JPH04114483A - Forming method of chalcopyrite thin film and thin film solar cell - Google Patents

Forming method of chalcopyrite thin film and thin film solar cell

Info

Publication number
JPH04114483A
JPH04114483A JP2234284A JP23428490A JPH04114483A JP H04114483 A JPH04114483 A JP H04114483A JP 2234284 A JP2234284 A JP 2234284A JP 23428490 A JP23428490 A JP 23428490A JP H04114483 A JPH04114483 A JP H04114483A
Authority
JP
Japan
Prior art keywords
thin film
chalcopyrite
forming
elements
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2234284A
Other languages
Japanese (ja)
Inventor
Masaharu Terauchi
正治 寺内
Takashi Hirao
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2234284A priority Critical patent/JPH04114483A/en
Publication of JPH04114483A publication Critical patent/JPH04114483A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To improve a thin film solar cell in quality by a method wherein a chalcopyrite thin film is formed through a multi-source evaporation method making an alloy in a stoichiometric composition ratio equal to that of the component elements of chalcopyrite compound excluding chalcogen elements, chalcogen elements, and one of the component elements of chalcopyrite com pound excluding chalcogen elements serve as evaporation sources. CONSTITUTION:A ternary evaporation source, an alloy evaporation source 2 composed of Cu and In in the ratio 1: 1 as the component elements of chalcopyrite compound CuInSe2, an Se evaporation source 3 as a chalcogen element, and a Cu evaporation source 4, is provided inside a vacuum vessel 1. A substrate 5 is previously heated to a temperature of 400 deg.C before evaporation. Then, a simultaneous evaporation is carried out using the evaporation sources 2, 3, and 4. Evaporation conditions are so set that an arriving amount of chalcogen elements at the substrate 5 is more than that of the component elements of chalcopyrite compound excluding chalcogen elements comparing with the stoichiometric ratio and the excessive chalcogen elements to the stoichiometric ratio on the substrate 5 is evaporated again.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、カルコパイライト薄膜の形成方法及び薄膜太
陽に間するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for forming chalcopyrite thin films and to thin film solar cells.

従来の技術 従来、カルコパイライト薄膜を非晶質基板あるいは非晶
質薄膜あるいは金属薄膜上に形成する場合は、カルコパ
イライト化合物そのものを蒸発源として蒸着させる真空
蒸着法、カルコパイライト化合物そのものをターゲット
として用いるスパッタリング法、カルコパイライト化合
物の成分元素を別々に蒸着させる多元の真空蒸着法、カ
ルコパイライト化合物の成分元素を別々にターゲットと
して用いるマルチスパッタリング法、あるいは構成要素
金属の積層薄膜、例えばCu−In薄膜のカルコゲナイ
ト化を行う法等の種々の方法によって形成している。
Conventional technology Conventionally, when forming a chalcopyrite thin film on an amorphous substrate, an amorphous thin film, or a metal thin film, the vacuum evaporation method uses the chalcopyrite compound itself as an evaporation source, and the chalcopyrite compound itself is used as a target. A sputtering method, a multi-source vacuum evaporation method in which the component elements of the chalcopyrite compound are separately deposited, a multi-sputtering method in which the component elements of the chalcopyrite compound are separately used as targets, or a laminated thin film of component metals, such as a Cu-In thin film. It is formed by various methods such as chalcogenization.

発明が解決しようとする課題 しかし、成分元素の組成制御という点では、前記の従来
方法は、全て不都合が伴う。例えば、カルコパイライト
化合物そのものを蒸発源、あるいはターゲットとして用
いる場合は、カルコゲナイト元素の離脱による組成ずれ
が起こる。成分元素を別々に蒸着、スパッタする場合は
、個々の元素の蒸着速度の厳密な制御が難しいといった
具合である。
Problems to be Solved by the Invention However, all of the above-mentioned conventional methods have disadvantages in terms of controlling the composition of component elements. For example, when a chalcopyrite compound itself is used as an evaporation source or target, a composition shift occurs due to the separation of chalcogenite elements. When component elements are deposited and sputtered separately, it is difficult to strictly control the deposition rate of each element.

また、構成要素金属の積層薄膜をカルコゲナイト化する
場合にも、各積層薄膜の量を所望の組成比にすることが
困難である。
Furthermore, when forming laminated thin films of component metals into chalcogenite, it is difficult to adjust the amount of each laminated thin film to a desired composition ratio.

