JPH04114908A - Silicon nitride powder - Google Patents
Silicon nitride powderInfo
- Publication number
- JPH04114908A JPH04114908A JP23424190A JP23424190A JPH04114908A JP H04114908 A JPH04114908 A JP H04114908A JP 23424190 A JP23424190 A JP 23424190A JP 23424190 A JP23424190 A JP 23424190A JP H04114908 A JPH04114908 A JP H04114908A
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- oxygen content
- nitride powder
- powder
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 38
- 229910052581 Si3N4 Inorganic materials 0.000 title claims abstract description 35
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title claims abstract description 35
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 51
- 239000001301 oxygen Substances 0.000 claims abstract description 51
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 51
- 239000002245 particle Substances 0.000 claims abstract description 13
- 238000005245 sintering Methods 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 2
- 238000004458 analytical method Methods 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 239000011863 silicon-based powder Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000005121 nitriding Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000013001 point bending Methods 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
り粟上り札朋分互
本発明は、優れた強度を有する焼結体を得ることができ
る窒化ケイ素粉末に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to silicon nitride powder from which a sintered body having excellent strength can be obtained.
の び が しようと る
従来より、窒化ケイ素粉末を焼結して得られる窒化ケイ
素焼結体については、高温強度材料として種々の用途開
発が進められており、高強度を有する焼結体を得るため
に種々の研究が行われている。Silicon nitride sintered bodies obtained by sintering silicon nitride powder have been developed for various uses as high-temperature strength materials, and it is difficult to obtain sintered bodies with high strength. Various studies are being conducted for this purpose.
ここで、焼結原料である窒化ケイ素粉末の酸素含有量が
、得られた焼結体の強度に影響を及ぼすことが知られて
おり(セラミックス17(1982)No、10)、高
強度の焼結体を得るため酸素含有量を調整した窒化ケイ
素粉末も提案されている(特開平1−313308号公
報)。Here, it is known that the oxygen content of silicon nitride powder, which is the raw material for sintering, affects the strength of the obtained sintered body (Ceramics 17 (1982) No. 10), and high-strength sintered A silicon nitride powder whose oxygen content is adjusted in order to obtain solid bodies has also been proposed (Japanese Unexamined Patent Publication No. 1-313308).
しかしながら、このような窒化ケイ素粉末の焼結体であ
っても、用途によっては強度が不十分な場合もあり、更
なる高強度化が望まれる。However, even with such a sintered body of silicon nitride powder, the strength may be insufficient depending on the application, and even higher strength is desired.
本発明は、上記事情に鑑みなされたもので、優れた強度
を有する焼結体を得ることができる窒化ケイ素粉末を提
供することを目的とする。The present invention was made in view of the above circumstances, and an object of the present invention is to provide a silicon nitride powder from which a sintered body having excellent strength can be obtained.
課題を するための手 び作
本発明者は、上記目的を達成するため鋭意検討を行なっ
た結果、α分率90%以上、BET比表比表面積10m
重上、平均粒子径0.8/IAl以下の窒化ケイ素粉末
の内部酸素量を0.5重量%未満に制御することにより
、非常に高強度の焼結体を得ることができる窒化ケイ素
粉末とすることがで一
きることを見い出した。As a result of intensive studies to achieve the above objectives, the inventor has determined that the α fraction is 90% or more and the BET specific surface area is 10 m.
By controlling the internal oxygen content of silicon nitride powder with an average particle size of 0.8/IAl or less to less than 0.5% by weight, it is possible to obtain a sintered body with extremely high strength. I found that there is something I can do.
