JPH04114308A - Thin film magnetic head - Google Patents

Thin film magnetic head

Info

Publication number
JPH04114308A
JPH04114308A JP23323590A JP23323590A JPH04114308A JP H04114308 A JPH04114308 A JP H04114308A JP 23323590 A JP23323590 A JP 23323590A JP 23323590 A JP23323590 A JP 23323590A JP H04114308 A JPH04114308 A JP H04114308A
Authority
JP
Japan
Prior art keywords
magnetic
film
magnetic flux
thin film
cores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23323590A
Other languages
Japanese (ja)
Inventor
Hisashi Katahashi
片橋 久
Yoshitsugu Miura
義從 三浦
Yuiko Matsubara
松原 結子
Masaya Yasukochi
正也 安河内
Shigeo Aoki
青木 茂夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23323590A priority Critical patent/JPH04114308A/en
Publication of JPH04114308A publication Critical patent/JPH04114308A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To obtain a thin film magnetic head with a satisfactory reproducing output by providing a dielectric film having a film surface almost parallel to the opposite faces of first and second magnetic cores between both cores. CONSTITUTION:Signal magnetic flux in reproduction tries to flow as shown by a broken line and leakage magnetic flux between the upper and lower magnetic cores tries to flow orthogonally to the film surface of a conductor film 7. Therefore, when the signal magnetic flux is a high frequency, an eddy current flows in the conductor film 7 parallelly to the film surface as shown by a white arrow in the figure, and magnetic flux is generated in a direction to cancel the leakage magnetic flux as shown by a black arrow in the figure. Therefore, the magnetic flux is prevented from leakage between the upper and lower magnetic cores. Generally, the reproducing output of the magnetic head is lowered especially by the high frequency caused by the high frequency loss of a core material or a spacing loss when a medium is slid. Thus, by decreasing the leakage magnetic flux by the high frequency as mentioned above and increasing the reproducing output, the satisfactory head output can be obtained over all the bands.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄膜磁気ヘッドに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a thin film magnetic head.

〔従来の技術〕[Conventional technology]

従来の薄膜磁気ヘッドは、例えば、応用磁気学会誌13
 (1989年)519頁から524頁において報告さ
れているように、一対の薄膜磁気コアがコイル、電気絶
縁層、及び、磁気ギャップ材を介して対向し、磁気コア
間にその他の構成部材、特に導電体より成る構成部材を
含まない構成であった。
Conventional thin film magnetic heads are described, for example, in the Journal of Applied Magnetics, 13
(1989), pp. 519-524, a pair of thin-film magnetic cores are opposed to each other with a coil, an electrically insulating layer, and a magnetic gap material interposed therebetween, and other components, especially The structure did not include any constituent members made of conductors.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以下、上記した従来の薄膜磁気ヘッドの持つ問題点を第
2図を用いて説明する。
Hereinafter, the problems of the above-mentioned conventional thin film magnetic head will be explained with reference to FIG.

第2図(a)は従来の薄膜磁気ヘッドの平面図であり、
(b)は同様の側断面図であって磁気コア内の磁束の流
れを示す。図中、1は上部磁気コア、1′は下部磁気コ
ア、2は薄膜コイル、3は磁気ギャップ、4は媒体摺動
面、5はバックコンタクト部、6は眉間絶縁材、8は非
磁性高硬度基板、9は保護膜である。第2図(a)は図
面の簡略化のため、層間絶縁材6及び保護膜9を割愛し
た。
FIG. 2(a) is a plan view of a conventional thin film magnetic head.
(b) is a similar side sectional view showing the flow of magnetic flux within the magnetic core. In the figure, 1 is an upper magnetic core, 1' is a lower magnetic core, 2 is a thin film coil, 3 is a magnetic gap, 4 is a medium sliding surface, 5 is a back contact part, 6 is an insulating material between the eyebrows, and 8 is a non-magnetic high Hardness substrate, 9 is a protective film. In FIG. 2(a), the interlayer insulating material 6 and the protective film 9 are omitted to simplify the drawing.

