JPH0411381Y2 - - Google Patents

Info

Publication number
JPH0411381Y2
JPH0411381Y2 JP1982187894U JP18789482U JPH0411381Y2 JP H0411381 Y2 JPH0411381 Y2 JP H0411381Y2 JP 1982187894 U JP1982187894 U JP 1982187894U JP 18789482 U JP18789482 U JP 18789482U JP H0411381 Y2 JPH0411381 Y2 JP H0411381Y2
Authority
JP
Japan
Prior art keywords
diode
screw
high frequency
coaxial
limiter circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982187894U
Other languages
Japanese (ja)
Other versions
JPS5991033U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18789482U priority Critical patent/JPS5991033U/en
Publication of JPS5991033U publication Critical patent/JPS5991033U/en
Application granted granted Critical
Publication of JPH0411381Y2 publication Critical patent/JPH0411381Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Waveguide Connection Structure (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)

Description

【考案の詳細な説明】 本考案は、ハイ・パワー時にインピーダンスを
大きく換えて反射を大きくするようにした高周波
リミツタ回路に関する。
[Detailed Description of the Invention] The present invention relates to a high frequency limiter circuit that greatly changes impedance to increase reflection during high power.

第1図に従来の導波管同軸変換型の高周波リミ
ツタ回路を示す。この回路においては、方形導波
管1のTE10モードのE(電界)面に平行に、同軸
空胴2を形成すると共に、その同軸空胴2内に中
心導体3を配置し、ピル型パツケージのピン・ダ
イオード4をリミツタ用として、その中心導体3
の一部として装荷し、二重ねじ5によつて同軸長
を調整し、またねじ5と6によつてダイオード4
の位置を調整して、同軸部と導波管系との間のイ
ンピーダンスを調節していた。
FIG. 1 shows a conventional waveguide coaxial conversion type high frequency limiter circuit. In this circuit, a coaxial cavity 2 is formed parallel to the E (electric field) plane of the TE 10 mode of the rectangular waveguide 1, a center conductor 3 is placed inside the coaxial cavity 2, and a pill-shaped package is formed. The pin diode 4 is used as a limiter, and its center conductor 3
The coaxial length is adjusted by the double screw 5, and the diode 4 is loaded by the screws 5 and 6.
The impedance between the coaxial section and the waveguide system was adjusted by adjusting the position of the waveguide.

ところが、この構造においては、調節時にダイ
オード4を動かす必要があるために、そのダイー
ド4と中心導体3あるいはねじ6との電気的接触
状態が不安定となり、このため特にハイ・パワー
動作時の調整時に、インピーダンスのマツチング
が起ると、そのパワーがダイオード4で消費さ
れ、そのダイオード4が破壊する危険性があつ
た。
However, in this structure, since it is necessary to move the diode 4 during adjustment, the electrical contact between the diode 4 and the center conductor 3 or the screw 6 becomes unstable, which makes adjustment particularly difficult during high power operation. Sometimes, when impedance matching occurs, the power is dissipated in the diode 4, and there is a risk that the diode 4 will be destroyed.

そこで、ロー・パワー動作時に同軸回路の挿入
に伴う挿入損失の調節を行い、ハイ・パワー動作
時にはアイソレーシヨン(ロー・パワー動作時の
挿入損失とハイ・パワー動作時の挿入損失との
dB差)の測定のみを行って、そのアイソレーシ
ヨンが規定値に達していない場合には、再度ロ
ー・パワー動作時の挿入損失の調整から繰り返し
ていた。
Therefore, the insertion loss associated with the insertion of a coaxial circuit during low power operation is adjusted, and the isolation (the difference between the insertion loss during low power operation and the insertion loss during high power operation) is adjusted during high power operation.
If the isolation did not reach the specified value, the process was repeated, starting with the insertion loss adjustment during low power operation.

このため、調整に時間を要するのみでなく、最
良の特性を得るための微調整を行い難いという欠
点があつた。
For this reason, there is a drawback that not only is it time consuming to make adjustments, but it is also difficult to make fine adjustments to obtain the best characteristics.