即ち、従来より窒化ケイ素焼結体の特性、特に強度に関
しては上述したように原料粉末中の酸素含有量が影響す
ると考えられているが、本発明者は、この原料粉末中の
酸素の存在形態に着目し、種々検討を重ねたところ、そ
の内部酸素含有量を0.5重量%未満に制御することが
焼結体の強度向上の点で極めて有効であり、特にα分率
90%以上、BET比表面積10 m / g以上、平
均粒子径o、8/JJrl以下の窒化ケイ素粉末におい
て、その内部酸素量を0.5重量%未満に制御し、更に
好ましくは外部酸素量を0.5重量%以下に制御するこ
とにより、この窒化ケイ素粉末から顕著に高強度化され
た窒化ケイ素焼結体が得られることを見い出したもので
ある。That is, it has been thought that the properties of silicon nitride sintered bodies, especially the strength, are influenced by the oxygen content in the raw material powder as described above, but the present inventors have determined the existence form of oxygen in this raw material powder. After conducting various studies, we found that controlling the internal oxygen content to less than 0.5% by weight is extremely effective in improving the strength of the sintered body, especially when the α fraction is 90% or more. In a silicon nitride powder with a BET specific surface area of 10 m/g or more and an average particle diameter o of 8/JJrl or less, the internal oxygen content is controlled to less than 0.5% by weight, and more preferably the external oxygen content is 0.5% by weight. % or less, it has been found that a silicon nitride sintered body with significantly increased strength can be obtained from this silicon nitride powder.
従って本発明は、α分率90%以上、BET比表面積1
0rrr/g以上、平均粒子径0.8pIl以下で、内
部酸素が0.5重量%未満であることを特徴とする窒化
ケイ素粉末を提供する。Therefore, the present invention has an α fraction of 90% or more, a BET specific surface area of 1
Provided is a silicon nitride powder having an average particle size of 0 rrr/g or more, an average particle size of 0.8 pIl or less, and an internal oxygen content of less than 0.5% by weight.
ここで、窒化ケイ素粉末の内部酸素量を制御す3〜
ることは、上記特開平1−313308号公報において
も開示されているが、この公報の提案は表面(外部)酸
素量を0.3〜0.6重量%、内部酸素量を0.5〜1
.1重量%とするものである。Here, controlling the internal oxygen content of silicon nitride powder is also disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 1-313308, but the proposal in this publication is to control the surface (external) oxygen content by 0.3. ~0.6% by weight, internal oxygen content 0.5~1
.. The content is 1% by weight.
しかし、後述する比較例に示したように、内部酸素量が
0.5重量%以上のものは、内部酸素の少ないものに比
べて焼結体強度の点で劣るもので、窒化ケイ素粉末の内
部酸素量を0.5重量%未満にコントロールすることに
より焼結体強度を高めるということは、本発明者による
新知見である。However, as shown in the comparative example below, those with an internal oxygen content of 0.5% by weight or more are inferior in terms of sintered body strength compared to those with less internal oxygen, and the internal oxygen content of silicon nitride powder is It is a new finding by the present inventor that the strength of the sintered body can be increased by controlling the amount of oxygen to less than 0.5% by weight.
以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.
本発明の窒化ケイ素粉末は、上述のようにα分率が90
%以上、BET比表面積が10 m2/ g以上、好ま
しくは11〜1.5 m / g、平均粒子径が0.8
陣以下、好ましくは0.4〜o、6IJXlで、内部酸
素含有量が0.5重量%未満、好ましくは0.2重量%
以上、0.5重量%未満のものであり、より好ましくは
外部酸素含有量が0.5重量%以下のものである。The silicon nitride powder of the present invention has an α fraction of 90 as described above.
% or more, BET specific surface area is 10 m2/g or more, preferably 11-1.5 m/g, and average particle size is 0.8
less than 0.4%, preferably 0.4 to 6IJXl, with an internal oxygen content of less than 0.5% by weight, preferably 0.2% by weight
The external oxygen content is preferably less than 0.5% by weight, more preferably 0.5% by weight or less.
上記内部酸素含有量が0.5重量%を超えると、得られ
る焼結体の強度が低下し、本発明の目的を達成すること
ができない。また、α分率が90%未満である場合も強
度の点て問題を生じ、BET比表面積が10 rn’
/ g未満であると焼結性に劣るものになってしまい、
更に平均粒子径についても、これが0.8声を超えた場
合は焼結性に劣るものになる。When the internal oxygen content exceeds 0.5% by weight, the strength of the obtained sintered body decreases, making it impossible to achieve the object of the present invention. In addition, if the α fraction is less than 90%, problems will occur in terms of strength, and the BET specific surface area will be less than 10 rn'
If it is less than /g, the sinterability will be poor,
Furthermore, if the average particle diameter exceeds 0.8 tones, the sinterability will be poor.