第2図(b)で破線は信号再生時の磁束の流れを示した
ものである。媒体からの信号磁束は摺動面4から上部磁
気コア1に流入し、一部は磁気ギャップ3を介して下部
磁気コア1′に流入する。
In FIG. 2(b), the broken line indicates the flow of magnetic flux during signal reproduction. The signal magnetic flux from the medium flows into the upper magnetic core 1 from the sliding surface 4, and a portion flows into the lower magnetic core 1' via the magnetic gap 3.

また、他の磁束は薄膜コイル3を周回するようにバンク
コンタクト部5を通って下部磁気コア1′に流入する。
Further, other magnetic flux flows into the lower magnetic core 1' through the bank contact portion 5 so as to circulate around the thin film coil 3.

下部磁気コア1′に流入した磁束は、再び、摺動面4よ
り外部に流出して媒体に帰還する。このように、磁気コ
ア内の磁束の伝播経路は二種類に大別され、後者の経路
を取る磁束の量が大きいほど高い再生効率が得られる。
The magnetic flux that has flowed into the lower magnetic core 1' flows out from the sliding surface 4 again and returns to the medium. In this way, the propagation paths of magnetic flux within the magnetic core are roughly divided into two types, and the larger the amount of magnetic flux that takes the latter path, the higher the regeneration efficiency can be obtained.

しかし、従来の薄膜磁気ヘッドでは、前述した二つの経
路を取る磁束の他に、眉間絶縁材6を経て下部コア1′
に至る漏れ磁束が存在し、その漏れ量が大きいために、
バックコンタクトを経由する磁束量が小さかった。この
ため、高い電磁変換効率が得られなかった。
However, in the conventional thin-film magnetic head, in addition to the magnetic flux that takes the two routes mentioned above, the magnetic flux passes through the glabella insulating material 6 to the lower core 1'.
There is leakage magnetic flux leading to , and the amount of leakage is large,
The amount of magnetic flux passing through the back contact was small. For this reason, high electromagnetic conversion efficiency could not be obtained.

本発明の目的は漏れ磁束を小さくし、良好な再生出力の
得られる薄膜磁気ヘッドを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a thin film magnetic head that can reduce leakage magnetic flux and provide good reproduction output.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記目的を達成するために、上下磁気コアが
薄膜コイルを介して対向する間に、この対向面と略平行
な膜面をもつ導体膜を設けたものである。
In order to achieve the above object, the present invention provides a conductor film having a film surface substantially parallel to the facing surface between the upper and lower magnetic cores facing each other via a thin film coil.

〔作用〕[Effect]

本発明より成る磁気ヘッドを高周波で疑動した場合、上
下磁気コア間の漏れ磁束を打ち消す方向に、導体膜中に
うず電流が流れる。このため、漏れ磁束が減少して磁束
の分配効率が向上し、良好なヘッド再生出力が得られる
When the magnetic head according to the present invention is operated at a high frequency, eddy current flows in the conductor film in a direction that cancels out leakage magnetic flux between the upper and lower magnetic cores. Therefore, leakage magnetic flux is reduced, magnetic flux distribution efficiency is improved, and good head reproduction output can be obtained.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を用いて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図(、)は本発明による薄膜磁気ヘッドの一実施例
を示す概略平面図であり、(b)は同様の側断面図であ
って磁気コア内の磁束の流れを示す図である。図中、1
は上部磁気コア、1′は下部磁気コア、2は薄膜コイル
、3は磁気ギャップ、4は媒体摺動面、5はバックコン
タクト部、6は眉間絶縁部、7は導体膜、8は非磁性高
硬度基板、9は保護膜である。第1図(、)では図面の
簡略化のため、眉間絶縁部6及び保護膜9を割愛した。
FIG. 1(,) is a schematic plan view showing an embodiment of the thin film magnetic head according to the present invention, and FIG. 1(b) is a similar side sectional view showing the flow of magnetic flux within the magnetic core. In the figure, 1
is the upper magnetic core, 1' is the lower magnetic core, 2 is the thin film coil, 3 is the magnetic gap, 4 is the medium sliding surface, 5 is the back contact part, 6 is the glabella insulation part, 7 is the conductor film, and 8 is nonmagnetic A high hardness substrate, 9 is a protective film. In FIG. 1(,), the glabellar insulating portion 6 and the protective film 9 are omitted to simplify the drawing.

また、第1図(b)中、破線、及び黒い矢印は磁束の流
れ、白い矢印は渦電流の流れを示す。
Furthermore, in FIG. 1(b), the broken lines and black arrows indicate the flow of magnetic flux, and the white arrows indicate the flow of eddy current.

以下に、導体膜7の作用を信号再生時を例に取って詳細
に説明する。
The action of the conductor film 7 will be explained in detail below, taking as an example the time of signal reproduction.

第1図(b)において、再生時の信号磁束は破線で示し
たように流れ、上、下磁気コア間の漏れ磁束は、導体膜
7の膜面に直交して流れようとする。従って、信号磁束
が高周波であった場合、導体膜7中には白い矢印で示し
たように膜面に平行に渦電流が流れ、漏れ磁束を打ち消
す方向に黒い矢印で示した磁束を発生する。これにより
、上、下磁気コア間の磁束の漏えいが妨げられる。一般
に、磁気ヘッドの再生出力はコア材の高周波損失や媒体
摺動時のスペーシングロスによって特に高周波で低下す
る。このため、上述のように高周波で漏れ磁束を減少さ
せ、再生出力を高めることで、全帯域にわたって良好な
ヘッド出力が得られる。
In FIG. 1(b), the signal magnetic flux during reproduction flows as shown by the broken line, and the leakage magnetic flux between the upper and lower magnetic cores tends to flow perpendicular to the film surface of the conductor film 7. Therefore, when the signal magnetic flux has a high frequency, an eddy current flows in the conductor film 7 parallel to the film surface as shown by the white arrow, and a magnetic flux shown by the black arrow is generated in the direction of canceling the leakage magnetic flux. This prevents leakage of magnetic flux between the upper and lower magnetic cores. In general, the reproduction output of a magnetic head decreases particularly at high frequencies due to high frequency loss in the core material and spacing loss during sliding of the medium. Therefore, as described above, by reducing leakage magnetic flux at high frequencies and increasing reproduction output, good head output can be obtained over the entire band.

本実施例では、下部磁気コア1′と薄膜コイル2との間
、眉間絶縁部6中に矩形の導体膜7を設けている。導体
膜7のトランク幅方向の長さは、磁気コア1,1′のそ
れより大きく、コア側面より生しる漏えい磁束をも減少
させる。また、導体膜7を周囲と絶縁することで、渦電
流が周囲に漏えいして電流密度が低下することを防いで
いる。
In this embodiment, a rectangular conductor film 7 is provided between the lower magnetic core 1' and the thin film coil 2, in the glabellar insulating part 6. The length of the conductive film 7 in the trunk width direction is larger than that of the magnetic cores 1, 1', and also reduces leakage magnetic flux generated from the side surfaces of the core. Furthermore, by insulating the conductor film 7 from the surroundings, eddy currents are prevented from leaking to the surroundings and the current density is prevented from decreasing.

導体膜7がバックコンタクト部5を周回する形で閉路を
構成した場合、間部を通過する磁束の流れをも妨げ、再
生効率を低下させる。本実施例では、このようなことの
ないよう導体膜7を矩形としている。
When the conductor film 7 forms a closed circuit by going around the back contact portion 5, it also obstructs the flow of magnetic flux passing through the gap, reducing regeneration efficiency. In this embodiment, the conductor film 7 is made rectangular to avoid such a problem.

次に、第3図により、各部の材料、膜厚などの一例を具
体的に示して本発明より成る薄膜磁気ヘッドの製造方法
について説明する。
Next, with reference to FIG. 3, a method for manufacturing the thin film magnetic head according to the present invention will be explained by specifically showing an example of materials, film thicknesses, etc. of each part.

