JPH04114746A - Preparation of hydrotreating catalyst for hydrocarbon oil - Google Patents

Preparation of hydrotreating catalyst for hydrocarbon oil

Info

Publication number
JPH04114746A
JPH04114746A JP23059790A JP23059790A JPH04114746A JP H04114746 A JPH04114746 A JP H04114746A JP 23059790 A JP23059790 A JP 23059790A JP 23059790 A JP23059790 A JP 23059790A JP H04114746 A JPH04114746 A JP H04114746A
Authority
JP
Japan
Prior art keywords
molybdenum
catalyst
zeolite
cage
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23059790A
Other languages
Japanese (ja)
Other versions
JP3177656B2 (en
Inventor
Naoto Kanehara
尚登 金原
Akio Nishijima
西嶋 昭生
Toshio Sato
利夫 佐藤
Yuji Yoshimura
雄二 葭村
Hiromichi Shimada
島田 広道
Nobuyuki Matsubayashi
信行 松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Sumitomo Metal Mining Co Ltd
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Agency of Industrial Science and Technology filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP23059790A priority Critical patent/JP3177656B2/en
Publication of JPH04114746A publication Critical patent/JPH04114746A/en
Application granted granted Critical
Publication of JP3177656B2 publication Critical patent/JP3177656B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst capable of keeping stable activity over a long period of time by using zeolite having one or more metal atom in its cage and allyl mercaptan or thioglycolic acid being a sulfiding agent. CONSTITUTION:Zeolite containing one or more metal atom of the Group V1a of the Periodic Table in its cage and alumina are kneaded and molded. Subsequently, the molded one is dried to be baked and impregnated with allyl mercaptan or thioglycolic acid in an amount necessary for converting said metal atom to oxide and dried to obtain in a hydrogenating catalyst for hydrocarbon oil. As the alumina source, there are gamma-alumina or alumina hydrate. As a metal of the Group V1a of the Periodic Table, there are molybdenum or tungsten but molybdenum is proper from the aspect of catalytic activity or cost. When molybdenum is introduced into the cage of zeolite to form molybdenum disulfide or a precursor thereof in the cage, the flocculation of molybdenum disulfide during the hydrotreatment of hydrocarbon oil can be prevented and activity stable over a long period of time can be kept.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は炭化水素油の水素化処理に用いられる触媒及び
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a catalyst used for hydrotreating hydrocarbon oil and a method for producing the same.

〔従来の技術〕[Conventional technology]

炭化水素油を水素化処理する触媒としてγーアルミナに
活性金属としてモリブデン、ニツケル等の周期律表第V
Ia又は第■族の金属を担持させた物が使用されてきて
いる。この触媒は、例えば、アルミナ水利物を混練し、
成形し、焼成して得た担体に活性金属塩の水溶液を含浸
させ、乾燥し、次いで焼成することにより得られている
。このようにして得られI;触媒は、活性金属が酸化動
態であり、そのままでは活性を示さない。このため、こ
の触媒を使用するに際し、反応塔に充填した後、硫化水
素と水素を含む炭化水素油を通すいわゆる予備硫化工程
を行ない、実操業に入っている。しかし、この硫化工程
は実際にはかなり繁雑な作業であり、かつ必ずしも活性
金属全量を硫化動態に転換できる補償はない。
Gamma-alumina as a catalyst for hydrotreating hydrocarbon oil, molybdenum, nickel, etc. as active metals in Periodic Table V
Materials loaded with metals of group Ia or group Ⅰ have been used. This catalyst, for example, is produced by kneading alumina hydric material,
It is obtained by impregnating a carrier obtained by molding and firing with an aqueous solution of an active metal salt, drying, and then firing. The catalyst obtained in this way has an oxidation behavior of the active metal and does not show any activity as it is. For this reason, when using this catalyst, a so-called presulfidation step is carried out in which a hydrocarbon oil containing hydrogen sulfide and hydrogen is passed through the reactor after it has been filled into a reaction tower, and the catalyst is put into actual operation. However, this sulfiding step is actually quite a complicated operation, and there is no guarantee that the entire amount of active metal can be converted into sulfiding kinetics.

ところで、触媒の活性は使用時間と共に低下するが、そ
の主たる原因は以下のように考えられている。
Incidentally, the activity of the catalyst decreases with time of use, and the main reason for this is thought to be as follows.