第2図は導波管同軸変換型の高周波リミツタ回
路の従来の別の例を示すものであり、ねじ7を装
着したものであるが、このねじ7は同軸部からの
反射波を補正して、挿入損失を減少させるための
ものであり、アイソレーシヨン値を大きくできる
効果はなかつた。
Figure 2 shows another conventional example of a waveguide coaxial conversion type high frequency limiter circuit, in which a screw 7 is attached, which corrects the reflected wave from the coaxial section. , which was intended to reduce insertion loss, and did not have the effect of increasing the isolation value.

本考案は斯かる点に鑑みて成されたもので、そ
の目的は、ダイオード近傍の高周波電界の分布を
調整できるようにし、ダイオード破壊の危険を伴
わず、しかも動作状態を最良にするインピーダン
ス調整を容易に実現できるようにした高周波リミ
ツタ回路を提供することである。
The present invention was developed in view of the above, and its purpose is to make it possible to adjust the distribution of the high-frequency electric field near the diode, and to adjust the impedance to optimize the operating condition without the risk of destroying the diode. An object of the present invention is to provide a high frequency limiter circuit that can be easily realized.

以下、本考案の実施例について説明する。第3
図はその一実施例を示すものであり、第1図にお
けるものと同一のものには同一の符号を附した。
またこの導波管1は、高さH=10.5mm、幅W=23
mmであり、Xバンド(8.4〜12.4GHz)用の導波管
である。この例においては、金属導体で成るねじ
8が中心導体3の軸方向に直交する方向から挿入
され、そのねじ8の先端8aがダイオード4の近
傍に突出している。従つて、ダイオード4の近傍
の高周波電界分布を、このねじ8によつて変化し
得る。9はねじである。
Examples of the present invention will be described below. Third
The figure shows one embodiment, and the same components as in FIG. 1 are given the same reference numerals.
In addition, this waveguide 1 has a height H = 10.5 mm and a width W = 23 mm.
mm, and is a waveguide for the X band (8.4 to 12.4 GHz). In this example, a screw 8 made of a metal conductor is inserted from a direction perpendicular to the axial direction of the center conductor 3, and a tip 8a of the screw 8 protrudes near the diode 4. Therefore, the high frequency electric field distribution near the diode 4 can be changed by the screw 8. 9 is a screw.

インピーダンス調整は、ロー・パワー動作時に
挿入損失が最小となるように中心導体3とねじ9
を調整して同軸長を求め、次にハイ・パワー動作
下で規定のアイソレーシヨン値を得るようにねじ
8を調節する。
Impedance adjustment is done by connecting the center conductor 3 and screw 9 to minimize insertion loss during low power operation.
to determine the coaxial length, then adjust screw 8 to obtain the specified isolation value under high power operation.

第4図はねじ8の回転数(そのねじ8の挿入長
変化)に対する挿入損失とアイソレーシヨン値の
変化を示すものであり、ねじ8を0〜2.5回転す
るにつれ、アイソレーシヨンは−15〜−19dB変
化するが、挿入損失は−0.45〜−0.65dBの変化に
留まつている。
Figure 4 shows changes in insertion loss and isolation value with respect to the number of rotations of the screw 8 (changes in insertion length of the screw 8).As the screw 8 rotates from 0 to 2.5 rotations, the isolation decreases by -15 The insertion loss changes by -19dB, but the insertion loss remains at -0.45 to -0.65dB.

次に、ねじ8の作用効果を第5図と第6図を参
照して説明する。第5図はロー・パワー(10mW
程度)動作時の第3図の高周波リミツタ回路の等
価回路、第6図はハイ・パワー(1KW以上)動
作時でダイオード4が導通している時の等価回路
である。これらの図中、Lxは中心導体3の等価
インダクタンス、LpとCpはダイオード4のパツ
ケージのインダクタンスおよび容量、RjとCjは
ダイオード4の接合抵抗および接合容量、Cxが
ねじ8により加わつた寄生容量である。ダイオー
ド4のみの等価回路は破線で囲つて示した。
Next, the function and effect of the screw 8 will be explained with reference to FIGS. 5 and 6. Figure 5 shows low power (10mW
Fig. 3 shows an equivalent circuit of the high frequency limiter circuit during operation, and Fig. 6 shows an equivalent circuit when diode 4 is conducting during high power (1KW or more) operation. In these figures, Lx is the equivalent inductance of the center conductor 3, Lp and Cp are the inductance and capacitance of the diode 4 package, Rj and Cj are the junction resistance and junction capacitance of the diode 4, and Cx is the parasitic capacitance added by the screw 8. be. The equivalent circuit of only diode 4 is shown surrounded by a broken line.