このように、従来の方法では、組成を厳密に制御して、
カルコパイライト薄膜の形成を行うことが困難である。
In this way, conventional methods strictly control the composition and
It is difficult to form a chalcopyrite thin film.

このために、成分元素の、意図しない化学量論比からの
ずれが生じ、過剰成分の析出、カルコパイライト薄膜以
外の異相化合物の出現等、電気特性に悪影響を与える現
象が生ずる。
For this reason, an unintended deviation of the component elements from the stoichiometric ratio occurs, and phenomena that adversely affect the electrical properties occur, such as the precipitation of excessive components and the appearance of different phase compounds other than the chalcopyrite thin film.

また、−船釣に、カルコパイライト薄膜は、成分元素の
組成比を化学量論比からずらすことで、電気的性質、例
えば、導電率、伝導型を制御することができる。しかし
、前記のように、組成制御が困難であるため、例えば、
伝導型の制御では、必要以上に組成比を変えるために、
同じく過剰成分の析出、カルコパイライト薄膜以外の異
相化合物の出現等、電気特性に悪影響を与える現象が生
ずる。このために、太陽電池等のデバイス特性を劣化さ
せていた。
In addition, for boat fishing, the electrical properties of the chalcopyrite thin film, such as electrical conductivity and conductivity type, can be controlled by shifting the composition ratio of the component elements from the stoichiometric ratio. However, as mentioned above, it is difficult to control the composition, so for example,
In conduction type control, in order to change the composition ratio more than necessary,
Similarly, phenomena that adversely affect electrical properties occur, such as the precipitation of excessive components and the appearance of different phase compounds other than the chalcopyrite thin film. For this reason, the characteristics of devices such as solar cells have been degraded.

本発明は、このような従来の方法の課題を解決するもの
であって、品質のよいカルコパイライト薄膜の形成方法
及び薄膜太陽を提供することを目的とするものである。
The present invention solves the problems of the conventional methods, and aims to provide a method for forming a high-quality chalcopyrite thin film and a thin film solar panel.

課題を解決するための手段 請求項1の本発明は、カルコゲナイト元素を除くカルコ
パイライト化合物の成分元素の化学量論比の合金と、カ
ルコゲナイト元素と、カルコゲナイト元素を除くカルコ
パイライト化合物の成分元素の1つ、あるいは複数の元
素を蒸発源とする、多元蒸着法でカルコパイライト薄膜
を形成することを特徴とするカルコパイライト薄膜の形
成方法である。
Means for Solving the Problems The present invention as claimed in claim 1 provides an alloy having a stoichiometric ratio of component elements of a chalcopyrite compound excluding the chalcogenite element, and an alloy having a stoichiometric ratio of the component elements of the chalcopyrite compound excluding the chalcogenite element. This method of forming a chalcopyrite thin film is characterized in that the chalcopyrite thin film is formed by a multi-component evaporation method using one or more elements as evaporation sources.

請求項2の本発明は、請求項1の本発明において、形成
時に基板を加熱する工程を含むことを特徴とするカルコ
パイライト薄膜の形成方法である。
The present invention according to claim 2 is a method for forming a chalcopyrite thin film, which is characterized in that the method according to the present invention according to claim 1 includes a step of heating the substrate during formation.

請求項3の本発明は、請求項2の本発明において、形成
時の基板温度を、化学量論比に対して、過剰のカルコゲ
ナイト元素が再蒸発する温度以上の温度とすることを特
徴とするカルコパイライト薄膜の形成方法である。
The present invention according to claim 3 is characterized in that, in the present invention according to claim 2, the substrate temperature at the time of formation is set to a temperature higher than the temperature at which excess chalcogenite element reevaporates with respect to the stoichiometric ratio. This is a method for forming a chalcopyrite thin film.

請求項4の本発明は、請求項3の本発明において、蒸着
時に、カルコゲナイト元素を除くカルコパイライト化合
物の成分元素の到達量に対して、カルコゲナイト元素の
基板への到達量を化学量論比以上にすることを特徴とす
るカルコパイライト薄膜の形成方法である。
The present invention according to claim 4 is the present invention according to claim 3, in which, during vapor deposition, the amount of the chalcogenite element reaching the substrate is set at a stoichiometric ratio or more with respect to the amount of component elements of the chalcopyrite compound excluding the chalcogenite element. This is a method of forming a chalcopyrite thin film characterized by the following steps.