ここで、上記内部酸素含有量及び外部酸素含有量の測定
は、LECO社製TC−436等の酸素分析装置を用い
、昇温形態分析により行うことができる。即ち、昇温形
態分析では、昇温の過程で多数のピークが出現するが、
これらのピークを下記判定法によりテイル型(尾を引く
ピーク)と対称型(線対称のピーク)とに大別し、下記
式により内部酸素含有量及び外部酸素含有量を求めるも
のである。Here, the internal oxygen content and external oxygen content can be measured using an oxygen analyzer such as TC-436 manufactured by LECO Co., Ltd. by heating mode analysis. In other words, in heating mode analysis, many peaks appear during the heating process;
These peaks are roughly classified into tail type (peaks with a tail) and symmetric types (peaks with line symmetry) using the following determination method, and the internal oxygen content and external oxygen content are determined using the following formulas.
Wjn−W′×ss+5T
Wout = W’ −Win
Win : 内部酸素含有量
Wout : 外部酸素含有量
W・ 二全酸素量(内部酸素量子外部酸素量)Ss:
対称型ピークの積分値
S□ : テイル型ピークの積分値
ここで、全酸素量は非分散赤外線吸収法により測定する
。Wjn-W'×ss+5T Wout = W' -Win Win: Internal oxygen content Wout: External oxygen content W・2 total oxygen amount (internal oxygen quantum external oxygen amount) Ss:
Integral value of symmetrical peak S□: Integral value of tail-type peak Here, the total oxygen amount is measured by a non-dispersive infrared absorption method.
旦二久勿可定仄
対称型(SS):第1図にしたしたピーク1の頂点2か
らX軸に下したIa3
の中間部4と、該中間部4に
おいてX軸と平行な線を引い
たときに上記ピーク1と交わ
る点5,6との距離a、bを
そわぞtL測測定た場合、即ち
ピーク1の半値@c(a=a
+b)において、a / bが
0.8≦a / b≦1.1であ
るピーク
7 ’I’ /L’ W (ST ) :ピーク1の半
値幅Cにおいて1.1<a/bであるピーク
なお、第2図に示す昇温形態分析チャートにお一
=6=
いて、対称型及びテイル型ピークは図示した通りである
。Fixed symmetrical type (SS): From the apex 2 of peak 1 shown in Figure 1 to the middle part 4 of Ia3, which is lowered to the X-axis, draw a line parallel to the X-axis at the middle part 4. When the distances a and b from points 5 and 6 that intersect with peak 1 are measured by tL, that is, at the half value of peak 1 @c (a = a + b), a / b is 0.8≦ Peak 7 where a/b≦1.1 'I'/L' W (ST): Peak where 1.1<a/b at half-width C of peak 1 In addition, temperature increase mode analysis shown in Figure 2 In the chart, the symmetric and tail peaks are as shown.
なおまた、上記昇温形態分析は、O℃〜2000℃の範
囲で0〜300秒間程度行なうことが好ましい。Furthermore, it is preferable that the above-mentioned temperature increase mode analysis is carried out in the range of 0° C. to 2000° C. for about 0 to 300 seconds.
上記窒化ケイ素粉末は、金属ケイ素粉末を窒素ガス雰囲
気又は窒素を含む非酸化性ガス雰囲気下で加熱する通常
の直接窒化法において、原料の金属ケイ素粉末の酸素含
有量及び上記雰囲気中の水分量をコントロールすること
により、製造することができる。この場合、金属ケイ素
粉末の粒度は1〜10声が好ましい。また、窒素を含む
非酸化性ガス雰囲気としては、水素ガスを5〜25容量
%程度含む窒素ガスとの水素ガス混合ガスからなる雰囲
気が好ましく用いられる。更に、窒化温度は通常120
0〜1400℃であり、窒化時間は通常2〜5時間程度
である。The above-mentioned silicon nitride powder is produced by controlling the oxygen content of the raw material silicon powder and the moisture content in the atmosphere in the normal direct nitriding method in which silicon metal powder is heated in a nitrogen gas atmosphere or a non-oxidizing gas atmosphere containing nitrogen. It can be manufactured by controlling. In this case, the particle size of the metal silicon powder is preferably 1 to 10 tones. Further, as the non-oxidizing gas atmosphere containing nitrogen, an atmosphere consisting of a mixed gas of hydrogen gas and nitrogen gas containing about 5 to 25% by volume of hydrogen gas is preferably used. Furthermore, the nitriding temperature is usually 120
The temperature is 0 to 1400°C, and the nitriding time is usually about 2 to 5 hours.
而して、本発明の窒化ケイ素粉末は、上記製造法におい
て、上記原料の金属ケイ素粉末として酸素含有量が1重
量%以下のものを用いると共に、上記雰囲気中の水分量
を該金属ケイ素粉末の酸素含有量に応じてコンI−ロー
ルすることにより製造することができる。即ち、該原料
金属粉末の酸素含有量が0.4〜1重量%である場合は
、水分量を11000pp未満に、好ましくは500p
pm未満にコントロールし、一方、酸素含有量が0.4
重量%未満の場合は、水分量を1000〜6000pp
m、好ましくは4000−5000ppmに=1ントロ
ールすることにより、窒化ケイ素粉末の内部酸素含有量
を0.5重量%未満に制御することができるものである
。The silicon nitride powder of the present invention can be produced by using a metal silicon powder as the raw material having an oxygen content of 1% by weight or less in the above manufacturing method, and reducing the amount of moisture in the atmosphere to the metal silicon powder. It can be manufactured by con-I-rolling depending on the oxygen content. That is, when the oxygen content of the raw metal powder is 0.4 to 1% by weight, the water content is less than 11,000 pp, preferably 500 pp.
pm while the oxygen content is controlled to less than 0.4
If the water content is less than 1000-6000pp by weight
m, preferably 4000-5000 ppm, the internal oxygen content of the silicon nitride powder can be controlled to less than 0.5% by weight.
この場合、雰囲気中の水分量を上記範囲内において増減
することにより、得られる窒化ケイ素粉末の内部酸素含
有量を調節することができる。In this case, the internal oxygen content of the obtained silicon nitride powder can be adjusted by increasing or decreasing the moisture content in the atmosphere within the above range.
光班段匁米
本発明の窒化ケイ素粉末は、これを焼結することにより
強度に優れた窒化ケイ素焼結体を得ることができる。By sintering the silicon nitride powder of the present invention, a silicon nitride sintered body having excellent strength can be obtained.
以下、実施例及び比較例を示し、本発明を具体的に説明
するが、本発明は下記実施例に制限され一
るものではない。EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
〔実施例1〜5.比較例1〜3〕
0.1〜0.4重量%の範囲の酸素含有量を有する金属
ケイ素粉末をN2とN2との混合ガスを水中に通し、水
分を4.300ppm含有させたガス雰囲気下に最高温
度1380 ’Cでそれぞれ常法に従って加熱窒化し、
これをそれぞれ湿式粉砕し、HFとHNO3との混酸に
より酸処理して窒化ケイ素粉末を得た。[Examples 1 to 5. Comparative Examples 1 to 3] Metallic silicon powder having an oxygen content in the range of 0.1 to 0.4% by weight was passed through water with a mixed gas of N2 and N2 under a gas atmosphere containing 4.300 ppm of water. were heated and nitrided according to conventional methods at a maximum temperature of 1380'C,
Each of these was wet-pulverized and acid-treated with a mixed acid of HF and HNO3 to obtain silicon nitride powder.
これらの窒化ケイ素粉末のα分率、平均粒子径、BET
比表面積、内部酸素量、外部酸素量を測定した。その結
果を第1表に示す。α fraction, average particle size, BET of these silicon nitride powders
Specific surface area, internal oxygen content, and external oxygen content were measured. The results are shown in Table 1.
ここで、第1表中の窒化ケイ素粉末の内部酸素量は上述
した昇温形態分析法により測定し、外部酸素量は堀場E
MGA2800により測定した全酸素量から上記内部酸
素量を引いた値である。Here, the internal oxygen content of the silicon nitride powder in Table 1 was measured by the above-mentioned heating mode analysis method, and the external oxygen content was determined by Horiba E.
This is the value obtained by subtracting the above internal oxygen amount from the total oxygen amount measured by MGA2800.
なお、実施例1の窒化ケイ素粉末について行なった昇温
形態分析のチャートを第2図に示す。Note that FIG. 2 shows a chart of temperature increase pattern analysis conducted on the silicon nitride powder of Example 1.
次に、上記窒化ケイ素粉末90部(重量部、以下同様)
にそれぞれY2O37部、Afi2033部を加え、ボ
ールミルで湿式混合し、乾燥後、2t/cJの圧力で金
型形成し、1800℃で1−時間焼結して棒状焼結体(
3X4n冊)を得た。この焼結体の室温下での三点曲げ
強度をJIS R−1601に基づいて測定した。結
果を第1表に併記する。Next, 90 parts of the silicon nitride powder (parts by weight, the same applies hereinafter)
37 parts of Y2O and 2033 parts of Afi were added to each, wet-mixed in a ball mill, dried, formed into a mold at a pressure of 2t/cJ, and sintered at 1800°C for 1 hour to form a rod-shaped sintered body (
3x4n volumes) were obtained. The three-point bending strength of this sintered body at room temperature was measured based on JIS R-1601. The results are also listed in Table 1.
第1表
第1表の結果より、本発明の窒化ケイ素粉末から得た焼
結体は強度の向上したものであることが−10=
確認された。From the results shown in Table 1, it was confirmed that the sintered body obtained from the silicon nitride powder of the present invention had improved strength by -10=.
〔実施例6〜8.比較例4,5〕
第2表に示したα分率、平均粒子径、比表面積、内部酸
素量及び外部酸素量を有する窒化ケイ素粉末を用い、焼
結時間を4時間とした以外は実施例1と同様の条件で棒
状焼結体(径3 mm X長さ4mm)を得、1200
’Cの温度下で三点曲げ強度をJIS R−1,60
1に基づいて測定した。結果を第2表に併記する。[Examples 6-8. Comparative Examples 4 and 5] Examples except that silicon nitride powder having the α fraction, average particle diameter, specific surface area, internal oxygen amount, and external oxygen amount shown in Table 2 was used, and the sintering time was 4 hours. A rod-shaped sintered body (diameter 3 mm x length 4 mm) was obtained under the same conditions as 1.
The three-point bending strength at a temperature of 'C is JIS R-1,60.
Measured based on 1. The results are also listed in Table 2.
ら得られた焼結体は1200℃という高温下においでて
も高い強度を有することが確認された。It was confirmed that the obtained sintered body had high strength even at a high temperature of 1200°C.
第1図は、昇温形態分析におけるピークの判定法を説明
するためのグラフ、第2図は昇温形態分析により得られ
たチャートを示すグラフである。
出願人 信越化学工業 株式会社
代理人 弁理士 小 島 隆 司
第2表
第2表の結果より、本発明の窒化ケイ素粉末か−S 更
一
濠
はず冒欠FIG. 1 is a graph for explaining a method for determining peaks in temperature-rising mode analysis, and FIG. 2 is a graph showing a chart obtained by temperature-raising mode analysis. Applicant Shin-Etsu Chemical Co., Ltd. Agent Patent Attorney Takashi Kojima From the results in Table 2, it is clear that the silicon nitride powder of the present invention is
Claims (1)
以上、平均粒子径0.8μm以下で、内部酸素含有量が
0.5重量%未満であることを特徴とする窒化ケイ素粉
末。 2、外部酸素含有量が0.5重量%以下である請求項1
記載の窒化ケイ素粉末。[Claims] 1. α fraction 90% or more, BET specific surface area 10^m2/g
As described above, the silicon nitride powder is characterized in that it has an average particle diameter of 0.8 μm or less and an internal oxygen content of less than 0.5% by weight. 2. Claim 1, wherein the external oxygen content is 0.5% by weight or less
Silicon nitride powder as described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23424190A JP2874057B2 (en) | 1990-09-03 | 1990-09-03 | Silicon nitride powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23424190A JP2874057B2 (en) | 1990-09-03 | 1990-09-03 | Silicon nitride powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04114908A true JPH04114908A (en) | 1992-04-15 |
JP2874057B2 JP2874057B2 (en) | 1999-03-24 |
Family
ID=16967895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23424190A Expired - Fee Related JP2874057B2 (en) | 1990-09-03 | 1990-09-03 | Silicon nitride powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2874057B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013146713A1 (en) | 2012-03-28 | 2013-10-03 | 宇部興産株式会社 | Silicon nitride powder production method, silicon nitride powder, silicon nitride sintered body and circuit substrate using same |
WO2016171018A1 (en) * | 2015-04-20 | 2016-10-27 | 株式会社Tkx | Method for producing fine silicon powder, and method for producing fine silicon nitride powder |
WO2020203695A1 (en) * | 2019-03-29 | 2020-10-08 | デンカ株式会社 | Silicon nitride powder and production method therefor, and production method for silicon nitride sintered body |