■ 炭素質の析出に伴う細孔の閉塞 ■ 析出しt:炭素質による活性点の被毒■ 金属硫化
物の凝集による活性点の減少実際の操業にあっては、上
記触媒の活性の低下を補い所望の活性を維持する必要が
あり、このため使用時間と共に反応温度を上げざるを得
ないが、これは炭素質の析出を増加させるものとなり、
触媒寿命を短くするものである。
■ Blockage of pores due to precipitation of carbonaceous matter ■ Precipitation t: Poisoning of active sites by carbonaceous matter ■ Decrease in active sites due to agglomeration of metal sulfides In actual operation, a decrease in the activity of the catalyst mentioned above is To maintain the desired activity, it is necessary to increase the reaction temperature over time, but this increases the precipitation of carbonaceous substances.
This shortens the life of the catalyst.

〔発明が解決しようとする課題〕 本発明は上記事夾に基づきなされたものであり、予備硫
化工程を簡略化でき、かつ長期にわたって安定した活性
を維持しうる触媒の提供を目的とするものである。
[Problems to be Solved by the Invention] The present invention has been made based on the above-mentioned problems, and aims to provide a catalyst that can simplify the presulfurization step and maintain stable activity over a long period of time. be.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、前記課題を解決するためになされた本発明は、
ゼオライトとアルミナとからなる担体に、周期律表第V
la族金属を担持させ、次いで該金属を硫化物に転換さ
せる炭化水素油用水素化処理触媒の製造方法において、
ゼオライトをそのケージ内に1個以上の該金属原子を有
するゼオライトとし、かつ硫化剤としてアリルメルカプ
タン又はチオグリコール酸を用いて炭化水素油用水素化
処理触媒を製造することによって成功した。
Therefore, the present invention has been made to solve the above problems.
On a carrier made of zeolite and alumina,
In a method for producing a hydrotreating catalyst for hydrocarbon oil, which supports a group LA metal and then converts the metal into a sulfide,
Success was achieved by preparing a hydroprocessing catalyst for hydrocarbon oils using a zeolite having one or more of the metal atoms in its cage and using allyl mercaptan or thioglycolic acid as the sulfiding agent.

このような本発明の炭化水素油用水素化触媒の製造方法
は、ケージ内に1個以上の肩期律表第VIa族の金属原
子を含むゼオライトとアルミナとを混練し、成形し、乾
燥し、焼成し、これに該金属を金属硫化物とするのに必
要な量のアリルメルカプタン又はチオグリコール酸を含
浸させ、乾燥させることからなる。また本発明の触媒の
製造にあたっては、ケージ内に1個以上の周期律表第V
Ia族の金属原子を含むゼオライトにアルミナとゼオラ
イト中の金属を硫化物とするのに必要な量のアリルメル
カプタン又はチオグリフール酸とを混合し、混練し、成
形し、乾燥させる方法jこよってもよい。しかし、後者
の方法は触媒強度が若干低下する傾向があるので前者の
方法がより好ましい。
The method for producing a hydrogenation catalyst for hydrocarbon oil according to the present invention involves kneading zeolite and alumina containing one or more metal atoms of group VIa of the Shoulder Period Table in a cage, molding, and drying. , calcining, impregnating this with allyl mercaptan or thioglycolic acid in an amount necessary to convert the metal into a metal sulfide, and drying. In addition, in producing the catalyst of the present invention, one or more periodic table V
A method may be used in which zeolite containing Group Ia metal atoms is mixed with alumina and allyl mercaptan or thioglyfuric acid in an amount necessary to convert the metal in the zeolite into a sulfide, kneaded, molded, and dried. . However, since the latter method tends to cause a slight decrease in catalyst strength, the former method is more preferred.

そして、本発明においてはアルミナ源としてγ−アルミ
ナ、アルミナ水和物等が使用できる。
In the present invention, γ-alumina, alumina hydrate, etc. can be used as the alumina source.

また、周期律表第Via族の金属としてモリブデン、タ
ングステンが考慮されるが、触媒の活性あるいはコスト
等の点からモリブデンが適当である。そこで、以下の説
明においては周期律表第VIa族の金属としてモリブデ
ンをもって代表させている。
Further, molybdenum and tungsten are considered as metals in Group Via of the periodic table, but molybdenum is suitable from the viewpoint of catalyst activity, cost, etc. Therefore, in the following description, molybdenum will be used as a representative metal of Group VIa of the periodic table.

