JPH0411483B2 - - Google Patents
Info
- Publication number
- JPH0411483B2 JPH0411483B2 JP25092585A JP25092585A JPH0411483B2 JP H0411483 B2 JPH0411483 B2 JP H0411483B2 JP 25092585 A JP25092585 A JP 25092585A JP 25092585 A JP25092585 A JP 25092585A JP H0411483 B2 JPH0411483 B2 JP H0411483B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- solvent
- solution
- raw material
- hydroxyapatite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002994 raw material Substances 0.000 claims description 33
- 229910052588 hydroxylapatite Inorganic materials 0.000 claims description 27
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 claims description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 15
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 239000003960 organic solvent Substances 0.000 claims description 13
- 239000011575 calcium Substances 0.000 claims description 12
- 239000002904 solvent Substances 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 10
- 150000001412 amines Chemical class 0.000 claims description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims description 8
- 239000011574 phosphorus Substances 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- 239000012046 mixed solvent Substances 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 5
- 229910052791 calcium Inorganic materials 0.000 claims description 5
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 4
- 229940043430 calcium compound Drugs 0.000 claims description 4
- 150000001674 calcium compounds Chemical class 0.000 claims description 4
- 229910010272 inorganic material Inorganic materials 0.000 claims description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims description 2
- 150000002894 organic compounds Chemical class 0.000 claims 2
- 150000002484 inorganic compounds Chemical class 0.000 claims 1
- 239000000243 solution Substances 0.000 description 35
- 238000000034 method Methods 0.000 description 22
- 238000006243 chemical reaction Methods 0.000 description 14
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 239000000843 powder Substances 0.000 description 12
- 238000002156 mixing Methods 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 229910052586 apatite Inorganic materials 0.000 description 7
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 7
- 238000001556 precipitation Methods 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- 238000005118 spray pyrolysis Methods 0.000 description 6
- -1 fluorine ions Chemical class 0.000 description 5
- 238000001308 synthesis method Methods 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 150000002903 organophosphorus compounds Chemical class 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- ZQBZAOZWBKABNC-UHFFFAOYSA-N [P].[Ca] Chemical compound [P].[Ca] ZQBZAOZWBKABNC-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 235000010216 calcium carbonate Nutrition 0.000 description 2
- 159000000007 calcium salts Chemical class 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003462 bioceramic Substances 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- ICSSIKVYVJQJND-UHFFFAOYSA-N calcium nitrate tetrahydrate Chemical compound O.O.O.O.[Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ICSSIKVYVJQJND-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- GRVDJDISBSALJP-UHFFFAOYSA-N methyloxidanyl Chemical compound [O]C GRVDJDISBSALJP-UHFFFAOYSA-N 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Materials For Medical Uses (AREA)
Description
本発明は、ヒドロキシアパタイトの製造法に関
するものである。
ヒドロキシアパタイトは、生体高分子、ふつ素
イオン、重金属イオンなどの吸着剤として独特の
性能を有しており、近年は、その生体親和性を利
用してタンパク質や酵素などの分離のためのクロ
マトグラフイー用充填剤としても有用視され、ま
た人工骨や人工歯などのバイオセラミツクス材料
としても注目されている物質である。
従来、ヒドロキシアパタイトの製造法に関して
は、古くから数多くの方法が知られているが、大
別すれば、次の様な方法が例示される。
(1) 乾式合成法と称せられる固体拡散反応による
方法。
(2) 水熱合成法と称せられる高圧下での反応によ
る方法。この方法は、主に、大きな結晶を得る
目的で行なわれる。
(3) 湿式合成法と称せられる、水溶液イオンによ
つて直接沈殿させる方法。
しかしながら、(1)の乾式合成法は高温で長時間
反応させる必要があるために、多くのエネルギー
を消費することや固体−固体反応であるため組成
の均一性が得にくいことに難点がある。また(2)の
水熱合成法は高圧での反応を行なわせるために装
置が高価であり、操作が複雑であるなどの問題が
ある。(3)の湿式合成法では、反応により生成した
アパタイトの沈殿物を別、洗浄及び乾燥などの
操作を行わなければならず、多くの工程が必要で
あり、操作が煩雑であるなどの欠点を有してい
る。
現在までアパタイトに関する数多くの湿式合成
法が提案されているが、それらの従来技術の湿式
合成法に共通する考え方は、例えば、カルシウム
塩水溶液とリン化合物水溶液とを90〜100℃で、
PHを8付近に保持しながら、脱炭酸雰囲気中で混
合し、沈殿を生成させる方法の例にも見られるよ
うに、アパタイトを沈殿物として直接的に生成せ
しめ、水溶液から過などの操作によつて分離回
収するという考え方に基づくものである。
しかしながら、この方法によると、カルシウム
塩の水溶液とリン化合物水溶液を混合し、イオン
の直接的反応によつて沈殿を生成させ、アパタイ
トへ結晶化させる過程は原料塩の種類や濃度、原
料の混合手順と混合速度、PH調節など非常に多く
の因子によつて影響されるので、配合比通りの組
成の沈殿を得ることが難かしく、カルシウムとリ
ンのモル比Ca/Pや生成粉体の物理化学的特性
を再現性よくコントロールすることは極めて困難
であつた。また、沈殿物の過洗浄、乾燥、粉砕
と多工程並びに多くの装置を必要とし、その操作
も塾練を必要とするなどの難点があつた。
本発明者らは、先に、新規なカルシウム−リン
系アパタイトの製造方法として、水と相溶性の可
燃性有機溶媒又は水と相溶性の可燃性有機溶媒と
水との混合溶媒を用いて、これら溶媒に可溶性の
カルシウムの無機化合物及びリンの有機化合物を
溶解して、沈殿が生じない均一な組成の溶液を調
製し、この原料溶液を火炎中又は加熱帯域中に噴
霧して熱分解反応を生ぜしめることによりカルシ
ウム−リン系アパタイトを製造できることを見い
出した。(特開昭61−146704号参照)、その際の操
作条件によつては、生成物中にCaOやCaCO3等
が遊離生成する場合があつたが、本発明者らは、
さらにその後のヒドロキシアパタイトの製造の研
究により、CaOやCaCO3等が遊離生成するよう
な系の原料溶液に、更にアンモニア水やアミンを
存在させ、この溶液を噴霧熱分解することによ
り、CaOやCaCO3の遊離生成を抑制し、ヒドロ
キシアパタイトの生成率を高める結果が得られる
ことを見い出した。本発明は、かかる知見に基づ
いてなされたものである。
即ち、本発明は、ヒドロキシアパタイトの新規
な製造方法を提供するものである。本発明方法に
おいては、原料の均一な混合を実現するために、
水と相溶性の可燃性有機溶媒又は水と相溶性の可
燃性有機溶媒と水の混合溶媒に溶解させた均一な
組成の原料溶液を用いるものであつて、混合によ
る沈殿物を生じさせないことが一特徴となつてい
る。そして、この溶液に沈殿を生じさせない範囲
内でアンモニア水や上記溶液に可溶性のアミンを
含有させ、液の性状を中性域から弱アルカリ性域
として、噴霧溶原料溶液を調製する。次いで、こ
の原料溶液を火炎中または加熱帯域中に噴霧して
熱分解反応を行わせ、ヒドロキシアパタイトを生
成せしめることを特徴とする。
本発明の方法により、従来技術がヒドロキシア
パタイトの合成に長時間を要するのに比し、わず
かに数秒以下の極めて短い時間で合成反応を終了
することができ、しかも過、洗浄、乾燥などの
煩雑な工程を全く必要とせず直接ヒドロキシアパ
タイトを得ることができる。さらに、原料溶液に
アンモニア水やアミンを存在させることによつ
て、ヒドロキシアパタイトの生成率が高められ、
CaOやCaCO3等の遊離生成を抑制できるという
格別の効果が得られる。
本発明方法による噴霧熱分解反応により生成す
る粉体は、通常、サブミクロンの粒子が密にある
いは粗く固着・焼結して、全体として微小球粉体
として得られ、原料化合物の種類や組合せ、噴霧
熱分解条件によつては、非晶質相のもの、ヒドロ
キシアパタイト結晶質相と非晶質相の両相を含ん
でいるものなど、種々の相が得られるが、いずれ
も反応活性に富む粉体である。用途・目的によつ
ては、条件を選択することにより、結晶化度を更
に高めたり、反応活性を若干小さくすることもで
きる。すなわち、例えば、噴霧熱分解反応によつ
て生成した粉体を更に種々な雰囲気中で、ヒドロ
キシアパタイトが分解せずに安定に存在し得る温
度範囲の所望の温度で、加熱処理することによつ
て、上述の諸物性をコントロールすることができ
る。例えば、空気雰囲気中1400℃以下の所望の温
度で加熱処理することによつて、所望の物性のも
のが得られる。
本発明方法をさらに具体的に説明すると以下の
通りである。本発明方法においては、まず、水と
相溶性の有機溶媒又は水と相溶性の有機溶媒と水
との混合溶媒に対し、該溶倍に対し、可溶性のカ
ルシウムの無機化合物及びリンの有機化合物を加
え、混合溶解して成る溶液に、更にアンモニア水
及び/または上記溶液に可溶性のアミンを存在さ
せた原料溶液を調製し、液性状を中性域から弱ア
ルカリ性域とする。これらの原料を混合する順序
は、必ずしも特定されるものではなく、沈殿を生
じないような順序さえあれば、いずれの順序で混
合してもよい。混合に要する時間は、選択した原
料にによつて、異なる。混合にあたつては、充分
均一な溶液が得られるまで撹拌するのが好まし
い。次いで、このようにして調製した溶液を加圧
ノズルや回転円板などによる公知の噴霧方法によ
り、ガスバーナーなどの火炎中あるいはガス炉や
電気炉などにより予め700〜1500℃に加熱された
加熱帯域中に噴霧して、数秒以下の極めて短い時
間の間に、通常数10ミクロン以下の微細な液筒と
なつた溶液中の溶媒の蒸発・燃焼と溶質の固化、
熱分解反応を行なわせる。生成物は、通常、サブ
ミクロンの粒子が密にあるいは粗く固着・焼結し
て、全体として球状となつた微小粉体であり、サ
イクロンなどによつて捕集することができる。更
に、必要に応じて、噴霧熱分解反応によつて生成
した粉体を、空気、水蒸気を加えた空気、不活性
雰囲気などの種々の雰囲気中で、ヒドロキシアパ
タイトが分解しない温度範囲の所望の温度で、加
熱処理することにより、結晶化度や比表面積など
をコントロールしたヒドロキシアパタイトを得る
ことができる。
本発明の方法において使用される前記のカルシ
ウム無機化合物及びリンの有機化合物としては、
Ca(NO3)2・4H2O、(CH3O)3P、(C2H5O)3P、
〔CH3(CH2)3O〕3P、(C2H5O)2POH等が挙げられ
る。溶媒としては、メタノール、エタノール等の
アルコール類またはこれらの有機溶媒と水との混
合溶媒を用いることができる。これらの溶媒にカ
ルシウムの無機化合物及びリンの有機化合物を溶
解した溶液に対し、加えられるアミンとしては、
トリメチルアミン、トリエチルアミン、トリn−
ブチルアミン等が好適に使用される。また、アン
モニア水を上記溶液に含有させるにはアンモニア
水として加えてもよく、あるいはアンモニアガス
を上記溶液に通じその結果として、アンモニア水
を存在させるようにしてもよい。これらの態様
は、いずれも格別に特定されるものではないが、
原料溶液を調製するときに沈殿を生じることな
く、均一な溶液状態が保持できるような原料の組
合わせが用いられなければならない。水に対して
相溶性の有機溶媒を単独で溶媒として用いる場合
でも、原料化合物の組合わせによつては、原料化
合物中の残留水分や結晶水などのために、結果と
して反応系が水と有機溶媒との混合溶媒を用いた
系になることもあるが、この場合であつても、沈
殿を生じないで原料溶液が調製できるものであれ
ば、本発明の方法における溶媒として、もちろ
ん、使用することができる。
本発明方法におけるヒドロキシアパタイトにつ
いて説明すると、通常、化学量論組成のヒドロキ
シアパタイトのカルシウムとリンのモル比、
Ca/Pは5/3であるが、本発明方法における
実際の反応に際しては、原料溶液のカルシウムと
リンのモル比Ca/Pが1.45〜1.85の範囲の組成の
溶液を用いると、いずれの場合も主成分がヒドロ
キシアパタイトの生成物が得られる。またCa/
Pが1.45以下あるいは1.85以上の場合であつて
も、原料の組合わせによつては、主成分がヒドロ
キシアパタイトである生成物が得られることが実
験的に確かめられている。このように、Ca/P
比が5/3からはずれると、条件によつては、未
反応成分や副生成物が混在することがあるが、そ
のような生成物は用途・目的によつては充分に使
用し得る性能のものであり、その生成物も本発明
方法におけるヒドロキシアパタイトの範囲に当然
含まれるものである。
以下、実施例を挙げ、本発明を更に詳細に説明
するが本発明は、これに限定されるものではな
い。
実施例 1
下記(a)および(b)の2つの態様によつてテストを
行い、原料溶液にアンモニア水を加えた際に得ら
れる効果を確認した。
テスト(a):Ca(NO3)2・4H2O36.90gを、約150ml
のメタノールに溶解し、この溶液に
(CH3O)3P11.63gを加えて混合溶解し、更に
アンモニア水(28%)16.7mlを加えて混合した
後、メタノールを加え、液の全量が250mlの均
一な原料溶液を調製した。次いで、この原料溶
液を毎分10mlの割合並びに、圧縮空気を毎分10
の割合で、二流体噴霧ノズルに供給してガス
バーナーの火炎中に噴霧した。微細な液滴とな
つた原料溶液は、火炎中で溶媒の蒸発・燃焼に
よつて瞬間的に加熱され熱分該反応が起つた。
テスト(b):原料溶液にアンモニア水を加えず、他
は、すべて、(a)と同じ条件下で原料溶液の調製
及び噴霧熱分解を行つた。(a)及び(b)のテストに
よる生成粉体のX線回折分析を行つた結果、い
ずれもヒドロキシアパタイトが主成分の粉体で
あつたがアンモニア水を原料溶液に加えて行つ
たテスト(a)により得られる粉体のヒドロキシア
パタイトのメインピークの回折強度は、テスト
(b)により得られる粉体のそれに比し、およそ4
倍の大きさを有していた。また、ヒドロキシア
パタイトのピークの他に、テスト(a)で得られた
ものは、CaOのピークが僅かに認められる程度
であつたがテスト(b)で得られたものでは、CaO
によるピークが明瞭に認められた。強度比では
テスト(a)で得られたもののCaOのピークの回折
強度は、テスト(b)で得られたもののおよそ1/6
に減少していた。これらのことにより、アンモ
ニア水の添加がヒドロキシアパタイトの生成率
を高め、CaOの遊離生成を抑制する効果をもた
らすことが明らかに認められる。
実施例 2
実施例1のテスト(a)の方法により得られた粉体
を、空気雰囲気中で、5℃/minの割合で昇温
し、600℃で2時間加熱処理を行い、5℃/min
の割合で冷却した。この加熱処理によつて得られ
た生成物のX線回折分析を行つた結果、結晶がさ
らに成長したヒドロキシアパタイトのピークのみ
が認められ、実施例1のテスト(a)の生成粉体中に
微量含まれていたCaOのピークは消滅し、認めら
れなかつた。
実施例 3〜11
Ca(NO3)2・4H2O、(CH3O)3P、(C2H5O)3P、
〔CH3(CH2)3O〕3P、(C2H5O)2POH、メタノー
ル、エタノール、アンモニア水(28%)、トリメ
チルアミン30%水溶液、トリエチルアミン、トリ
n−ブチルアミンなどを原料溶液成分として用
い、これから選択して、第1表に示したそれぞれ
の原料配合割合に従つて、原料溶液を調製し、第
1表に示した以外の条件については、実施例1と
同様な条件により噴霧熱分解操作を行い、ヒドロ
キシアパタイトを合成した。いずれのテストにお
いても、原料溶液中にアンモニア水及び/または
アミンを加えない場合に比較してヒドロキシアパ
タイトの生成率が高くなつたことが確認された。
なお、第1表中のアルコール類の欄の数字
「250」は、いずれも、原料溶液の全量が250mlと
なるように、アルコール類を加えることを意味す
る。
The present invention relates to a method for producing hydroxyapatite. Hydroxyapatite has unique performance as an adsorbent for biopolymers, fluorine ions, heavy metal ions, etc., and in recent years, it has been used in chromatography to separate proteins, enzymes, etc. using its biocompatibility. It is a substance that is considered useful as a filler for E and is also attracting attention as a bioceramic material for artificial bones and artificial teeth. Conventionally, many methods for producing hydroxyapatite have been known for a long time, but if broadly classified, the following methods are exemplified. (1) A method using solid diffusion reaction called dry synthesis method. (2) A method of reaction under high pressure called hydrothermal synthesis. This method is mainly used for the purpose of obtaining large crystals. (3) Direct precipitation using aqueous ions, called wet synthesis. However, the dry synthesis method (1) requires a reaction at high temperatures for a long time, which consumes a lot of energy, and because it is a solid-solid reaction, it is difficult to obtain uniform composition. In addition, the hydrothermal synthesis method (2) involves problems such as expensive equipment and complicated operations because the reaction is carried out at high pressure. In the wet synthesis method (3), the apatite precipitate produced by the reaction must be separated, washed and dried, and many steps are required, resulting in complicated operations. have. Many wet synthesis methods for apatite have been proposed to date, but the common idea among these conventional wet synthesis methods is, for example, that a calcium salt aqueous solution and a phosphorus compound aqueous solution are heated at 90 to 100°C.