請求項5の本発明は、請求項2又は40本発明において
、蒸着時に、蒸着源の1つであるカルコゲナイト元素を
除くカルコパイライト化合物の成分元素の合金を、全て
蒸発させることを特徴とするカルコパイライト薄膜の形
成方法である。
The present invention according to claim 5 is the chalcopyrite compound according to claim 2 or 40, characterized in that during vapor deposition, all alloys of component elements of the chalcopyrite compound except for chalcogenite element, which is one of the vapor deposition sources, are evaporated. This is a method for forming a pyrite thin film.

請求項6の本発明は、請求項1〜5のいずれかの本発明
において、蒸着法が抵抗加熱蒸着法であることを特徴と
するカルコパイライト薄膜の形成方法である。
A sixth aspect of the present invention is a method for forming a chalcopyrite thin film according to any one of the first to fifth aspects, characterized in that the vapor deposition method is a resistance heating vapor deposition method.

請求項7の本発明は、請求項1〜6のいずれかの本発明
において、カルコパイライト薄膜が、CuInSe2、
 CuInS2、あるいは、それらの固溶体であること
を特徴するカルコパイライト薄膜の形成方法である。
The present invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein the chalcopyrite thin film is CuInSe2, CuInSe2,
This is a method for forming a chalcopyrite thin film characterized by CuInS2 or a solid solution thereof.

請求項8の本発明は、請求項1〜7のいずれかのカルコ
パイライト薄膜の形成方法によって得られたカルコパイ
ライト薄膜を用いることを特徴とする薄膜太陽電池であ
る。
The present invention according to claim 8 is a thin film solar cell characterized by using a chalcopyrite thin film obtained by the method for forming a chalcopyrite thin film according to any one of claims 1 to 7.

作用 本発明においては、カルコゲナイト元素を除くカルコパ
イライト化合物の成分元素の1つ、あるいは複数の元素
は、カルコパイライト化合物の成分元素というより、む
しろ、カルコパイライト化合物にドーピングされる不純
物として扱われる。
Function In the present invention, one or more of the component elements of the chalcopyrite compound other than the chalcogenite element is treated as an impurity doped into the chalcopyrite compound rather than a component element of the chalcopyrite compound.

このようにして、組成を厳密に制御して、カルコパイラ
イト薄膜の形成を行うことが可能となり、所望の電気特
性を有するカルコパイライト薄膜の形成を行うことがで
き、過剰成分の析出、カルコパイライト薄膜以外の異相
化合物の出現等、電気特性に悪影響を与える現象が起こ
らず、太陽電池等のデバイス特性が改善される。
In this way, it is possible to form a chalcopyrite thin film by strictly controlling the composition, and it is possible to form a chalcopyrite thin film with desired electrical properties, preventing the precipitation of excess components and preventing the formation of a chalcopyrite thin film. Phenomena that adversely affect electrical properties, such as the appearance of other out-of-phase compounds, do not occur, and device properties such as solar cells are improved.

実施例 以下、本発明の実施例について図面を参照して説明する
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例にかかるカルコパイライト薄
膜の形成方法を説明するための模式的断面図である。
FIG. 1 is a schematic cross-sectional view for explaining a method of forming a chalcopyrite thin film according to an embodiment of the present invention.

第1図に示すように、内部に、カルコパイライト化合物
Co1nSe2の成分元素であるCuとInの、原子比
が1対1の合金の蒸着R2と、カルコゲナイト元素であ
るSeの蒸発源3と、Cuの蒸発源4の、3元の蒸着源
を備えた真空容器1を用意する。
As shown in FIG. 1, inside, an evaporated alloy R2 of Cu and In, which are component elements of the chalcopyrite compound Co1nSe2, in an atomic ratio of 1:1, an evaporation source 3 of Se, which is a chalcogenite element, and a Cu A vacuum vessel 1 equipped with a ternary evaporation source 4 is prepared.