これらの等価回路の等価インピーダンスZa,
Zbを計算すると、次の式(1)、(2)が得られる。な
お、ダイオード4の拡がり抵抗と接合抵抗Rj(≪
1/ωCj)は簡単のため省略した。まず、第5図
から、 Za={1−ω2LpCj−ω2Lx〔Cj+(Cp+Cx)
(1−ω2LpCj)〕}/{jω〔Cj+(Cp+Cx)(1
−ω2LpCj)〕} …(1) 6図から、 Zb=jω{Lp+Lx〔1−ω2Lp(Cp+Cx)〕}/
〔1−ω2Lp(Cp+Cx)〕 …(2) 式(1)から並列共振角周波数ωa、式(2)から直列
共振角周波数ωbを計算すると、 ωa2=1/〔Lp(Cp+Cx)〕+1/(LpCj)
…(3) ωb2=1/〔Lp(Cp+Cx)〕+1/〔Lx(Cp+
Cx)〕 …(4) 式(3)で得られたロー・パワー動作時の並列共振
角周波数ωaと、式(4)で得られたハイ・パワー動
作時の直列共振角周波数ωbとが等しくなるよう
に、ねじ8の挿入長を変化させて、寄生容量Cx
を変化することができる。
The equivalent impedance Za of these equivalent circuits is
When Zb is calculated, the following equations (1) and (2) are obtained. Note that the spreading resistance and junction resistance Rj of diode 4 (≪
1/ωCj) is omitted for simplicity. First, from Figure 5, Za={1−ω 2 LpCj−ω 2 Lx [Cj+(Cp+Cx)
(1−ω 2 LpCj)]}/{jω[Cj+(Cp+Cx)(1
−ω 2 LpCj)]} …(1) From Figure 6, Zb=jω{Lp+Lx[1−ω 2 Lp(Cp+Cx)]}/
[1−ω 2 Lp (Cp + Cx)] …(2) Calculating the parallel resonance angular frequency ωa from equation (1) and the series resonance angular frequency ωb from equation (2), ωa 2 = 1/[Lp (Cp + Cx)] +1/(LpCj)
…(3) ωb 2 = 1/[Lp(Cp+Cx)]+1/[Lx(Cp+
Cx)] …(4) The parallel resonant angular frequency ωa during low power operation obtained from equation (3) is equal to the series resonant angular frequency ωb during high power operation obtained from equation (4). By changing the insertion length of screw 8, the parasitic capacitance Cx
can change.

寄生容量Cxの変化による共振角周波数の変化
分は式(3)と(4)から、 (Δωa/ωa)<(Δωb/ωb) …(5) の関係があり、並列共振角周波数ωaの変化に対
して、直列共振角周波数ωbを大きく変化させる
ことができる。
From equations (3) and (4), the change in the resonant angular frequency due to a change in the parasitic capacitance Cx has the following relationship: (Δωa/ωa) < (Δωb/ωb) (5), and the change in the parallel resonant angular frequency ωa In contrast, the series resonance angular frequency ωb can be greatly changed.

従つて、第4図に示したようにアイソレイーシ
ョンを大きく変化させることができる。
Therefore, the isolation can be greatly changed as shown in FIG.