〔作用〕[Effect]

まず、本発明の触媒について説明する。 First, the catalyst of the present invention will be explained.

本発明のようにモリブデンをゼオライトのケージ内に導
入し、ケージ内で二硫化モリブデンあるいはその前駆体
を形成するのは炭化水素油の水素化処理中に二硫化モリ
ブデンが凝集するのを防止し、長期にわたり安定した活
性を維持させるためである。又、これを−層効果的にす
るだめには、ケージ内のモリブデンに熱履歴を受けさせ
ることなく硫化することが必要であり、そのためにはア
リルメルカプタン又はチオグリコール酸を硫化剤として
用いることが必要である。これらの硫化剤の量はモリブ
デンが水素化反応において高活性を示す硫化形態、すな
わちMoS、を形成するのに必要な量の1〜3倍とする
ことが好ましい。硫化剤の量がこれより少なければ当然
活性は低下し、多くてもさらなる活性の向上は望めず経
済性を損なうのみであるからである。
Introducing molybdenum into a zeolite cage and forming molybdenum disulfide or its precursor in the cage as in the present invention prevents molybdenum disulfide from agglomerating during hydrocarbon oil hydrogenation treatment, This is to maintain stable activity over a long period of time. In addition, in order to make this layer effective, it is necessary to sulfurize the molybdenum in the cage without subjecting it to thermal history, and for this purpose, it is necessary to use allyl mercaptan or thioglycolic acid as a sulfurizing agent. is necessary. The amount of these sulfiding agents is preferably 1 to 3 times the amount required for molybdenum to form the sulfurized form that is highly active in hydrogenation reactions, namely MoS. This is because if the amount of the sulfurizing agent is less than this, the activity will naturally decrease, and even if it is more than this, no further improvement in activity can be expected, which will only impair economic efficiency.

従来ゼオライトはその固有の細孔径に起因する形状選択
性あるいは分子篩効果、又は固体酸に起因する分解活性
により触媒として用いられているが、本発明ではゼオラ
イトは主として二硫化モリブデンの凝集を防ぐだめの仕
切として用いられる。この目的に合致するゼオライトと
しては合成あるいは市販のゼオライトで良いが、少なく
とも1個の二硫化モリブデンあるいはその前駆体が入る
ケージをもち、かつケージ内の二硫化モリブデンあるい
はその前駆体を保持するための水酸基を持っていること
が望ましく例えばNa−H−Y型ゼオライトが好ましい
Conventionally, zeolite has been used as a catalyst due to its shape selectivity or molecular sieve effect due to its unique pore size, or decomposition activity due to solid acid. Used as a partition. The zeolite that meets this purpose may be a synthetic or commercially available zeolite, but it is a zeolite that has at least one cage containing molybdenum disulfide or its precursor, and that holds the molybdenum disulfide or its precursor within the cage. It is desirable that the zeolite has a hydroxyl group, and for example, Na-H-Y type zeolite is preferred.

二硫化モリブデンが凝集していると触媒活性は低下する
が、この凝集の程度は広域X線吸収微細構造(以下EX
AFSと示す)を測定し、その結果をフーリエ変換し、
得たモリブデン回りの動径分布関数より最近接モリブデ
ンの配位数を求めることにより評価することができる。
If molybdenum disulfide aggregates, the catalytic activity decreases, but the extent of this aggregation is determined by the extended X-ray absorption fine structure (hereinafter referred to as EX).
AFS) is measured, the result is Fourier transformed,
Evaluation can be made by determining the coordination number of the nearest molybdenum from the obtained radial distribution function around molybdenum.

この配位数が小さければ小さいほど二硫化モリブデンが
分散しており、活性が高いことを示している。
The smaller the coordination number, the more dispersed molybdenum disulfide is, indicating that the activity is higher.

なお、EXAFSによる局所構造解析の原理は、[ぶん
せきJ 、 1981.4. p221〜228に説明
されている。本発明の方法で得られる触媒は500時間
使用しても、モリブデン回りの動径分布関数から求めら
れる最近接モリブデンの配位数が0.25以下、高くて
も0.3以下であり、500時間の使用時間で1以上に
高まる従来方法で得られる触媒に比して顕著な差異が認
められる。
The principle of local structure analysis using EXAFS is described in [Bunseki J, 1981.4. It is explained on pages 221-228. Even if the catalyst obtained by the method of the present invention is used for 500 hours, the coordination number of nearest molybdenum determined from the radial distribution function around molybdenum is 0.25 or less, at most 0.3 or less, and 500 A significant difference is observed compared to the catalyst obtained by conventional methods, which increases in usage time by more than 1 hour.