そして、蒸着前に、あらかじめ基板5を400℃に加熱
しておく。その後、蒸発源2、蒸発源3、蒸発源4て同
時蒸着を行なう。この際、蒸発源2は温度を1300℃
として、積めた合金が全て蒸発するまで蒸着を行なった
。また、この間、蒸発源3、蒸発源4は、温度をそれぞ
れ350℃、1100℃として、Se、Cuの蒸着を続
けた。これらの蒸着条件は、カルコゲナイト元素を除く
カルコパイライト化合物の成分元素の到達量に対して、
カルコゲナイト元素の基板5への到達量が化学量論比以
上になり、基板5上で、化学量論比に対して、過剰のカ
ルコゲナイト元素が再蒸発するように設定した。
Then, before vapor deposition, the substrate 5 is heated to 400° C. in advance. Thereafter, simultaneous vapor deposition is performed using evaporation source 2, evaporation source 3, and evaporation source 4. At this time, the evaporation source 2 has a temperature of 1300°C.
The deposition was continued until all of the deposited alloy was evaporated. During this time, the evaporation sources 3 and 4 continued to evaporate Se and Cu at temperatures of 350° C. and 1100° C., respectively. These deposition conditions are based on the amount of component elements of the chalcopyrite compound excluding chalcogenite elements.
The setting was made such that the amount of chalcogenite element reaching the substrate 5 was greater than the stoichiometric ratio, and the chalcogenite element in excess of the stoichiometric ratio was reevaporated on the substrate 5.

表1は上記の方法で形成したCuInSe2の組成比並
びに導電率、伝導型である。
Table 1 shows the composition ratio, conductivity, and conductivity type of CuInSe2 formed by the above method.

表1 この表から明かなように、形成した膜は、はぼ化学量論
比のCuInSe2薄膜であるが、蒸発源4から不純物
として膜に導入した微小量のCuのために、低抵抗p型
となフている。
Table 1 As is clear from this table, the formed film is a nearly stoichiometric CuInSe2 thin film, but due to the minute amount of Cu introduced into the film as an impurity from the evaporation source 4, it has a low resistance p-type. Tonafutaru.

第2図は上記の形成方法で形成したCuInSe2の薄
膜を用いた太陽電池の1例を示す断面図である。第2図
に示したように、金属薄膜6上の所定領域に、本発明の
方法により、組成比が、Cu/In>1のp型のCuI
nSe2薄膜7を形成する。その上にペテロp−n接合
を形成するためにCdS薄膜8を形成する。その上の所
定領域に、上部電極9を形成する。このようにして、形
成したCuInSe2には過剰成分の析出、薄膜以外の
異相化合物の出現等、電気特性に悪影響を与える現象が
ないために、太陽電池の高効率化が図れる。
FIG. 2 is a cross-sectional view showing an example of a solar cell using a CuInSe2 thin film formed by the above-described forming method. As shown in FIG. 2, p-type CuI with a composition ratio of Cu/In>1 is applied to a predetermined region on the metal thin film 6 by the method of the present invention.
An nSe2 thin film 7 is formed. A CdS thin film 8 is formed thereon to form a Peter p-n junction. An upper electrode 9 is formed in a predetermined region thereon. In this way, the formed CuInSe2 is free from phenomena that adversely affect electrical properties, such as precipitation of excessive components and appearance of different phase compounds other than thin films, so that higher efficiency of the solar cell can be achieved.

なお、蒸発源4から蒸発させる元素は、Cuに限らず、
カルコゲナイト元素を除くカルコパイライト化合物の成
分元素の1つ、あるいは複数の元素でありさえすればよ
い。
Note that the elements to be evaporated from the evaporation source 4 are not limited to Cu;
It only needs to be one or more of the component elements of the chalcopyrite compound other than the chalcogenite element.

発明の詳細 な説明したところから明らかなように、本発明によフて
、組成を厳密に制御して、カルコパイライト薄膜の形成
を行うことが可能となる。
As is clear from the detailed description of the invention, the present invention makes it possible to form a chalcopyrite thin film while strictly controlling the composition.

従って、過剰成分の析出、カルコパイライト薄膜以外の
異相化合物の出現等、電気特性に悪影響を与える現象が
起こらないカルコパイライト薄膜を形成できる。
Therefore, it is possible to form a chalcopyrite thin film in which phenomena that do not adversely affect electrical properties, such as precipitation of excessive components or appearance of different phase compounds other than the chalcopyrite thin film, occur.