第7図はねじ8を中心導体3の軸方向に平行な
方向から挿入した別の実施例の導波管同軸変換型
の高周波リミツタ回路を示している。また第8図
は中心導体3の軸方向に直交する方向からねじ8
を挿入した更なる別の実施例の同軸同軸変換型の
高周波リミツタ回路を示し、10は同軸線路、1
1は二重ねじ、12は中心導体の一部を構成する
ねじである。
FIG. 7 shows another embodiment of a waveguide coaxial conversion type high frequency limiter circuit in which a screw 8 is inserted from a direction parallel to the axial direction of the center conductor 3. In addition, FIG. 8 shows the screw 8 from the direction perpendicular to the axial direction of the center conductor 3
10 is a coaxial line, and 1 is a coaxial line.
1 is a double screw, and 12 is a screw forming a part of the center conductor.

なお、以上の実施例では金属導体のねじ8を挿
入してダイオード4の近傍の電界成分を変化さ
せ、インピーダンスを調整するようにしたが、こ
のねじ8に換えて比誘電率の大きい誘電体片を使
用しても同様な作用効果を行わせることができ
る。
In the above embodiment, the impedance was adjusted by inserting a metal conductor screw 8 to change the electric field component near the diode 4, but instead of this screw 8, a dielectric piece with a high relative permittivity Similar effects can be obtained by using .

以上のように本考案は、高周波伝搬線路の伝搬
方向に直交する方向に設けた同軸空胴内の中心導
体の一部をダイオードで置換した高周波リミツタ
回路において、上記同軸空胴内で、かつ上記ダイ
オードの近傍に導体ああるいは比誘電率の大きい
誘電体を位置させて成るものである。
As described above, the present invention provides a high frequency limiter circuit in which a part of the center conductor in a coaxial cavity provided in a direction perpendicular to the propagation direction of a high frequency propagation line is replaced with a diode. It consists of a conductor or a dielectric material with a high relative permittivity located near the diode.

このため、導波管や同軸線路を伝搬する高周波
電力をダイオードに有効に結合させることがで
き、最良の動作状態を得るためのインピーダンス
調整を容易に行うことができ、またロー・パワー
動作時の挿入損失を大きくせずに、ハイ・パワー
動作下でのアイソレーシヨンを調整できるので、
同一製造ロツト内の各ダイオードの特性のバラツ
キを、回路において平滑化して利用することがで
き、ダイオードの歩留りを向上させることができ
るという特徴がある。
This allows high frequency power propagating through waveguides and coaxial lines to be effectively coupled to the diode, making it easy to adjust the impedance to obtain the best operating conditions, and for low power operation. Isolation can be adjusted under high power operation without increasing insertion loss.
This method is characterized in that variations in characteristics of diodes in the same production lot can be smoothed and utilized in circuits, and the yield of diodes can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の導波管同軸変換型の高周波リミ
ツタ回路の断面図、第2図は従来の別の導波管同
軸変換型の高周波リミツタ回路の断面図、第3図
は本考案の一実施例の導波管同軸変換型の高周波
リミツタ回路の断面図、第4図は第3図に示した
回路の挿入損失とアイソレーシヨンの特性図、第
5図は第3図の回路のロー・パワー動作時のダイ
オード・マウント部分の等価回路図、第6図は第
3図の回路のハイ・パワー動作時のダイオード・
マウント部分の等価回路図、第7図は別の実施例
の導波管同軸変換型の高周波リミツタ回路の断面
図、第8図は更なる別の実施例の同軸同軸変換型
の高周波リミツタ回路の断面図である。 1……導波管、2……同軸空胴、3……中心導
体、4……ピル型パツケーシのピン・ダイオー
ド、5……二重ねじ、6〜9……ねじ、10……
同軸線路、11……二重ねじ、12……ねじ。
Fig. 1 is a sectional view of a conventional waveguide coaxial conversion type high frequency limiter circuit, Fig. 2 is a sectional view of another conventional waveguide coaxial conversion type high frequency limiter circuit, and Fig. 3 is a cross sectional view of a conventional waveguide coaxial conversion type high frequency limiter circuit. A cross-sectional view of the waveguide coaxial conversion type high-frequency limiter circuit of the example, FIG. 4 is a characteristic diagram of insertion loss and isolation of the circuit shown in FIG. 3, and FIG.・Equivalent circuit diagram of the diode mount part during power operation, Figure 6 shows the diode mount part during high power operation of the circuit in Figure 3.
An equivalent circuit diagram of the mount part, FIG. 7 is a sectional view of a waveguide coaxial conversion type high frequency limiter circuit of another embodiment, and FIG. 8 is a coaxial to coaxial conversion type high frequency limiter circuit of yet another embodiment. FIG. 1...Waveguide, 2...Coaxial cavity, 3...Center conductor, 4...Pill-shaped package pin diode, 5...Double screw, 6-9...Screw, 10...
Coaxial line, 11...double screw, 12...screw.