まず、非磁性基板8上にフォトリゾグラフイッり法およ
びイオンエツチング法により、第1図に示した下部磁気
コア形状を持つ深さ25μmの溝を形成し、この溝が埋
め込まれるように、下部磁気コア1′となる膜厚25μ
mのCoNbZr膜をスパッタ形成し、研摩によってこ
の膜の溝以外に付着した部分を取除く。そして、磁気ギ
ャップ形成部、及び、バックコンタクト部5に相当する
部分に高さ5μmの凸部を形成する。これら凸部を除く
凹部が埋め込まれるように層間絶縁材6となる膜厚5μ
mのSiC2膜をスパッタ形成し、研摩によりその表面
を平坦化して下部磁気コア1′を形成する。この際、最
終的な下部磁気コア1′の厚さは、凸部で23μm、凹
部で20μmである(第3図(b))。
First, a groove with a depth of 25 μm having the shape of the lower magnetic core shown in FIG. 1 is formed on the nonmagnetic substrate 8 by photolithography and ion etching. Film thickness 25μ for magnetic core 1'
A CoNbZr film of m thickness is formed by sputtering, and the portions of this film adhering to areas other than the grooves are removed by polishing. Then, a convex portion having a height of 5 μm is formed in a portion corresponding to the magnetic gap forming portion and the back contact portion 5. The film thickness of the interlayer insulating material 6 is 5μ so that the recesses excluding these projections are filled.
A SiC2 film of m thickness is formed by sputtering, and its surface is flattened by polishing to form a lower magnetic core 1'. At this time, the final thickness of the lower magnetic core 1' is 23 μm at the convex portion and 20 μm at the concave portion (FIG. 3(b)).

次に、眉間絶縁材6の上にマグネトロンスパッタ法を用
いて膜厚3μmのCu膜を成膜し、フォトリゾグラフィ
ック法により導体膜7を形成する(第3図(b))。
Next, a Cu film with a thickness of 3 μm is formed on the glabella insulating material 6 by magnetron sputtering, and a conductor film 7 is formed by photolithography (FIG. 3(b)).

そして、その上に、再び、膜厚2μmのSiC2膜を形
成した後、導体膜7と同様の方法で膜厚3μmの薄膜コ
イル2を形成する。更に、その上にマグネトロンバイア
ススパッタ法を用いて膜厚8μmのS i O2膜を形
成し、同腹の表面が基板面と平行になるように研摩によ
って表面凹凸を除去する(第3図(C))。
Then, a 2 μm thick SiC2 film is formed thereon again, and then a 3 μm thick thin film coil 2 is formed in the same manner as the conductor film 7. Furthermore, a SiO2 film with a thickness of 8 μm is formed on the film using magnetron bias sputtering, and surface irregularities are removed by polishing so that the surface of the film is parallel to the substrate surface (Figure 3 (C)). ).

次に、磁気ギャップ形成部上、及び、バックコンタクト
部5上のSiC2膜を除去し、眉間絶縁部6を形成する
(第3図(d))。
Next, the SiC2 film on the magnetic gap forming part and the back contact part 5 is removed to form the glabellar insulating part 6 (FIG. 3(d)).

そして、磁気ギャップ3となる膜厚0.2μmのS i
 O2膜を形成した後、同腹のバックコンタクト5上の
SiC2膜をエツチング除去する。その上に膜厚20μ
mのCo N b Z r膜を形成し、イオンエツチン
グ法によって所望の形状に加工して上部磁気コア1を得
る。更に、保護膜9となる膜厚60μmのフォルステラ
イトをバイアスマグネトロンスパッタ法によって形成す
る。
Then, Si with a film thickness of 0.2 μm which becomes the magnetic gap 3
After forming the O2 film, the SiC2 film on the same back contact 5 is removed by etching. On top of that, the film thickness is 20μ
A CoNbZr film of m is formed and processed into a desired shape by ion etching to obtain the upper magnetic core 1. Further, forsterite having a thickness of 60 μm, which will become the protective film 9, is formed by bias magnetron sputtering.