また、このようなカルコパイライト薄膜を用いた薄膜太
陽電池のデバイス特性を改善出来る。
Further, the device characteristics of a thin film solar cell using such a chalcopyrite thin film can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例にかかるカルコパイライト薄
膜の形成方法を説明するための模式的断面図、第2図は
同カルコパイライト薄膜を利用した薄膜太陽電池の略示
断面図である。 1・・・真空容器、2・・・CuとInの合金の蒸着源
、3・・・Seの蒸発源、4・・・Cuの蒸発源、5・
・・基板、6・・・金属薄膜、7・・・組成比がCu/
In> 1のp型のCuInSe2薄膜、8−−−Cd
S薄膜、9・φ・上部電極。 代理人 弁理士 松 1)正 道 第1図 1・・・真空容器 2・・・Cu/ln=1の合金の蒸発源3・・・Seの
蒸発源 4・・・Cuの蒸発源 5・・・基板
FIG. 1 is a schematic cross-sectional view for explaining a method of forming a chalcopyrite thin film according to an embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view of a thin-film solar cell using the same chalcopyrite thin film. DESCRIPTION OF SYMBOLS 1... Vacuum container, 2... Cu and In alloy evaporation source, 3... Se evaporation source, 4... Cu evaporation source, 5...
... Substrate, 6... Metal thin film, 7... Composition ratio is Cu/
p-type CuInSe2 thin film with In > 1, 8---Cd
S thin film, 9 φ upper electrode. Agent Patent Attorney Matsu 1) Tadashi Michi Figure 1 1...Vacuum container 2...Evaporation source of Cu/ln=1 alloy 3...Evaporation source of Se 4...Evaporation source of Cu 5. ··substrate

Claims (8)

【特許請求の範囲】[Claims] (1)カルコゲナイト元素を除くカルコパイライト化合
物の成分元素の化学量論比の合金と、カルコゲナイト元
素と、カルコゲナイト元素を除くカルコパイライト化合
物の成分元素の1つ、あるいは複数の元素を蒸発源とす
る、多元蒸着法でカルコパイライト薄膜を形成すること
を特徴とするカルコパイライト薄膜の形成方法。
(1) Using an alloy in a stoichiometric ratio of the component elements of the chalcopyrite compound excluding the chalcogenite element, the chalcogenite element, and one or more elements of the component elements of the chalcopyrite compound excluding the chalcogenite element as an evaporation source; A method for forming a chalcopyrite thin film, characterized by forming the chalcopyrite thin film by a multi-dimensional vapor deposition method.
(2)形成時に基板を加熱する工程を含むことを特徴と
する請求項1記載のカルコパイライト薄膜の形成方法。
2. The method for forming a chalcopyrite thin film according to claim 1, further comprising the step of: (2) heating the substrate during formation.
(3)形成時の基板温度を、化学量論比に対して、過剰
のカルコゲナイト元素が再蒸発する温度以上の温度とす
ることを特徴とする請求項2記載のカルコパイライト薄
膜の形成方法。
(3) The method for forming a chalcopyrite thin film according to claim 2, characterized in that the substrate temperature during formation is set to a temperature higher than the temperature at which an excess of chalcogenite elements reevaporates relative to the stoichiometric ratio.
(4)蒸着時に、カルコゲナイト元素を除くカルコパイ
ライト化合物の成分元素の到達量に対して、カルコゲナ
イト元素の基板への到達量を化学量論比以上にすること
を特徴とする請求項3記載のカルコパイライト薄膜の形
成方法。
(4) The chalcogenide according to claim 3, characterized in that during vapor deposition, the amount of the chalcogenite element reaching the substrate is set to a stoichiometric ratio or higher relative to the amount of component elements of the chalcopyrite compound excluding the chalcogenite element. Method of forming pyrite thin film.
(5)蒸着時に、蒸着源の1つであるカルコゲナイト元
素を除くカルコパイライト化合物の成分元素の合金を、
全て蒸発させることを特徴とする請求項2又は4記載の
カルコパイライト薄膜の形成方法。
(5) During vapor deposition, an alloy of the component elements of the chalcopyrite compound excluding the chalcogenite element, which is one of the vapor deposition sources,
The method for forming a chalcopyrite thin film according to claim 2 or 4, characterized in that all of the chalcopyrite is evaporated.
(6)蒸着法が抵抗加熱蒸着法であることを特徴とする
請求項1〜5のいずれかに記載のカルコパイライト薄膜
の形成方法。
(6) The method for forming a chalcopyrite thin film according to any one of claims 1 to 5, wherein the vapor deposition method is a resistance heating vapor deposition method.
(7)カルコパイライト薄膜が、CuInSe_2、C
uInS_2、あるいは、それらの固溶体であることを
特徴する請求項1〜6のいずれかに記載のカルコパイラ
イト薄膜の形成方法。
(7) The chalcopyrite thin film is CuInSe_2, C
The method for forming a chalcopyrite thin film according to any one of claims 1 to 6, characterized in that uInS_2 or a solid solution thereof is used.
(8)請求項1〜7のいずれかのカルコパイライト薄膜
の形成方法によって得られたカルコパイライト薄膜を用
いることを特徴とする薄膜太陽電池。
(8) A thin film solar cell characterized by using a chalcopyrite thin film obtained by the method for forming a chalcopyrite thin film according to any one of claims 1 to 7.
JP2234284A 1990-09-04 1990-09-04 Forming method of chalcopyrite thin film and thin film solar cell Pending JPH04114483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2234284A JPH04114483A (en) 1990-09-04 1990-09-04 Forming method of chalcopyrite thin film and thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2234284A JPH04114483A (en) 1990-09-04 1990-09-04 Forming method of chalcopyrite thin film and thin film solar cell

Publications (1)

Publication Number Publication Date
JPH04114483A true JPH04114483A (en) 1992-04-15

Family

ID=16968568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2234284A Pending JPH04114483A (en) 1990-09-04 1990-09-04 Forming method of chalcopyrite thin film and thin film solar cell

Country Status (1)

Country Link
JP (1) JPH04114483A (en)

Similar Documents

Publication Publication Date Title
US5441897A (en) Method of fabricating high-efficiency Cu(In,Ga)(SeS)2 thin films for solar cells
US5436204A (en) Recrystallization method to selenization of thin-film Cu(In,Ga)Se2 for semiconductor device applications
US5477088A (en) Multi-phase back contacts for CIS solar cells
JP3258667B2 (en) Manufacturing method of high efficiency Cu (In, Ga) (Se, S) 2 thin film for solar cell
US4581108A (en) Process of forming a compound semiconductive material
JPH06151930A (en) Manufacture of chalcopyrite-type compound film
KR20130143109A (en) Method for producing the pentanary compound semiconductor cztsse, and thin-film solar cell
Romeo et al. High efficiency Cu (In, Ga) Se2/CdS thin film solar cells obtained with precursors sputtered from InSe, GaSe and Cu targets
Romeo et al. Growth of large-grain CuInSe2 thin films by flash-evaporation and sputtering
Adurodija et al. Characterization of CuInS 2 Thin Films Grown by Close-spaced Vapor Sulfurization of Co-sputtered Cu–In Alloy Precursors
CN108624854B (en) Novel device and method for preparing thin film
CN208701194U (en) A kind of novel device for preparing film
JP3431388B2 (en) Method for producing chalcopyrite structure semiconductor thin film
JP2992159B2 (en) Method of forming compound semiconductor thin film layer
JPH04114483A (en) Forming method of chalcopyrite thin film and thin film solar cell
Zweigart et al. CuInSe 2 film growth using precursors deposited at low temperature
JPH10150212A (en) Precursor for semiconductor thin film formation use and manufacture of semiconductor thin film
CN100449791C (en) Compound semiconductor layer making method and solar battery using the semiconductor layer and its making method
Shao et al. Steps toward industrialization of Cu-III-VI2 thin-film solar cells: a novel full in-line concept
Li et al. Formation of CuInSe 2 absorber by rapid thermal processing of electron-beam evaporated stacked elemental layers
JPH07226410A (en) Method for manufacturing thin film made of chalcopyrite type compound, and solar cell having the thin film
JPH07216533A (en) Production of chalcopyrite-structure semiconductor thin film
JPH04309237A (en) Manufacturing method of chalcopyrite thin film and solar cell
JPH08111425A (en) Production of semiconductor thin film having chalcopyrite structure
TW201503379A (en) Method of forming an absorber layer of a solar cell