KR102408533B1 (en) * | 2021-11-25 | 2022-06-14 | 주식회사 첨단랩 | Manufacturing method of silicon nitride filler for thermal interface material |
-
1990
- 1990-09-03 JP JP23424190A patent/JP2874057B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013146713A1 (en) | 2012-03-28 | 2013-10-03 | 宇部興産株式会社 | Silicon nitride powder production method, silicon nitride powder, silicon nitride sintered body and circuit substrate using same |
KR20140136002A (en) | 2012-03-28 | 2014-11-27 | 우베 고산 가부시키가이샤 | Silicon nitride powder production method, silicon nitride powder, silicon nitride sintered body and circuit substrate using same |
US9085462B2 (en) | 2012-03-28 | 2015-07-21 | Ube Industries, Inc. | Silicon nitride powder production method, silicon nitride powder, silicon nitride sintered body and circuit substrate using same |
WO2016171018A1 (en) * | 2015-04-20 | 2016-10-27 | 株式会社Tkx | Method for producing fine silicon powder, and method for producing fine silicon nitride powder |
JP6077193B1 (en) * | 2015-04-20 | 2017-02-08 | 株式会社Tkx | Method for producing silicon fine powder and method for producing silicon nitride fine powder |
WO2020203695A1 (en) * | 2019-03-29 | 2020-10-08 | デンカ株式会社 | Silicon nitride powder and production method therefor, and production method for silicon nitride sintered body |
CN113614035A (en) * | 2019-03-29 | 2021-11-05 | 电化株式会社 | Silicon nitride powder, method for producing same, and method for producing silicon nitride sintered body |
EP3950582B1 (en) | 2019-03-29 | 2023-12-13 | Denka Company Limited | Silicon nitride powder and production method therefor, and production method for silicon nitride sintered body |
KR102408533B1 (en) * | 2021-11-25 | 2022-06-14 | 주식회사 첨단랩 | Manufacturing method of silicon nitride filler for thermal interface material |
Also Published As
Publication number | Publication date |
---|---|
JP2874057B2 (en) | 1999-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100200385B1 (en) | Si3n4 ceramic si-base composition for producing the same and their production | |
US4312899A (en) | Process for the production of oxidation-resistant sintered silicon nitride bodies with improved mechanical strength | |
US3953221A (en) | Fully dense ceramic article and process employing magnesium oxide as a sintering aid | |
JPS6172684A (en) | High strength high abrasion resistance sliding member and manufacture | |
JPH04114908A (en) | Silicon nitride powder | |
JP2539018B2 (en) | Al Lower 2 O Lower 3 Base ceramics | |
EP0648717A2 (en) | Reaction sintered ceramics and method of producing the same | |
JPH06116045A (en) | Silicon nitride sintered compact and its production | |
JP2670222B2 (en) | Silicon nitride sintered body and method for producing the same | |
JP3280059B2 (en) | Method for producing activated silicon carbide | |
JPH0547510B2 (en) | ||
JP3355732B2 (en) | Low thermal conductive ceramics with high toughness and method for producing the same | |
JPH06263410A (en) | Method for increasing beta-fraction of powdery silicon nitride | |
JPH0345506A (en) | High-oxygen high beta-type silicon nitride fine powder and production thereof | |
JPH0579625B2 (en) | ||
JPS6241765A (en) | Manufacture of silicon nitride sintered body | |
JPH02225306A (en) | Production of easily sinterable silicon nitride powder | |
JPS646142B2 (en) | ||
JPS59111981A (en) | Manufacture of silicon nitride-containing fine sintered body | |
JP2706304B2 (en) | Method for producing silicon nitride sintered body | |
JP2000143352A (en) | Silicon nitride-based sintered compact and its production | |
JPS6035315B2 (en) | Manufacturing method of ceramic powder material | |
Bartnitskaya et al. | The role of silicon-particle defect structure during low-temperature nitriding | |
JP3237963B2 (en) | Silicon nitride sintered body and method for producing the same | |
JPH04114973A (en) | Sintered sialon and production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |