JPH0411481B2 - - Google Patents

Info

Publication number
JPH0411481B2
JPH0411481B2 JP59151920A JP15192084A JPH0411481B2 JP H0411481 B2 JPH0411481 B2 JP H0411481B2 JP 59151920 A JP59151920 A JP 59151920A JP 15192084 A JP15192084 A JP 15192084A JP H0411481 B2 JPH0411481 B2 JP H0411481B2
Authority
JP
Japan
Prior art keywords
tritium
hydrogen
gas
inert gas
desorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59151920A
Other languages
Japanese (ja)
Other versions
JPS6131301A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59151920A priority Critical patent/JPS6131301A/en
Publication of JPS6131301A publication Critical patent/JPS6131301A/en
Publication of JPH0411481B2 publication Critical patent/JPH0411481B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は水素同位体の回収方法に関するもので
あり、特に好適には不活性ガス中に含まれる重水
素あるいはトリチウムの分離、回収に適用される
ほかクリーンエネルギーとしても用いられる水素
の分離回収にも適用されるものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a method for recovering hydrogen isotopes, and is particularly preferably applied to the separation and recovery of deuterium or tritium contained in inert gas. It is also applied to the separation and recovery of hydrogen, which is also used as clean energy.

原子力施設におけるグローブボツクス中のトリ
チウムハンドリングにおいて、トリチウムは放射
性物質であるので、アルゴンやヘリウムなどの不
活性ガス雰囲気のグローブボツクス中に各種研究
設備を設置し、この中でトリチウムを取扱い、そ
れが外界に洩れ出ないように隔離の状態で操作す
る。この際、研究設備からグローブボツクスの不
活性ガス雰囲気中にトリチウムが僅かではあるが
洩れ出るので、この不活性ガスを循環してその中
のトリチウムを選択的に分離・回収することが行
なわれる。
When handling tritium in a glove box at a nuclear facility, since tritium is a radioactive substance, various research equipment is installed in a glove box with an atmosphere of inert gas such as argon or helium, and tritium is handled inside the glove box, and it is not exposed to the outside world. Operate in isolation to prevent leakage. At this time, a small amount of tritium leaks from the research equipment into the inert gas atmosphere of the glove box, so this inert gas is circulated to selectively separate and recover the tritium in it.

また、核融合炉の開発が進められ、小型、中型
の水素同位体燃料ハンドリング設備の建設および
そのテストが各国で行われあるいは行われようと
している。この場合のプラズマ排ガスは反応生成
物であるヘリウムと末反応の水素同位体つまりト
リチウムおよび重水素とからなつている。さらに
リチウムブランケツト中でトリチウムを増殖する
場合キヤリヤガスとして不活性ガスを用いて生成
トリチウムを流出させる。これらの場合にも不活
性ガス中の水素同位体を選択的に分離・回収する
必要がある。
Furthermore, the development of nuclear fusion reactors is progressing, and the construction and testing of small and medium-sized hydrogen isotope fuel handling facilities are being carried out or are about to be carried out in various countries. In this case, the plasma exhaust gas consists of helium, which is a reaction product, and hydrogen isotopes, which are terminally reacted, such as tritium and deuterium. Furthermore, when tritium is multiplied in a lithium blanket, an inert gas is used as a carrier gas to cause the generated tritium to flow out. In these cases as well, it is necessary to selectively separate and recover hydrogen isotopes in the inert gas.

本発明は、このような場合のトリチウムまたは
重水素の分離回収に適用されるが、そのほか水素
の分離回収にも適用できるものである。
The present invention is applied to the separation and recovery of tritium or deuterium in such cases, but can also be applied to the separation and recovery of hydrogen.

従来の技術 不活性ガス中のトリチウムを分離回収する方法
として、ウランベツドが使用されている。これは
常温で操作でき、トリチウム吸収後UT3となり、
それからのトリチウムの脱離は加熱により簡単に
行うことができる。しかし、この方法はウランが
国際規制物質であり、さらに核燃料物質であるた
め施設上や実験操作上種々の規制があり、その使
用は非常に不便である。
Prior Art Uranium bed is used as a method for separating and recovering tritium in an inert gas. It can be operated at room temperature and has a UT of 3 after absorbing tritium.
Desorption of tritium from it can be easily carried out by heating. However, this method is very inconvenient to use because uranium is an internationally regulated substance, and since it is a nuclear fuel material, there are various regulations regarding facilities and experimental operations.

また、これとは別に、チタンなどの金属の充填
層に高温でトリチウム含有ガスを接触させてトリ
チウムの分離・回収を行つている場合もある。こ
の場合トリチウムの脱離には金属充填層を吸収温
度を超えて高温に加熱しさらに真空ポンプでの吸
引が行われるが、操作ガスの大巾な加熱および冷
却を伴うので、使用に不便であり、かつ省エネル
ギーの観点からも好ましくない。
Separately, tritium may also be separated and recovered by bringing tritium-containing gas into contact with a filled bed of metal such as titanium at high temperature. In this case, to desorb tritium, the metal packed bed is heated to a high temperature exceeding the absorption temperature and suction is performed using a vacuum pump, but this involves extensive heating and cooling of the operating gas, making it inconvenient to use. , and is also unfavorable from the viewpoint of energy conservation.

別に、トリチウムを含有する不活性ガスに酸素
または空気を加えて白金その他の触媒に接触さ
せ、トリチウム水とし、モレキユラーシーブ等に
より脱湿浄化する方法もある。しかし、この方法
も回収トリチウム水を再びトリチウムとして再使
用をはかる時には、モレキユラーシーブ等からの
トリチウムの水の脱離およびトリチウム水からト
リチウムへの転換という操作上不利な工程を伴
う。
Alternatively, there is a method in which oxygen or air is added to an inert gas containing tritium, the mixture is brought into contact with platinum or other catalysts to form tritiated water, and then dehumidified and purified using a molecular sieve or the like. However, when this method is intended to reuse the recovered tritiated water as tritium again, it involves operationally disadvantageous steps of desorption of tritium water from a molecular sieve or the like and conversion of tritiated water to tritium.

発明が解決しようとする問題点 本発明は、不活性ガス中に含まれるトリチウム
その他の水素同位体を分離回収するに当り、効率
よく操作が簡便でありかつ省エネルギー的にも好
ましい回収方法を提供するにある。
Problems to be Solved by the Invention The present invention provides a method for separating and recovering tritium and other hydrogen isotopes contained in an inert gas, which is efficient, easy to operate, and preferable from an energy-saving perspective. It is in.

問題点を解決するための手段及び作用 本発明の回収方法は、不活性ガスと水素、重水
素およびトリチウムからなる水素同位体の単一ま
たは複数の成分とからなる混合ガスを、ジルコニ
ウムニツケルを主体とする合金の粒子充填層に0
〜100℃の温度で接触させることを特徴とする。
Means and Effects for Solving the Problems The recovery method of the present invention provides a method for recovering a mixed gas consisting of an inert gas and a single or multiple components of hydrogen isotopes consisting of hydrogen, deuterium and tritium, mainly consisting of zirconium nickel. 0 in the particle packed layer of the alloy
Characterized by contact at a temperature of ~100°C.

こゝに不活性ガスとは周期律表でのO族元素を
意味し、具体的にはヘリウムまたはアルゴンが通
常用いられる。
The inert gas here means an element in the O group of the periodic table, and specifically helium or argon is usually used.

ジルコニウムニツケルを主体とする合金として
は原子比で1:1近辺の組成のものすなわち45〜
55原子%のジルコニウムと55〜45原子%のニツケ
ルとからなる組成合金を主体とするものが好適に
用いられる。このものは常温領域を含む0〜100
℃の温度域において水素同位体を吸収して実質上
接触不活性ガス中の水素同位体を検出限界以下に
することができ、かつ水素同位体の吸収速度が極
めて大である。合金粒子充填層との接触にはガス
を該充填層を通過させる方法がとられるが、その
場合、ガスの流速を大きく保つことができる。水
素同位体の吸着が進んで破過点に達すると、水素
同位体が合金粒子充填出口ガス中に検出されるに
至る。このときの水素同位体の吸着容量も大き
く、脱離にかゝるまでの一回操作容量も大きくと
れる。
Alloys mainly composed of zirconium nickel have a composition with an atomic ratio of around 1:1, that is, 45~
An alloy mainly composed of 55 atomic % zirconium and 55 to 45 atomic % nickel is preferably used. This item ranges from 0 to 100, including the normal temperature range.
It can absorb hydrogen isotopes in the temperature range of °C and substantially reduce the hydrogen isotopes in the contact inert gas below the detection limit, and the absorption rate of hydrogen isotopes is extremely high. The gas is brought into contact with the alloy particle packed bed by passing the gas through the packed bed, and in that case, the flow rate of the gas can be kept high. When adsorption of hydrogen isotopes progresses and reaches a breakthrough point, hydrogen isotopes are detected in the outlet gas filled with alloy particles. At this time, the hydrogen isotope adsorption capacity is large, and the single operation capacity until desorption is also large.

吸着された水素同位体の脱離は500〜600℃に加
熱して真空ポンプで吸引することにより簡単に行
うことができる。
Desorption of adsorbed hydrogen isotopes can be easily performed by heating to 500-600°C and suctioning with a vacuum pump.

本発明によれば常温を含む比較的低温領域で効
率的な水素同位体の分離ができその脱離再生のた
めの加熱も比較的低温ですみ、操作が簡便であり
かつ省エネルギー面も含めて画期的実用性が具体
化された。
According to the present invention, hydrogen isotopes can be efficiently separated in a relatively low temperature range including room temperature, heating for desorption and regeneration can be done at a relatively low temperature, and the operation is simple and energy-saving. The period's practicality has been realized.

以下本発明の実施例を述べる。 Examples of the present invention will be described below.

実施例 1 50原子%Zr50原子%Niを含むZrNi合金をエレ
クトロンビーム溶解炉でつくり、これを粉砕し
て、粒径80〜120メツシユの粒度のものとした。
この合金粒子の28.95gを直径20mmφのステンレ
ス管に充填し、70℃でAr−H2(5%)のガスを
300ml/minで流した。この時の充填出口Arガス
中のH2は検知できず、破過点に到達した時の水
素吸収量はZrNiH2.8であつた。破過後、充填量
を600℃に加熱し、真空ポンプ吸引したところ、
約40分で吸収した水素を脱離し、ZrNiを再生す
ることができた。この吸収、脱離を35回くりかえ
したが、粒子の粉化はほどんど認められなかつ
た。
Example 1 A ZrNi alloy containing 50 atomic % Zr and 50 atomic % Ni was produced in an electron beam melting furnace and ground into particles with a particle size of 80 to 120 mesh.
28.95g of these alloy particles were filled into a stainless steel tube with a diameter of 20mmφ, and Ar-H 2 (5%) gas was heated at 70℃.
It was flowed at 300ml/min. At this time, H 2 in the Ar gas at the filling outlet could not be detected, and the amount of hydrogen absorbed when the breakthrough point was reached was 2.8 ZrNiH. After breakthrough, the filling amount was heated to 600℃ and sucked with a vacuum pump.
It took about 40 minutes to desorb the absorbed hydrogen and regenerate ZrNi. This absorption and desorption process was repeated 35 times, but no powdering of the particles was observed.

実施例 2 実施例1と同じZrNi合金粒子充填層にAr−D2
(10%)のガスを20℃,300ml/mmで通過させたと
ころ重水素吸収量はZrNiD2.6であつた。また脱離
は600℃で行つたが、約45分で重水素の脱離が完
了した。
Example 2 Ar-D 2 was added to the same ZrNi alloy particle packed bed as in Example 1.
When (10%) gas was passed through the ZrNiD at 20°C and 300ml/mm, the amount of deuterium absorbed was 2.6 . Desorption was carried out at 600°C, and deuterium desorption was completed in about 45 minutes.

実施例 3 実施例1と同じ要領でつくつたZrNi合金粒子
0.6gを直径3mmφの管に充填層として充填し、
He−D2(0.1%)−T2(0.1%)ガスを50℃で通過さ
せた。破過点に達すると、まずT2ガスが流出し
以後DT,D2ガスが順次流出する。この時の吸収
量はZrNi1.4T1.3であつた。水素同位体脱離は500
℃に加熱、真空(分子)ポンプ吸引して行つたが
約30分で終了した。
Example 3 ZrNi alloy particles produced in the same manner as Example 1
Fill 0.6g into a tube with a diameter of 3mmφ as a packed bed,
He- D2 (0.1%)- T2 (0.1%) gas was passed through at 50<0>C. When the breakthrough point is reached, T 2 gas flows out first, followed by DT and D 2 gases sequentially. The absorption amount at this time was ZrNi 1.4 T 1.3 . Hydrogen isotope desorption is 500
The process was completed in about 30 minutes by heating to ℃ and using a vacuum (molecular) pump.

実施例 4 50原子%Zr、50原子%Niを含むZrNi合金をエ
レクトロンビーム溶解炉でつくつた。これを粗粉
砕して2〜3mmφの粒度のものとした。この粒子
を直径50mmφのステンレス製塔に500g充填し、
30℃でHe−H2(45%)のガスを流通させた。破
過点に達して後、運転をストツプした。この時の
水素吸収量はZrNiH2.6であつた。500℃に加熱し
て真空ポンプ吸引したが約1時間で水素を脱離
し、ZrNiを再生することができた。
Example 4 A ZrNi alloy containing 50 at% Zr and 50 at% Ni was produced in an electron beam melting furnace. This was coarsely pulverized to a particle size of 2 to 3 mmφ. 500g of these particles were packed into a stainless steel column with a diameter of 50mmφ,
He-H 2 (45%) gas was passed through at 30°C. After reaching the breakthrough point, operation was stopped. At this time, the amount of hydrogen absorbed by ZrNiH was 2.6 . It was heated to 500°C and suctioned by a vacuum pump, but hydrogen was desorbed in about 1 hour and ZrNi could be regenerated.

Claims (1)

【特許請求の範囲】[Claims] 1 不活性ガスと水素、重水素およびトリチウム
からなる水素同位体の単一または複数の成分とか
らなる混合ガスを、ジルコニウムニツケルを主体
とする合金の粒子充填層に0〜100℃の温度で接
触させて水素同位体成分を吸収させ、ついで該粒
子充填層を加熱して、吸収された水素同位体成分
を脱離させることを特徴とする混合ガスから水素
同位体成分を分離、回収する方法。
1. A mixed gas consisting of an inert gas and a single or multiple components of hydrogen isotopes consisting of hydrogen, deuterium and tritium is brought into contact with a particle packed bed of an alloy mainly composed of zirconium nickel at a temperature of 0 to 100°C. A method for separating and recovering a hydrogen isotope component from a mixed gas, the method comprising: absorbing the hydrogen isotope component by absorbing the hydrogen isotope component, and then heating the packed particle bed to desorb the absorbed hydrogen isotope component.
JP59151920A 1984-07-20 1984-07-20 Recovery of hydrogen isotope Granted JPS6131301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59151920A JPS6131301A (en) 1984-07-20 1984-07-20 Recovery of hydrogen isotope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59151920A JPS6131301A (en) 1984-07-20 1984-07-20 Recovery of hydrogen isotope

Publications (2)

Publication Number Publication Date
JPS6131301A JPS6131301A (en) 1986-02-13
JPH0411481B2 true JPH0411481B2 (en) 1992-02-28

Family

ID=15529085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59151920A Granted JPS6131301A (en) 1984-07-20 1984-07-20 Recovery of hydrogen isotope

Country Status (1)

Country Link
JP (1) JPS6131301A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0240252A3 (en) * 1986-03-31 1988-09-07 Exxon Research And Engineering Company Hydrogen recovery from gas process streams using zirconium alloy hydrides
JPH03134131A (en) * 1989-10-18 1991-06-07 Japan Metals & Chem Co Ltd Alloy for handling isotope of hydrogen
JP2004011517A (en) 2002-06-06 2004-01-15 Honda Motor Co Ltd Power unit

Also Published As

Publication number Publication date
JPS6131301A (en) 1986-02-13

Similar Documents

Publication Publication Date Title
US4668424A (en) Low temperature reusable hydrogen getter
Vienna et al. Closed fuel cycle waste treatment strategy
JP2960799B2 (en) Method for recovering tritium and deuterium from their oxides
JPH0372566B2 (en)
JPS63305924A (en) Method and apparatus for purifying gas containing hydrogen isotope
CN105976872B (en) A kind of processing unit of fusion-fission hybrid reactor fusion target chamber product
JP3824838B2 (en) Noble gas recovery method
JPH0411481B2 (en)
GB2118761A (en) Separating krypton from a radioactive waste gas mixture
Fukada et al. Zr2Fe and Zr (Mn0. 5Fe0. 5) 2 particle beds for tritium purification and impurity removal in a fusion fuel cycle
Nishikawa et al. Sorption behavior of tritium to isotropic graphite
CA1192061A (en) Oxygen stabilized zirconium vanadium intermetallic compound
CN105976871B (en) A kind of processing method of fusion-fission hybrid reactor fusion target chamber product
JPH0413281B2 (en)
Tanabe et al. Recovery of hydrogen isotopes using a uranium bed
JPS6231317B2 (en)
JPS5853760B2 (en) Tritium water vapor removal method
Slansky Separation processes for noble gas fission products from the off-gas of fuel-reprocessing plants
Umadevi et al. Techniques for treatment and removal of radioactive contaminants from gaseous discharge of large capacity radiochemical plants
JPH07253487A (en) Tritium recovering device for nuclear fusion reactor
Willms et al. Use of magnesium for recovering hydrogen isotopes from tritiated water
Kulyukhin et al. Combined filter for purifying a radioactive steam-gas mixture
GB2123805A (en) Separating hydrogen isotopes
Baker et al. Tritium purification via zirconium-manganese-iron alloy getter st 909 in flow processes
Mondino et al. Retention of fission xenon in air by activated carbon at 2° C