次に本発明の触媒の製造方法について詳細に説明する。Next, the method for producing the catalyst of the present invention will be explained in detail.

ゼオライトのケージ内にモリブデンを導入する方法は特
に限定するものではなく、例えばMo(Co)、等の化
合物を用いたP、 Ga1lezotらの方法を用いれ
ば良い。このようにして得たケージ内に少なくとも1個
以上のモリブデン原子を含むゼオライトを用いて触媒を
調整するには、該ゼオライトに所望量のアルミナを混合
し、混練し、成形し、乾燥し、焼成して触媒担体を得、
この担体に、担体中のMOをMoS、とするのに必要な
量の1〜3倍量のアリルメルカプタン又はチオグリコー
ル酸を含浸させ、100℃未満で乾燥させる方法がある
。また、前記ケージ内に1個以上のモリブデン原子を含
むゼオライトに所望量のアルミナとゼオライト中のMo
をMoS2とするのに必要な量の1〜3倍量のアリルメ
ルカプタン又はチオグリコール酸とを混合し、混練し、
成形し、10O°C未満で乾燥させてもよい。しかし、
後者の方法で得られる触媒はその強度が先の方法で得ら
れるものの強度より劣る傾向がある。
The method of introducing molybdenum into the zeolite cage is not particularly limited, and for example, the method of P. Gallezot et al. using a compound such as Mo(Co) may be used. To prepare a catalyst using the zeolite thus obtained containing at least one molybdenum atom in the cage, the zeolite is mixed with a desired amount of alumina, kneaded, shaped, dried, and calcined. to obtain a catalyst carrier,
There is a method in which this carrier is impregnated with allyl mercaptan or thioglycolic acid in an amount of 1 to 3 times the amount required to convert the MO in the carrier to MoS, and then dried at less than 100°C. In addition, a desired amount of alumina and Mo in the zeolite are added to the zeolite containing one or more molybdenum atoms in the cage.
is mixed with allyl mercaptan or thioglycolic acid in an amount of 1 to 3 times the amount required to make MoS2, and kneaded,
It may be shaped and dried below 100°C. but,
Catalysts obtained by the latter method tend to have lower strength than those obtained by the former method.

何れの方法においても、担体中のゼオライトが少なくな
ると触媒中のMO量が減少し、活性が低下するためゼオ
ライトの量は10重量%以上とすることが必要である。
In either method, when the amount of zeolite in the carrier decreases, the amount of MO in the catalyst decreases and the activity decreases, so the amount of zeolite must be 10% by weight or more.

一方、ゼオライトの量があまりに多くなると担体強度が
低下する。このためゼオライトの量は90重量%以下と
することが必要である。これはアルミナが成形体の強度
を維持する役割を果しているからである。
On the other hand, if the amount of zeolite is too large, the strength of the carrier will decrease. Therefore, the amount of zeolite needs to be 90% by weight or less. This is because alumina plays a role in maintaining the strength of the molded body.

また、硫化剤として使用できる硫黄化合物としては各種
メルカプタン類が考えられるが、分子が大きすぎるとゼ
オライトのケージ内に侵入することができないのでアリ
ルメルカプタンやチオグリコール酸を用いる必要がある
Furthermore, various mercaptans can be considered as sulfur compounds that can be used as sulfurizing agents, but if the molecules are too large, they cannot penetrate into the zeolite cage, so it is necessary to use allyl mercaptan or thioglycolic acid.

本発明の方法では、硫化剤を担持させた後、あるいは混
合させた後、100℃以下で乾燥するが、これはMoと
硫化剤とを反応させ、MoS2の前駆体である有機モリ
ブデン化合物を形成するためである。
In the method of the present invention, after supporting or mixing the sulfurizing agent, drying is carried out at 100°C or lower, which causes Mo to react with the sulfurizing agent to form an organic molybdenum compound that is a precursor of MoS2. This is to do so.

このようにして得られた本発明の触媒では、モリブデン
は有機モリブデン化合物となっているため使用前の酸化
が防止でき、かつ炭化水素油の処理のための昇温過程で
簡単に有機モリブデン化合物から二硫化モリブデンが形
成できるため従来のような予備硫化工程は不要とされる
In the catalyst of the present invention obtained in this manner, molybdenum is an organic molybdenum compound, so oxidation can be prevented before use, and the molybdenum can be easily separated from the organic molybdenum compound during the heating process for treating hydrocarbon oil. Since molybdenum disulfide can be formed, the conventional pre-sulfurization process is not necessary.

また、比較的低温で二硫化モリブデンが形成されるため
、形成時にケージ内のモリブデンがケージ外へ移動して
凝集することを防止することができる。
Furthermore, since molybdenum disulfide is formed at a relatively low temperature, molybdenum in the cage can be prevented from moving outside the cage and agglomerating during formation.

以下実施例を用いてさらに詳説する。This will be explained in more detail below using examples.

(実施例) モリブデンカルボニル(モリブデン含有量36.4重量
%) 100gをn−ヘキサ7 10ffに溶解し、得
た溶液に市販のNa−H−Y型ゼオライト(東ソー株式
会社製) 1009を加え、室温で1時間撹拌し、得た
ゼオライトを市販の真空乾燥機を用いて室温で1.5時
間減圧乾燥し、次いで50°Cで1時間減圧加熱し、そ
の後室温まで放冷した。得たこのゼオライト 100g
と酸化物換算で1009のアルミナ水和物とを混練し、
押出し成形し、120℃で10時間乾燥した後、500
℃で2時間焼成して担体Aを得た。次にアリルメルカプ
タンを含む水溶液を担体Aに含浸させ室温で乾燥させ触
媒Aを得た。この触媒Aは本発明のものである。
(Example) 100g of molybdenum carbonyl (molybdenum content 36.4% by weight) was dissolved in 10ff of n-hexane7, and commercially available Na-H-Y type zeolite (manufactured by Tosoh Corporation) 1009 was added to the obtained solution. After stirring at room temperature for 1 hour, the obtained zeolite was dried under reduced pressure at room temperature for 1.5 hours using a commercially available vacuum dryer, then heated under reduced pressure at 50° C. for 1 hour, and then allowed to cool to room temperature. This zeolite I got 100g
and an alumina hydrate of 1009 in terms of oxide,
After extrusion molding and drying at 120°C for 10 hours,
Carrier A was obtained by firing at ℃ for 2 hours. Next, carrier A was impregnated with an aqueous solution containing allyl mercaptan and dried at room temperature to obtain catalyst A. This catalyst A is of the present invention.

次に、前記と同じHa−H−Y型ゼオライト 65gと
酸化物換算で100gのアルミナ水和物とを混練し、押
出し成形し、120℃で10時間乾燥した後、500℃
で2時間焼成して担体Bを得た。この担体B1659に
三酸化モリブデン52.59とアンモニアと水を用いて
調整した1 00mQの液を含浸させ、120℃で10
時間乾燥した後、500℃で2時間焼成して触媒Bを得
た。この触媒Bは従来品に相当する。
Next, 65 g of the same Ha-H-Y type zeolite as above and 100 g of alumina hydrate in terms of oxide were kneaded, extruded, dried at 120°C for 10 hours, and then heated to 500°C.
After baking for 2 hours, a carrier B was obtained. This carrier B1659 was impregnated with 100 mQ of a solution prepared using 52.59 molybdenum trioxide, ammonia, and water, and then heated at 120°C for 10 min.
After drying for an hour, it was calcined at 500°C for 2 hours to obtain catalyst B. This catalyst B corresponds to a conventional product.

触媒Bについては第1表の条件で予備硫化を行い、触媒
Aについてはそのままで第2表に示す性状のクェート常
圧軽油を用い、第3表の条件で水素化脱硫を行なった。
Catalyst B was presulfurized under the conditions shown in Table 1, and catalyst A was hydrodesulfurized using Kuwait atmospheric gas oil having the properties shown in Table 2 under the conditions shown in Table 3.

第  2  表 処理油は8時間毎にサンプリングし、16時時間上50
0時間目のサンプルの硫黄含有量を測定し、脱硫率を求
めた。この結果を第4表に示した。
2nd Table Treatment oil is sampled every 8 hours, and 50 hours above 16:00.
The sulfur content of the sample at 0 hours was measured to determine the desulfurization rate. The results are shown in Table 4.

次いで、使用前(硫化直後)の触媒Aと触媒Bと500
時間使用後のそれらとを用いて高エネルギー研究所のE
XAFS実験施設でEXAFS測定を行い、コンピュー
ターを用いて、得られた吸収係数を7−リエ変換してM
o周りの動径分布関数を求め、Mo−5及びMo−Mo
の平均配位数を求めた。
Next, catalyst A and catalyst B before use (immediately after sulfurization) and 500
E of high energy laboratory with them after time use
EXAFS measurements are performed at the XAFS experimental facility, and the obtained absorption coefficients are 7-lier transformed using a computer to calculate M
Find the radial distribution function around o, Mo-5 and Mo-Mo
The average coordination number was calculated.

この結果を第5表に示した。The results are shown in Table 5.

中にMoの凝集はほとんど起きず活性の低下が抑えられ
ているにもかかわらず、触媒Bでは触媒Aよりモリブデ
ンの凝集が激しく、その結果活性の低下も大、きくなっ
ていることが分かる。
It can be seen that although almost no agglomeration of Mo occurred in the catalyst and the decrease in activity was suppressed, the aggregation of molybdenum was more severe in catalyst B than in catalyst A, and as a result, the decrease in activity was greater.

〔発明の効果〕〔Effect of the invention〕

本発明の方法で叛造された本発明の触媒では、ゼオライ
トのケージ内にMoS、が固定化されているために炭化
水素油の水素化処理において長期間高活性を維持するこ
とが可能であり、かつM。
In the catalyst of the present invention fabricated by the method of the present invention, MoS is immobilized within the zeolite cage, so it is possible to maintain high activity for a long period of time in the hydrogenation treatment of hydrocarbon oil. , and M.

をMoS 2の前駆体である有機モリブデン化合物とし
て担持させているために従来の予備硫化工程は不要とさ
れる。
Since MoS 2 is supported as an organic molybdenum compound which is a precursor of MoS 2 , the conventional pre-sulfurization step is not necessary.

特許出願人 工業技術院長 杉浦  賛同  住友金属
鉱山株式会社 〔注〕 −は検出不能 第4表及び第5表より触媒Aでは水素化処理住友金属鉱
山株式会社の代理人 −j、ご 外2名−
Patent Applicant: Director of the Agency of Industrial Science and Technology, Sugiura, Approved by: Sumitomo Metal Mining Co., Ltd. [Note] - is undetectable From Tables 4 and 5, for catalyst A, representatives of Hydroprocessing Sumitomo Metal Mining Co., Ltd. -j, and 2 other people -

Claims (1)

【特許請求の範囲】 1)ゼオライトとアルミナとからなる担体に、周期律表
第VIa族金属を担持させ、次いで該金属を硫化物に転換
させる炭化水素油用水素化処理触媒の製造方法において
、ゼオライトをそのケージ内に1個以上の該金属原子を
有するゼオライトとし、かつ硫化剤としてアリルメルカ
プタン又はチオグリコール酸を用いることを特徴とする
炭化水素油用水素化処理触媒の製造方法。 2)ケージ内に1個以上のモリブデン原子を含むゼオラ
イト10〜90重量%と、アルミナ90〜10重量部と
を混練し、成形し、乾燥し、焼成し、これに、モリブデ
ンを二硫化モリブデンとするのに必要な量の1〜3倍量
のアリルメルカプタン又はチオグリコール酸を含浸させ
、100℃未満で乾燥させることを特徴とする前記請求
項第1項記載の触媒の製造方法。 3)ケージ内に1個以上のモリブデン原子を含むゼオラ
イト10〜90重量%と、アルミナ90〜10重量%と
、モリブデンを二硫化モリブデンとするのに必要な量の
1〜3倍量のアリルメルカプタン又はチオグリコール酸
とを混練し、成形し次いで100℃未満で乾燥させるこ
とを特徴とする前記請求項第1項記載の触媒の製造方法
[Claims] 1) A method for producing a hydrotreating catalyst for hydrocarbon oil, in which a metal of Group VIa of the periodic table is supported on a carrier made of zeolite and alumina, and then the metal is converted into a sulfide, A method for producing a hydrotreating catalyst for hydrocarbon oil, characterized in that the zeolite is a zeolite having one or more metal atoms in its cage, and allyl mercaptan or thioglycolic acid is used as a sulfiding agent. 2) 10 to 90% by weight of zeolite containing one or more molybdenum atoms in the cage and 90 to 10 parts by weight of alumina are kneaded, shaped, dried, and calcined, and then molybdenum is mixed with molybdenum disulfide. 2. The method for producing a catalyst according to claim 1, characterized in that the catalyst is impregnated with allyl mercaptan or thioglycolic acid in an amount of 1 to 3 times the amount required for the catalyst, and dried at less than 100°C. 3) 10 to 90% by weight of zeolite containing one or more molybdenum atoms in the cage, 90 to 10% by weight of alumina, and 1 to 3 times the amount of allyl mercaptan required to convert molybdenum to molybdenum disulfide. 2. The method for producing a catalyst according to claim 1, wherein the catalyst is kneaded with thioglycolic acid, molded, and dried at less than 100°C.
JP23059790A 1990-09-03 1990-09-03 Method for producing hydrotreating catalyst for hydrocarbon oil Expired - Fee Related JP3177656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23059790A JP3177656B2 (en) 1990-09-03 1990-09-03 Method for producing hydrotreating catalyst for hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23059790A JP3177656B2 (en) 1990-09-03 1990-09-03 Method for producing hydrotreating catalyst for hydrocarbon oil

Publications (2)

Publication Number Publication Date
JPH04114746A true JPH04114746A (en) 1992-04-15
JP3177656B2 JP3177656B2 (en) 2001-06-18

Family

ID=16910241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23059790A Expired - Fee Related JP3177656B2 (en) 1990-09-03 1990-09-03 Method for producing hydrotreating catalyst for hydrocarbon oil

Country Status (1)

Country Link
JP (1) JP3177656B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114950492A (en) * 2022-05-31 2022-08-30 安徽大学 1, 2-diamino anthraquinone-molybdenum disulfide composite antibacterial material for killing bacteria by photoelectrocatalysis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114950492A (en) * 2022-05-31 2022-08-30 安徽大学 1, 2-diamino anthraquinone-molybdenum disulfide composite antibacterial material for killing bacteria by photoelectrocatalysis
CN114950492B (en) * 2022-05-31 2023-09-08 安徽大学 1, 2-diaminoanthraquinone-molybdenum disulfide composite antibacterial material for photoelectrocatalysis to kill bacteria

Also Published As

Publication number Publication date
JP3177656B2 (en) 2001-06-18

Similar Documents

Publication Publication Date Title
JP4931268B2 (en) Method for sulfiding hydrotreating catalyst
JP3802106B2 (en) Hydrocarbon oil hydrotreating catalyst, production method thereof and activation method thereof
US5017535A (en) Process for the preparation of a presulfided and sulfided catalyst
US6288006B1 (en) Method for pre-sulphurization of catalysts
US4981828A (en) Catalyst for hydrotreatment of hydrocarbons and method for production thereof
KR20070005727A (en) Hydrotreating catalyst containing a group v metal
JPH01254255A (en) Preparatory sulfidation of catalyst for treating hydrocarbon
CN110773181A (en) Hydrogenation activity protection catalyst and preparation and application thereof
JPH03217235A (en) Preparation and use of sulfidized catalyst
CN110773209A (en) Heavy oil hydrogenation deasphaltened catalyst and preparation and application thereof
JPS6197036A (en) Production of hydrotreating catalyst supported by silica andthus obtained catalyst
US5139990A (en) Process for the preparation of a resulfided catalyst
AU617498B2 (en) Process for the preparation of a presulphided catalyst; process for the preparation of a sulphided catalyst and use of said catalyst
Bezverkhyy et al. Highly active (Co) MoS2/Al2O3 hydrodesulfurization catalysts prepared in aqueous solution
JPH04114746A (en) Preparation of hydrotreating catalyst for hydrocarbon oil
CN110773183A (en) Heavy oil hydrogenation deasphaltened catalyst and preparation and application thereof
JP2920255B2 (en) Hydrodesulfurization catalyst
JP2575168B2 (en) Catalyst for hydrotreating hydrocarbons and method for producing the same
JP2004528962A (en) Method of sulfurizing hydrotreating catalyst
CN110773187A (en) Heavy oil hydrogenation deasphaltened catalyst and preparation and application thereof
CN110773189A (en) Hydrogenation activity protection catalyst and preparation and application thereof
CN110773182A (en) Hydrogenation activity protection catalyst and preparation and application thereof
CN109433219B (en) Organic sulfur hydrogenation catalyst, preparation method and application thereof
WO2012156294A1 (en) Hydrotreating catalyst comprising a group viii and/or group vib metal silicide compound
JP3813201B2 (en) Hydrocarbon oil hydrotreating catalyst and activation method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees