)

【特許請求の範囲】 1 耐火性骨材100重量部に対して、ピツチ粉末
8〜30重量部及び無機塩類と黒鉛との混合粉砕物
2〜14重量部をバインダーとして配合したことを
特徴とする熱間補修用乾式吹付材。 2 無機塩類がリン酸塩、ホウ酸、ホウ酸塩及び
ケイ酸塩の少なくとも1種である特許請求の範囲
第1項に記載の熱間補修用乾式吹付材。
[Claims] 1. 8 to 30 parts by weight of pitch powder and 2 to 14 parts by weight of a pulverized mixture of inorganic salts and graphite are blended as a binder to 100 parts by weight of the refractory aggregate. Dry spray material for hot repairs. 2. The dry spray material for hot repair according to claim 1, wherein the inorganic salt is at least one of phosphate, boric acid, borate, and silicate.
JP58108411A 1983-06-15 1983-06-15 Dry spray material for thermal repairment Granted JPS59232976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58108411A JPS59232976A (en) 1983-06-15 1983-06-15 Dry spray material for thermal repairment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58108411A JPS59232976A (en) 1983-06-15 1983-06-15 Dry spray material for thermal repairment

Publications (2)

Publication Number Publication Date
JPS59232976A JPS59232976A (en) 1984-12-27
JPH0411510B2 true JPH0411510B2 (en) 1992-02-28

Family

ID=14484068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58108411A Granted JPS59232976A (en) 1983-06-15 1983-06-15 Dry spray material for thermal repairment

Country Status (1)

Country Link
JP (1) JPS59232976A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0289108U (en) * 1988-12-28 1990-07-16
JPH04170369A (en) * 1990-10-31 1992-06-18 Kyushu Refract Co Ltd Spray repair material and spray repair method
CN112321304A (en) * 2020-11-03 2021-02-05 湖南湘钢瑞泰科技有限公司 Aluminum carbon lower nozzle waste repairing mass

Also Published As

Publication number Publication date
JPS59232976A (en) 1984-12-27

Similar Documents

Publication Publication Date Title
NL9001458A (en) METHOD FOR FORMING A POROUS REFRACTORY MASS AND COMPOSITION OF SUBSTANCES FOR USE IN SUCH A METHOD
CN101519713B (en) Slag adhesion preventing fluorine-free slag modifier for ladle refining, preparation method and using method
JPS596272B2 (en) Unfired refractory composition
US3721547A (en) Method of fluxing and fluidizing slag in a cupola
US4298391A (en) Hot repair gun refractory mix for a lining refractory
CN104803687B (en) Ultralow silicon coating capable of reducing oxygen content of tundish
SE504729C2 (en) Methods and blends to form a cohesive refractory mass on a surface based on a silicon compound
JPH0411510B2 (en)
JPS6156191B2 (en)
JPS591610A (en) Composite slag forming agent for basic steel making furnace
US5229337A (en) Composition of matter for use in a process of forming a porous refractory mass
JPH1017374A (en) Monolithic refractory material for wet hot-gunning method
JPH0226874A (en) Baking repair material
JP3009815B2 (en) Aluminum titanate-alumina spray material
JPS6244192B2 (en)
RU2091347C1 (en) Blacking coating for heat unit emitting surface
JPS6046062B2 (en) Refractory materials for thermal spraying
JPS61132568A (en) Tundish coating material for dry spraying
JPS5879870A (en) Powder material for flame spray
JPS6314275B2 (en)
SU1320198A1 (en) Thermit mixture for jet concrete spraying of coke oven brickwork
JPS6133742A (en) Production of tundish gate
JPS6046975A (en) Wet refractories for spraying
JPH0769660A (en) Production of amorphous porous glass molded articles
JPH09188572A (en) Repairing materila for cold apraying containing synthetic magnesia-clinker