Claims (1)

【実用新案登録請求の範囲】 高周波伝搬線路の伝搬方向に直交する方向に設
けた同軸空洞内の中心導体の一部をダイオードで
置換した高周波リミツタ回路において、 上記同軸空洞内のほぼ上記ダイオードを軸とす
る空洞部分に導体あるいは比誘電率の大きい誘電
体を突出させて成ることを特徴とする高周波リミ
ツタ回路。
[Scope of Claim for Utility Model Registration] In a high frequency limiter circuit in which a part of the center conductor in a coaxial cavity provided in a direction perpendicular to the propagation direction of a high frequency propagation line is replaced with a diode, substantially the above diode in the coaxial cavity is replaced with a diode. A high frequency limiter circuit characterized in that a conductor or a dielectric material having a high relative permittivity protrudes from a hollow portion.
JP18789482U 1982-12-11 1982-12-11 High frequency limiter circuit Granted JPS5991033U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18789482U JPS5991033U (en) 1982-12-11 1982-12-11 High frequency limiter circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18789482U JPS5991033U (en) 1982-12-11 1982-12-11 High frequency limiter circuit

Publications (2)

Publication Number Publication Date
JPS5991033U JPS5991033U (en) 1984-06-20
JPH0411381Y2 true JPH0411381Y2 (en) 1992-03-23

Family

ID=30405474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18789482U Granted JPS5991033U (en) 1982-12-11 1982-12-11 High frequency limiter circuit

Country Status (1)

Country Link
JP (1) JPS5991033U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50115956A (en) * 1974-02-25 1975-09-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50115956A (en) * 1974-02-25 1975-09-10

Also Published As

Publication number Publication date
JPS5991033U (en) 1984-06-20

Similar Documents

Publication Publication Date Title
US3786372A (en) Broadband high frequency balun
US5047739A (en) Transmission line resonator
US4216446A (en) Quarter wave microstrip directional coupler having improved directivity
US5525945A (en) Dielectric resonator notch filter with a quadrature directional coupler
US7183882B2 (en) Microstrip band pass filter using end-coupled SIRs
EP1034576B1 (en) Multi surface coupled coaxial resonator
KR20050117040A (en) A dielectric waveguide-type ceramic filter with a metal guide-can
JPH08148911A (en) Waveguide coaxial converter and waveguide matching circuit
JPH0411381Y2 (en)
US4313097A (en) Image frequency reflection mode filter for use in a high-frequency receiver
US5563561A (en) Dielectric block apparatus having two opposing coaxial resonators separated by an electrode free region
JPS6141441B2 (en)
JPH07249902A (en) Strip line filter and connection means between strip line filter and microstrip line
JPH05251906A (en) Ridge and trough waveguide
JPS5836002A (en) Resonant circuit device
Darwis et al. Cross-coupled line bandpass filter based on modified parallel-coupled line structure
US5798676A (en) Dual-mode dielectric resonator bandstop filter
KR20040006952A (en) Microstrip Ring with a Compact Tunable Microwave Bandgap Structure
JPS59161B2 (en) Filter using coaxial resonator
AU712921B2 (en) Field effect transistor amplifier
KR102251907B1 (en) Board mounting coaxial connector
JPH0744083Y2 (en) Dielectric filter
Ishizaki et al. Study of the influence of grounding for microstrip resonators
KR100543214B1 (en) Microstrip-coaxial line perpendicular device
JP2561473Y2 (en) Dielectric resonator