以上の工程でウェハプロセスが完了する。ウェハプロセ
ス中の薄膜の加工には、全てフォトリゾグラフィック法
、及び、イオンミリング法を用いる。また、CoNbZ
r膜の作成にはDC対向スパッタリング法を用い、成膜
時のプラズマ収束磁界の方向をトラック幅方向に一致さ
せる。さらに、5IO2膜の作成にはマグネトロンスパ
ッタ法を用いる。
The wafer process is completed with the above steps. All thin film processing during the wafer process uses photolithographic methods and ion milling methods. Also, CoNbZ
The DC facing sputtering method is used to create the r film, and the direction of the plasma convergence magnetic field during film formation is aligned with the track width direction. Furthermore, magnetron sputtering is used to create the 5IO2 film.

ウェハプロセス終了後、温度を460’Cとし、磁場印
加方向をトラック幅方向とし、磁場強度1 、2 x 
10’A/m とする条件下で30分間磁場中熱処理を
施す。
After the wafer process is completed, the temperature is set to 460'C, the magnetic field is applied in the track width direction, and the magnetic field strength is 1, 2 x
Heat treatment is performed in a magnetic field for 30 minutes under conditions of 10'A/m2.

以上の磁場中熱処理の後に、摺動面加工、チップ加工及
びヘッド組立て工程を経て薄膜磁気ヘッドが完了する(
第3図(e))。
After the above heat treatment in a magnetic field, the thin film magnetic head is completed through sliding surface processing, chip processing, and head assembly steps (
Figure 3(e)).

第4図は前述の実施例による薄膜磁気ヘッドと従来の薄
膜磁気ヘッドとのヘッド再生出力を示したものである。
FIG. 4 shows head reproduction outputs of the thin film magnetic head according to the above-described embodiment and the conventional thin film magnetic head.

同図から明らかなように、実施例による薄膜磁気ヘット
は、従来の薄膜磁気ヘッドに比べ1周波数20 M H
zにおいて3dBの改善が認められた。
As is clear from the figure, the thin film magnetic head according to the embodiment has a frequency of 20 M H per frequency compared to the conventional thin film magnetic head.
An improvement of 3 dB was observed in z.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、再生8力の良好な薄膜磁気ヘッドが得
られる。
According to the present invention, a thin film magnetic head with good reproduction force can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による薄膜磁気ヘッドの一実施例を示す
平面図(、)及び側断面図(b)、第2図は従来の薄膜
磁気ヘッドの平面図(a)及び側断面図(b)、第3図
は本発明より成る薄膜磁気ヘッドの製造プロセスの一具
体例を示す工程流れ図、第4図は第1図に示した薄膜磁
気ヘッドと従来の薄膜磁気ヘッドとの再生出力−周波数
特性図である。 1・・・上部磁気コア、1′・・・下部磁気コア、2・
・薄膜コイル、3・・磁気ギャップ、4・・媒体摺動面
、5・・・バックコンタクト部、6・・層間絶縁部、7
・導体膜、8・・・非磁性高硬度基板、9・・・保護膜
。 篤 圓 (久〕 第 第 図 (cL) ζヶ 午 4 図 周波数(MHz)
FIG. 1 is a plan view (a) and a side sectional view (b) showing an embodiment of a thin film magnetic head according to the present invention, and FIG. 2 is a plan view (a) and a side sectional view (b) of a conventional thin film magnetic head. ), FIG. 3 is a process flowchart showing a specific example of the manufacturing process of the thin film magnetic head according to the present invention, and FIG. 4 shows reproduction output vs. frequency of the thin film magnetic head shown in FIG. 1 and the conventional thin film magnetic head. It is a characteristic diagram. 1... Upper magnetic core, 1'... Lower magnetic core, 2.
・Thin film coil, 3. Magnetic gap, 4. Medium sliding surface, 5. Back contact part, 6. Interlayer insulation part, 7
- Conductor film, 8... Non-magnetic high hardness substrate, 9... Protective film. Atsushi (Kyu) Diagram (cL) Diagram 4 Frequency (MHz)