As can be seen in the example of the method of mixing in a decarboxylated atmosphere while maintaining the pH around 8 to form a precipitate, apatite is directly formed as a precipitate, and the apatite is extracted from an aqueous solution by filtration or other operations. This is based on the concept of separating and recovering the waste. However, according to this method, the process of mixing an aqueous solution of a calcium salt and an aqueous solution of a phosphorus compound, forming a precipitate through a direct reaction of ions, and crystallizing it into apatite depends on the type and concentration of the raw material salt, and the mixing procedure of the raw materials. It is difficult to obtain a precipitate with the exact composition as it is affected by many factors such as mixing rate, pH adjustment, etc., and the molar ratio of calcium and phosphorus (Ca/P) and the physical chemistry of the resulting powder. It has been extremely difficult to control the physical characteristics with good reproducibility. In addition, it requires multiple steps such as excessive washing, drying, and pulverization of the precipitate, as well as many devices, and its operation also requires training. The present inventors previously proposed a method for producing a novel calcium-phosphorus apatite using a flammable organic solvent that is compatible with water or a mixed solvent of a flammable organic solvent that is compatible with water and water. A soluble inorganic calcium compound and an organic phosphorus compound are dissolved in these solvents to prepare a solution with a uniform composition that does not cause precipitation, and this raw material solution is sprayed into a flame or heating zone to initiate a thermal decomposition reaction. It has been discovered that calcium-phosphorus apatite can be produced by (Refer to Japanese Patent Application Laid-Open No. 146704/1983), depending on the operating conditions, CaO, CaCO 3 , etc. may be generated freely in the product, but the present inventors
Furthermore, subsequent research into the production of hydroxyapatite revealed that aqueous ammonia and amines were further added to the raw material solution in a system where CaO, CaCO3 , etc. were produced freely, and by spray pyrolysis of this solution, CaO and CaCO3 were produced. It has been found that the free production of 3 can be suppressed and the production rate of hydroxyapatite can be increased. The present invention has been made based on this knowledge. That is, the present invention provides a novel method for producing hydroxyapatite. In the method of the present invention, in order to achieve uniform mixing of raw materials,
It uses a raw material solution with a uniform composition dissolved in a flammable organic solvent that is compatible with water or a mixed solvent of a flammable organic solvent that is compatible with water and water, and that no precipitation occurs due to mixing. It has become one of its characteristics. Then, ammonia water or a soluble amine is contained in the solution within a range that does not cause precipitation, and the properties of the solution are adjusted from a neutral range to a weakly alkaline range to prepare a spray raw material solution. Next, this raw material solution is sprayed into a flame or a heating zone to cause a thermal decomposition reaction, thereby producing hydroxyapatite. By the method of the present invention, the synthesis reaction can be completed in an extremely short time of just a few seconds or less, compared to the conventional technology that requires a long time to synthesize hydroxyapatite, and in addition, it does not require complicated steps such as filtering, washing, and drying. Hydroxyapatite can be obtained directly without any additional steps. Furthermore, by adding aqueous ammonia or amine to the raw material solution, the production rate of hydroxyapatite is increased.
A special effect can be obtained in that free production of CaO, CaCO 3 , etc. can be suppressed. The powder produced by the spray pyrolysis reaction according to the method of the present invention is usually obtained as a microspherical powder in which submicron particles are densely or coarsely fixed and sintered, and the type and combination of raw material compounds, Depending on the spray pyrolysis conditions, various phases can be obtained, including an amorphous phase and a phase containing both a hydroxyapatite crystalline phase and an amorphous phase, but all of them are highly reactive. It is a powder. Depending on the use and purpose, the degree of crystallinity can be further increased or the reaction activity can be slightly reduced by selecting conditions. That is, for example, by further heat-treating the powder produced by the spray pyrolysis reaction in various atmospheres at a desired temperature within the temperature range in which hydroxyapatite can stably exist without decomposing. , the above-mentioned physical properties can be controlled. For example, desired physical properties can be obtained by heat treatment at a desired temperature of 1400° C. or lower in an air atmosphere. A more specific explanation of the method of the present invention is as follows. In the method of the present invention, first, a soluble inorganic calcium compound and an organic phosphorus compound are added to a water-miscible organic solvent or a mixed solvent of a water-miscible organic solvent and water in proportion to the solubility. In addition, a raw material solution is prepared by adding ammonia water and/or an amine soluble in the above solution to the mixed and dissolved solution, and the liquid properties are made from a neutral range to a weakly alkaline range. The order in which these raw materials are mixed is not necessarily specified, and may be mixed in any order as long as the order does not cause precipitation. The time required for mixing will vary depending on the raw materials selected. When mixing, it is preferable to stir until a sufficiently uniform solution is obtained. Next, the solution prepared in this way is sprayed using a known method such as a pressurized nozzle or a rotating disk into a heating zone preheated to 700 to 1500°C in a flame such as a gas burner or in a gas furnace or electric furnace. In an extremely short period of time (less than a few seconds), the solvent in the solution evaporates and burns into a fine liquid cylinder, usually several tens of microns or less, and the solute solidifies.
Allow a thermal decomposition reaction to occur. The product is usually a fine powder in which submicron particles are tightly or coarsely fixed and sintered to form a spherical shape as a whole, and can be collected using a cyclone or the like. Furthermore, if necessary, the powder produced by the spray pyrolysis reaction is heated to a desired temperature in a temperature range in which hydroxyapatite does not decompose in various atmospheres such as air, air with water vapor added, and an inert atmosphere. By heat-treating, hydroxyapatite with controlled crystallinity, specific surface area, etc. can be obtained. The calcium inorganic compound and phosphorus organic compound used in the method of the present invention include:
Ca(NO 3 ) 2・4H 2 O, (CH 3 O) 3 P, (C 2 H 5 O) 3 P,
Examples include [CH 3 (CH 2 ) 3 O] 3 P, (C 2 H 5 O) 2 POH, and the like. As the solvent, alcohols such as methanol and ethanol, or a mixed solvent of these organic solvents and water can be used. The amines added to a solution of an inorganic calcium compound and an organic phosphorus compound dissolved in these solvents are as follows:
trimethylamine, triethylamine, tri-n-
Butylamine and the like are preferably used. In order to include ammonia water in the solution, it may be added as ammonia water, or ammonia gas may be passed through the solution, resulting in the presence of ammonia water. None of these aspects are particularly specified, but
When preparing a raw material solution, a combination of raw materials must be used that allows a uniform solution state to be maintained without causing precipitation. Even when an organic solvent that is compatible with water is used alone as a solvent, depending on the combination of raw material compounds, the reaction system may mix with water and organic solvents due to residual moisture or crystal water in the raw material compounds. In some cases, the system uses a mixed solvent with a solvent, but even in this case, as long as the raw material solution can be prepared without causing precipitation, it can of course be used as a solvent in the method of the present invention. be able to. To explain the hydroxyapatite in the method of the present invention, the molar ratio of calcium and phosphorus in hydroxyapatite with a stoichiometric composition is usually
Ca/P is 5/3, but in the actual reaction in the method of the present invention, if a solution with a composition in which the molar ratio Ca/P of calcium and phosphorus in the raw material solution is in the range of 1.45 to 1.85, in any case A product whose main component is hydroxyapatite can also be obtained. Also Ca/
It has been experimentally confirmed that even when P is 1.45 or less or 1.85 or more, a product whose main component is hydroxyapatite can be obtained depending on the combination of raw materials. In this way, Ca/P
If the ratio deviates from 5/3, unreacted components and by-products may be mixed depending on the conditions, but such products may not have sufficient performance to be used depending on the use and purpose. The product thereof is naturally included in the scope of hydroxyapatite in the method of the present invention. EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto. Example 1 Tests were conducted using the following two embodiments (a) and (b) to confirm the effect obtained when aqueous ammonia was added to the raw material solution. Test (a): Ca (NO 3 ) 2・4H 2 O36.90g, approximately 150ml
of methanol, add 11.63 g of (CH 3 O) 3 P to this solution, mix and dissolve, then add 16.7 ml of aqueous ammonia (28%) and mix, then add methanol until the total volume of the liquid is 250 ml. A uniform raw material solution was prepared. Next, this raw material solution was added at a rate of 10 ml per minute and compressed air was added at a rate of 10 ml per minute.
was supplied to a two-fluid spray nozzle and sprayed into the flame of a gas burner. The raw material solution, which had become fine droplets, was instantaneously heated in the flame by evaporation and combustion of the solvent, causing the thermal reaction. Test (b): A raw material solution was prepared and spray pyrolysis was performed under the same conditions as in (a) except that no ammonia water was added to the raw material solution. As a result of X-ray diffraction analysis of the powder produced in tests (a) and (b), it was found that both powders were mainly composed of hydroxyapatite. ) The diffraction intensity of the main peak of hydroxyapatite powder obtained by the test
Compared to that of the powder obtained by (b), approximately 4
It was twice the size. In addition to the peak of hydroxyapatite, the peak of CaO was only slightly observed in the test (a), but the peak of CaO was observed in the test (b).
A peak was clearly observed. In terms of intensity ratio, the diffraction intensity of the CaO peak obtained in test (a) is approximately 1/6 of that obtained in test (b).
It had decreased to These results clearly show that the addition of ammonia water increases the production rate of hydroxyapatite and has the effect of suppressing the free production of CaO. Example 2 The powder obtained by the method of test (a) of Example 1 was heated at a rate of 5°C/min in an air atmosphere, heat-treated at 600°C for 2 hours, and heated at 5°C/min. min
It was cooled at a rate of As a result of X-ray diffraction analysis of the product obtained by this heat treatment, only the peak of hydroxyapatite, which is the result of further crystal growth, was observed, and a trace amount was observed in the produced powder in test (a) of Example 1. The included CaO peak disappeared and was no longer recognized. Examples 3 to 11 Ca( NO3 ) 2.4H2O , ( CH3O ) 3P , ( C2H5O ) 3P ,
[CH 3 (CH 2 ) 3 O] 3 P, (C 2 H 5 O) 2 POH, methanol, ethanol, ammonia water (28%), trimethylamine 30% aqueous solution, triethylamine, tri-n-butylamine, etc. as raw solution components A raw material solution was prepared according to the mixing ratio of each raw material shown in Table 1, and sprayed under the same conditions as in Example 1 except for the conditions shown in Table 1. A thermal decomposition operation was performed to synthesize hydroxyapatite. In both tests, it was confirmed that the production rate of hydroxyapatite was higher than when no ammonia water and/or amine were added to the raw material solution. Note that the number "250" in the alcohol column in Table 1 means that alcohol is added so that the total volume of the raw material solution is 250 ml.
【表】【table】
Claims (1)
機溶媒と水との混合溶媒を溶媒として用い、その
溶媒に対し可溶性のカルシウムの無機化合物及び
リンの有機化合物を加え、混合溶解して成る溶液
に、更にアンモニア水及び/または上記溶液に可
溶性のアミンを存在させた原料溶液を調製し、こ
の原料溶液を火炎中または加熱帯域中に噴霧し
て、熱分解反応させることを特徴とするヒドロキ
シアパタイトの製造方法。 2 水と相溶性の有機溶媒または水と相溶性の有
機溶媒と水との混合溶媒を溶媒として用い、その
溶媒に対し可溶性のカルシウムの無機化合物及び
リンの有機化合物とを加えて、混合溶解して成る
溶液に、更にアンモニア水及び/または上記溶液
に可溶性のアミンを存在させた原料溶液を調製
し、この原料溶液を火炎中または加熱帯域中に噴
霧して、熱分解反応によりヒドロキシアパタイト
を生成せしめ、得られたヒドロキシアパタイト粉
体を更に加熱処理することを特徴とするヒドロキ
シアパタイトの製造方法。[Claims] 1. Using a water-miscible organic solvent or a mixed solvent of a water-miscible organic solvent and water as a solvent, an inorganic compound of calcium and an organic compound of phosphorus that are soluble in the solvent are added. A raw material solution is prepared by adding ammonia water and/or an amine soluble in the above solution to the mixed and dissolved solution, and this raw material solution is sprayed into a flame or a heating zone to cause a thermal decomposition reaction. A method for producing hydroxyapatite, characterized by: 2 Using an organic solvent that is compatible with water or a mixed solvent of an organic solvent that is compatible with water and water as a solvent, add a soluble inorganic calcium compound and an organic compound of phosphorus to the solvent, and mix and dissolve. A raw material solution is prepared by adding aqueous ammonia and/or an amine soluble in the above solution to the solution consisting of A method for producing hydroxyapatite, which comprises further heating the obtained hydroxyapatite powder.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25092585A JPS62113709A (en) | 1985-11-11 | 1985-11-11 | Production of hydroxyapatite |
DE86900255T DE3587573T2 (en) | 1984-12-18 | 1985-12-18 | APATIT OF THE CALCIUM PHOSPHOR TYPE WITH NEW PROPERTIES AND PRODUCTION PROCESS. |
US06/893,324 US4711769A (en) | 1984-12-18 | 1985-12-18 | Calcium-phosphorus-apatite having novel properties and process for preparing the same |
EP86900255A EP0205622B1 (en) | 1984-12-18 | 1985-12-18 | Calcium-phosphorus type apatite having novel properties and process for its production |
PCT/JP1985/000693 WO1986003733A1 (en) | 1984-12-18 | 1985-12-18 | Calcium-phosphorus type apatite having novel properties and process for its production |
DE1986900255 DE205622T1 (en) | 1984-12-18 | 1985-12-18 | CALCIUM PHOSPHORIC APATITE WITH NEW PROPERTIES AND PRODUCTION PROCESS. |
US07/095,222 US4836994A (en) | 1984-12-18 | 1987-09-11 | Calcium-phosphorus-apatite having novel properties and process for preparing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25092585A JPS62113709A (en) | 1985-11-11 | 1985-11-11 | Production of hydroxyapatite |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62113709A JPS62113709A (en) | 1987-05-25 |
JPH0411483B2 true JPH0411483B2 (en) | 1992-02-28 |
Family
ID=17215062
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25092585A Granted JPS62113709A (en) | 1984-12-18 | 1985-11-11 | Production of hydroxyapatite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62113709A (en) |
-
1985
- 1985-11-11 JP JP25092585A patent/JPS62113709A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS62113709A (en) | 1987-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0205622B1 (en) | Calcium-phosphorus type apatite having novel properties and process for its production | |
Park et al. | Rapid synthesis of AlPO4-11 and cloverite by microwavehydrothermal processing | |
US5427754A (en) | Method for production of platelike hydroxyapatite | |
DE69407706T2 (en) | Dicalcium phosphate, process for its preparation and a carrier using this phosphate | |
JP2010100521A (en) | Single-phase carbonate-substituted hydroxyapatite composition | |
JPH0415166B2 (en) | ||
JPH0411483B2 (en) | ||
JPH0415165B2 (en) | ||
JPS6363487B2 (en) | ||
JP3376826B2 (en) | Plate-like calcium carbonate-based spherical composite and method for producing the same | |
CN111422841B (en) | Method for producing apatite carbonate | |
JPH08169715A (en) | Method for synthesizing fine compound oxide particles and fine compound oxide particles | |
US4075311A (en) | Process for preparing granulated magnesium hydroxide and magnesia of a large specific surface | |
JP2675465B2 (en) | Hydrous calcium carbonate and method for producing the same | |
DE1907913B2 (en) | Process for the production of activated carbon with a multi-core three-dimensional structure | |
JPH0629127B2 (en) | Food grade sodium tripolyphosphate that melts quickly and does not solidify | |
JPH01172221A (en) | Synthesis of starting material comprising fine oxide particle | |
JP2003277050A (en) | Method for manufacturing spherical and porous calcium carbonate with plate structure | |
JP2890551B2 (en) | Crystalline aluminophosphate and method for producing the same | |
US4029742A (en) | Process of producing Maddrell salt | |
RU2180890C1 (en) | Method for production of high-condensed ammonium polyphosphate | |
JPH0425232B2 (en) | ||
JPH08229390A (en) | Production of powder for lanthanum-manganese oxide catalyst | |
RU2058963C1 (en) | Method for production of piezoceramic materials | |
JP2003146656A (en) | Method of manufacturing spherical composite of planar calcium carbonate |