Claims (1)

【特許請求の範囲】 1、第一、第二の磁気コアが媒体摺動面近傍で互いに近
接して磁気ギャップを形成し、前記媒体摺動面側に対し
て奥部で互いに結合されてバックコンタクト部を形成し
、前記磁気ギャップと前記バックコンタクト部との間で
前記第一、第二の磁気コアが隔離され、一部が前記第一
、第二の磁気コア間を通るようにして前記バックコンタ
クト部の周りに薄膜コイルが巻回された薄膜磁気ヘッド
において、 前記第一、第二の磁気コア間に両コアの対向面と略平行
な膜面をもつ導電体膜を設けたことを特徴とする薄膜磁
気ヘッド。 2、請求項4において、前記導体膜を導体より成る他の
ヘッド構成部材から電気的に絶縁した薄膜磁気ヘッド。 3、請求項1において、前記導体膜が磁気コアを周回す
る閉路を構成しない薄膜磁気ヘッド。
[Claims] 1, a first magnetic core, and a second magnetic core are close to each other in the vicinity of the medium sliding surface to form a magnetic gap, and are coupled to each other at a deep part with respect to the medium sliding surface side. a contact portion is formed, the first and second magnetic cores are isolated between the magnetic gap and the back contact portion, and a portion thereof passes between the first and second magnetic cores; In a thin film magnetic head in which a thin film coil is wound around a back contact portion, a conductive film having a film surface substantially parallel to the facing surfaces of both cores is provided between the first and second magnetic cores. Features a thin film magnetic head. 2. A thin film magnetic head according to claim 4, wherein the conductor film is electrically insulated from other head constituent members made of conductors. 3. The thin film magnetic head according to claim 1, wherein the conductor film does not constitute a closed circuit that goes around the magnetic core.
JP23323590A 1990-09-05 1990-09-05 Thin film magnetic head Pending JPH04114308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23323590A JPH04114308A (en) 1990-09-05 1990-09-05 Thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23323590A JPH04114308A (en) 1990-09-05 1990-09-05 Thin film magnetic head

Publications (1)

Publication Number Publication Date
JPH04114308A true JPH04114308A (en) 1992-04-15

Family

ID=16951880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23323590A Pending JPH04114308A (en) 1990-09-05 1990-09-05 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JPH04114308A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6469868B2 (en) * 1998-09-10 2002-10-22 Tdk Corporation Thin film magnetic head having a nonmagnetic conductive layer and method of manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6469868B2 (en) * 1998-09-10 2002-10-22 Tdk Corporation Thin film magnetic head having a nonmagnetic conductive layer and method of manufacturing same

Similar Documents

Publication Publication Date Title
JPH0778858B2 (en) Thin film magnetic head
EP0051123A2 (en) Magnetic head assembly
JPH04114308A (en) Thin film magnetic head
US5684659A (en) Magnetic head with coil formed by thin film
JPH06195637A (en) Thin film magnetic head
JPH08124115A (en) Thin-film magnetic head
JP2001256617A (en) Thin-film magnetic head and method of manufacture
JPH0793711A (en) Composite type magnetic head
JPH02216604A (en) Magnetic head and its production
JPH06180821A (en) Thin-film magnetic head and its production
JPH06338015A (en) Magnetic head
JPH0330107A (en) Magnetic head and production thereof
JPH05182144A (en) Thin-film magnetic head
JPH01192003A (en) Magnetic head
JPS6074110A (en) Thin film magnetic head
JPH0636221A (en) Magnetic head and its manufacture
JPH08167132A (en) Floating magnetic head
JPH0231315A (en) Thin film magnetic head
JPH06119609A (en) Magnetic head
JPH0317804A (en) Magnetic head
JPS63108512A (en) Manufacture of thin film magnetic head
JPH08273113A (en) Magnetic head and manufacture of the same
JPH05290327A (en) Production of magnetic head
JPH0997404A (en) Magnetic head
JPH04251408A (en) Magnetic head