US3786372A - Broadband high frequency balun - Google Patents

Broadband high frequency balun Download PDF

Info

Publication number
US3786372A
US3786372A US3786372DA US3786372A US 3786372 A US3786372 A US 3786372A US 3786372D A US3786372D A US 3786372DA US 3786372 A US3786372 A US 3786372A
Authority
US
United States
Prior art keywords
stub
cable
balanced
housing
leg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
J Epis
Shu Kuo S Chung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GTE Sylvania Inc
Original Assignee
GTE Sylvania Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GTE Sylvania Inc filed Critical GTE Sylvania Inc
Priority to US31483572A priority Critical
Application granted granted Critical
Publication of US3786372A publication Critical patent/US3786372A/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced with unbalanced lines or devices

Abstract

A broadband high frequency balun is connectable between balanced and unbalanced transmission lines so that these lines are essentially colinear. The balun comprises a coaxial cable and a shorted stub in approximately a half-loop configuration, the balanced line being connected to the cable and stub within a conductive housing or shield. The cable-stub spacing is substantially greater than the effective length of the stub, thereby decreasing the lower frequency operating limit of the balun. The addition of a lossy layer to the inner surface of the housing permits a substantial increase in the operating bandwidth of the balun by suppressing adverse resonance effects within the housing.

Description

Mite States Epis et al.

i atent I 1 Jan. 15, 1974 BROADBAND HIGH FREQUENCY BALUN [75] Inventors: James J. Epis, Sunnyvale; Samuel Chung-shu Kuo, Cupertino, both of Calif.

21 Appl. No.: 314,835

[52] US. Cl. 333/26, 333/33 [51] Int. Cl. 1103b 7/38, H03h 7/42 [58] Field of Search 333/25, 26, 32, 33;

[56] References Cited UNlTED STATES PATENTS 2,581,156 l/l952 Weighton 333/26 X 2,530,048 ll/l950 Driscoll 333/26 X FOREIGN PATENTS OR APPLICATIONS 877,342 12/1942 France 333/26 OTHER PUBLICATIONS Fubini et aL-A Wide-Band Transformer from an Unbalanced to a Balanced Line in Proceedings of the IRE-Waves and Electrons Section October, 1947; pages 1,l53l,l55.

MacKenzie-Some Recent Advances in Coaxial Components for Sweep Frequency Instrumentation in the Microwave Journal June 1969; pages 7374.

Primary Examiner-Rudolph V. Rolinec Assistant ExaminerMarvin Nussbaum Att0rneyJohn F. Lawler [57] ABSTRACT A broadband high frequency balun is connectable between balanced and unbalanced transmission lines so that these lines are essentially colinear. The balun comprises a coaxial cable and a shorted stub in approximately a half-loop configuration, the balanced line being connected to the cable and stub within a conductive housing or shield. The cable-stub spacing is substantially greater than the effective length of the stub, thereby decreasing the lower frequency operating limit of the balun. The addition of a lossy layer to the inner surface of the housing permits a substantial increase in the operating bandwidth of the balun by suppressing adverse resonance effects within the housmg.

4 Claims, 5 Drawing Figures BROADBAND HIGH FREQUENCY BALUN BACKGROUND OF THE INVENTION This invention relates to baluns and more particularly to an improved balun capable of operating at high frequencies.

A balun is a device which effectually transforms a TEM-mode wave propagating on a balanced twoconductor transmission line into another TEM-mode wave propagating inside an unbalanced-type transmission line, the latter typically being a coaxial line. The TEM-mode transformation is reciprocal.

There are many applications for such a device. An important application is the connection of a coaxialline output or input of a transmitter or a receiver to any type of antenna that can be excited properly only by means of a balanced two-conductor transmission line. In many instances it is desired if not required that the balun interconnecting the two different types of transmission lines be capable of operating effectively and efficiently over broad frequency bands, often over very broad bands. An everincreasing demand for very broadband conical and cavity-backed spiral antennas for operation up to 30 to 40 GI-Iz exist at the present time. Utilization of a broadband balun provides the most economical convenient means to achieve proper excitation of these antennas. The provision of a satisfactory reasonably efficient very broadband balun for these important newly developing applications for spiral antennas is a principal objective of this invention.

A prior art balun useful at high microwave frequencies is described in an article entitled A Wide-Band Balun by McLaughlin et al. in IRE Transaction on Microwave Theory and Techniques, July 1958, at pages 314-316. The upper limit of useful frequency range for this balun is about 18 GHz and furthermore the input and output lines to this balun are spatially orthogonal. Accordingly, this balun cannot be used over the full range of a spiral antenna, for example, operating over a band of 1.3 to 40 I-IHz. Furthermore, colinear feed arrangements cannot be accommodated by this balun.

OBJECTS AND SUMMARY OF INVENTION An object of this invention is the provision of a balun having insertion loss and input VSWR performances comparable to state-of-the-art baluns but having extremely broadband widths, i.e., 36:1.

A further object is to provide a balun of this type for use at frequencies up to 40 GI-lz.

Another object is to provide a balun in which the unbalanced coaxial input transmission line is colinear or nearly colinear with the balanced line.

These and other objects of the invention are achieved with a balun featuring a cable and shorted stub spaced apart by a distance greater than the length of the stub and housed in a conductive shield. The cable and stub are configured to form approximately a half loop and the balanced line connected to the cable and stub extends in a direction parallel to the cable. The band width of the balun is greatly increased with a slight increase in insertion loss through suppression of resonances of the TEM-wave, TE-wave and TM-w-ave modes within the cavityby disposition ofa lossy material in the housing.

DESCRIPTION OF THE DRAWINGS FIG. 1 is a top plan view of a balun embodying the invention;

FIG. 2 is a section taken on line 22 of FIG. 1;

FIG. 3 is a greatly enlarged sectional view of the junction of the balanced line with the coaxial line and shorted stub;

FIG. 4 is a view taken on line 4-4 of FIG. 3; and

FIG. 5 is a section taken on line 55 of FIG. 4.

DESCRIPTION OF PREFERRED EMBODIMENTS Referring now to the drawings, a balun embodying the invention is shown at 10 and comprises a cylindrical housing 11 having an axis A, a side wall 12 and end walls 13 and 14 at opposite ends of the side wall. The housing is preferably made of conductive material such as copper or brass and defines a cavity 16 within which energy from a balanced line 18 is transformed to an unbalanced line 19 (or vice versa). A central opening 21 in end wall 13 permits the balanced line to extend into the cavity without making electrical contact with the housing. A standard connector 22 attached to end wall 14 permits connection to the balun of the external unbalanced line 19, shown as a coaxial line.

Extending into the housing from end wall 14 at connector 22 is an inverted L-shaped coaxial cable 24 having a first leg 25 extending parallel to housing axis A and a second leg 26 extending radially inwardly from and substantially at right angles to leg 25 for connection to balanced line 13. Cable 24 has an inner conductor 24a and an outer conductor 24b, the latter being connected to end wall 14. On the diametrically opposite side of the cavity from cable 24 is a similarly inverted L-shaped conductive stub 28 having a first leg 29 electrically connected to and extending inwardly from the end wall 14 and a second leg 30 extending radially inwardly and substantially at right angles to first leg 29. Cable 24 and stub 28 lie in a plane containing the axis A of the housing and are symmetrically disposed about the axis in the shape of a half rectangular loop as shown in FIG. 2.

Balanced line 18 comprises a pair of conductors 32 and 33 which, in the embodiment shown, are formed or deposited as thin films on a low loss dielectric strip 35. This balanced line extends from its connection to cable 24 and stub 28 within housing 11 to utilization apparatus, not shown, such as a spiral antenna.

The connection of the balanced line 18 to the cable and stub is shown in FIG. 3. Cable outer conductor 24b at the inner end of radial leg 26 is electrically connected to conductor 32 of balanced line 18. Inner conductor 24a extends through an opening 37 in and therefore is electrically insulated from conductor 32 and passes through insulator strip 35 for electrical contact with conductor 33 and stub leg 30. In practice, stub 28 preferably is tubular in shape and may then have an apertured plug 39 press-fitted into the inner end of leg 30 for receiving the extension of the inner conductor as shown. The plug, inner conductor, and stub leg 30 are electrically connected to conductor 33 of the balanced line by solder 40 or the like. Optimum operation of the balun is achieved by forming the outer surfaces of coaxial cable 24 and stub 28 such that those surfaces are virtually identical.

In prior art baluns of the general type described above, the distance d between component parts corresponding to legs 25 and 29 of the cable and stub, respectively, generally determine the highest usable frequency of the devices. More particularly, as the distance d approaches 0.2 A where )t is the operating wavelength, currents on the exterior of legs 25 and 29 begin to radiate.

Without the housing 11 functioning as an electromagnetic shield around those legs, such radiation would render the balun of the present invention useless for its intended purpose. More specifically, the shielding effect of housing 11 prevents such radiation, thereby extending the frequency range of the device. As the operating frequency is increased, however, resonant cavity effects of housing 11 come into play. With such increase in frequency, the cavity in the housing becomes electrically large enough in diameter to support waveguide-type modes. These waveguide-type modes are TE- and TM-modes as distinguished from TEM-modes. The currents on the legs of the stub and coaxial cable within the cavity excite such modes. The effect of the waveguide-type modes in the cavity is to cause insertion loss spikes periodically across the operating band. In order to eliminate these spikes, and thereby greatly increase the operating bandwidth, a layer or cylinder 42 of dissipative or lossy material is disposed adjacent to the side wall of the cavity, as shown in FIGS. 1 and 2. This material suppresses these waveguide-type modes and eliminates the insertion loss spikes caused by them while at the same time producing an acceptably small increase in the average insertion loss of the device across the band.

It should be noted that the balun described above without the lossy material 42 and in which the distance d is greater than the height h of the stub and cable provided satisfactory performance as a balun over a :1 bandwidth, the insertion loss being less than 1.3 db. Thus, for applications having this or a smaller bandwidth requirement, the lossy material may be omitted, with the advantage of a decrease in insertion loss. Details are described below.

A shielded half-loop balun of the type described above without lossy liner 42 was constructed and successfully operated and had the following dimensions and operating characteristics:

Cavity Inner diameter 2.75 inches Length (axial) 1.25 inches Loop Distance d 1.5 inches Height Ii 0.697 inches Diameter of cable/stub 0.085 inches Balanced line Thickness! (gap) 0.031 inches Characteristic impedance 62 ohms Bandwidth 0.256 GHZ to 3.84 GHZ (15.011) Maximum insertion loss 1.2 db

The addition to the above-described tested balun of a complete cylinder 42 of 0.375 inch thick lossy maerial made of carbonized foam by Emerson Cummings, Inc. and designated as AN-73, adjacent to the cylindrical side wall 12 increased the useful bandwidth from the 0.256 GHZ -3.84 GI-Iz (15:1) range to 0.269 GHz to 9.71 61-12 (36:1) while maintaining the insertion loss less than 1.5 db across that band. In addition to suppressing TE- and TM-mode resonances, the lossy material also suppressed TEM-mode resonances which occurred in the cavity as a consequence of the effective electrical length of stub leg 29 approaching A2 and 1.0 A.

The higher frequency versions of baluns which embody this invention are achieved by scaling the dimensions of the balun components in accordance with the frequency desired or required. Such scaling is demonstrated in Table I for baluns without lossy cylinder 42, beginning with the tested model described earlier.

TABLE I Semi-Rigid Coaxial Line Frequency Band Comment UT 85 0.256 to 3.84 GHZ Tested Model (15:1 Bandwidth) UT 0.311 to 4.663 GHz 70/85 Scale Model UT 47 0.462 to 6.945 0112 47/85 Scale Model UT 35 0.622 to 9.326 GHz 35/85 Scale Model UT 20 1.088 to 16.32 6112 20/85 Scale Model All of the coaxial cables referenced in the table and satisfactory connectors for them are commercially available items. Dimensioning of the balanced line is readily and accurately controlled by photo-etching the lines on a dielectric strip of properly scaled dimensions. Finally, the housing 11 is machined so that it is readily constructed accurately to the precise scaled dimensions. While Table I demonstrates how the preferred embodiment of the invention without lossy cylinder 42 is scaled for use at higher frequencies, it does not necessarily follow that directly scaled models are optimum designs.

Table II illustrates the effect of scaling the dimensions of the foregoing tested embodiment of the invention which included the lossy layer 42 within the cavity to greatly expand the operating bandwidth of the balun.

TABLE II Semi-Rigid Coaxial Line Frequency Range Comment UT 0.269 to 9.71 GHz Tested Model (36:1 Bandwidth) UT 70 0.3266 to 11.79 GHZ UT 47 0.4865 to 17.57 GHZ UT 35 0.6533 to 23.58 GHz UT 20 1.143 to 41.26 GHz The last version of the balun listed in this table has an upper operating frequency limit in excess of 40 6112.

What is claimed is: 1. A device for transforming an unbalanced transmission line to a balanced transmission line comprising an electrically conductive casing having a side wall and parallel end walls connected to opposite ends of the side wall and defining a cavity therewithin,

one of said end walls having an opening through which the balanced line extends into the cavity transversely of and insulated from said one end wall,

said unbalanced line comprising a coaxial cable projecting into the cavity from the other end wall and having an outer conductor connected at opposite ends to said other end wall and to one conductor of said balanced transmission line, respectively, said cable also having an inner conductor connected within the cavity to the other conductor of said balanced line,

a conductive stub electrically connecting the other conductor of said balanced line to said other end wall,

said stub and said cable having substantially equal outer diameters and substantially equal lengths, and having first parallel portions, respectively, projecting into the cavity from said other end wall and being spaced apart by a distance substantially greater than the length of each of said first portions.

2. The device according to claim 1 with a thin layer of lossy material on the interior of said side wall.

3. A balun for interconnecting an unbalanced transmission line with a balanced transmission line comprisa cylindrical conductive housing having an axis and axially spaced end walls,

one of said end walls having a central opening therein through which said balanced line extends axially into and insulated from said housing,

an L-shaped coaxial cable having a first leg extending into the housing from the other end wall parallel to and offset from said axis and having a second leg extending radially inwardly from the first leg toward said balanced line,

said cable having an inner conductor and an outer conductor, said outer conductor being electrically connected to said housing, means for electrically connecting said unbalanced line on the outside of said housing to said first leg of the cable whereby the unbalanced and balanced lines extend substantially parallel to one another, an L-shaped conductive stub in said housing having a first leg connected to said other end wall and extending parallel to and offset from said axis, said stub also having a second leg connected to and extending radially inwardly toward said balanced line colinearly with the second leg of the coaxial cable, said balanced line having first and second conductors connected to the outer and inner conductors, respectively, of said cable, said second conductor also being connected to said second leg of said stub, the spacing between the first legs of said cable and said stub being substantially greater than the length of said first leg of the stub. 4. The balun according to claim 3 in which said housing has a side wall, and a resistive coating on the inner surface of said side wall.

Claims (4)

1. A device for transforming an unbalanced transmission line to a balanced transmission line comprising an electrically conductive casing having a side wall and parallel end walls connected to opposite ends of the side wall and defining a cavity therewithin, one of said end walls having an opening through which the balanced line extends into the cavity transversely of and insulated from said one end wall, said unbalanced line comprising a coaxial cable projecting into the cavity from the other end wall and having an outer conductor connected at opposite ends to said other end wall and to one conductor of said balanced transmission line, respectively, said cable also having an inner conductor connected within the cavity to the other conductor of said balanced line, a conductive stub electrically connecting the other conductor of said balanced line to said other end wall, said stub and said cable having substantially equal outer diameters and substantially equal lengths, and having first parallel portions, respectively, projecting into the cavity from said other end wall and being spaced apart by a distance substantially greater than the length of each of said first portions.
2. The device according to claim 1 with a thin layer of lossy material on the interior of said side wall.
3. A balun for interconnecting an unbalanced transmission line with a balanced transmission line comprising a cylindrical conductive housing having an axis and axially spaced end walls, one of said end walls having a central opening therein through which said balanced line extends axially into and insulated from said housing, an L-shaped coaxial cable having a first leg extending into the housing from the other end wall parallel to and offset from said axis and having a second leg extending radially inwardly from the first leg toward said balanced line, said cable having an inner conductor and an outer conductor, said outer conductor being electrically connecTed to said housing, means for electrically connecting said unbalanced line on the outside of said housing to said first leg of the cable whereby the unbalanced and balanced lines extend substantially parallel to one another, an L-shaped conductive stub in said housing having a first leg connected to said other end wall and extending parallel to and offset from said axis, said stub also having a second leg connected to and extending radially inwardly toward said balanced line colinearly with the second leg of the coaxial cable, said balanced line having first and second conductors connected to the outer and inner conductors, respectively, of said cable, said second conductor also being connected to said second leg of said stub, the spacing between the first legs of said cable and said stub being substantially greater than the length of said first leg of the stub.
4. The balun according to claim 3 in which said housing has a side wall, and a resistive coating on the inner surface of said side wall.
US3786372D 1972-12-13 1972-12-13 Broadband high frequency balun Expired - Lifetime US3786372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US31483572A true 1972-12-13 1972-12-13

Publications (1)

Publication Number Publication Date
US3786372A true US3786372A (en) 1974-01-15

Family

ID=23221655

Family Applications (1)

Application Number Title Priority Date Filing Date
US3786372D Expired - Lifetime US3786372A (en) 1972-12-13 1972-12-13 Broadband high frequency balun

Country Status (1)

Country Link
US (1) US3786372A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4862189A (en) * 1987-02-11 1989-08-29 The Marconi Company Limited Microwave transformer
FR2652451A1 (en) * 1989-09-26 1991-03-29 Trt Telecom Radio Electr Balanced HYPERFREQUENCY MIXER WITH "BALUN" CIRCUIT.
US20050088353A1 (en) * 2003-10-27 2005-04-28 Irion James M.Ii Method and apparatus for obtaining wideband performance in a tapered slot antenna
US20070042639A1 (en) * 2005-06-30 2007-02-22 Manter David P Connector with improved shielding in mating contact region
US20110230095A1 (en) * 2005-06-30 2011-09-22 Amphenol Corporation High frequency electrical connector
US8491313B2 (en) 2011-02-02 2013-07-23 Amphenol Corporation Mezzanine connector
US8771016B2 (en) 2010-02-24 2014-07-08 Amphenol Corporation High bandwidth connector
US8926377B2 (en) 2009-11-13 2015-01-06 Amphenol Corporation High performance, small form factor connector with common mode impedance control
US9004942B2 (en) 2011-10-17 2015-04-14 Amphenol Corporation Electrical connector with hybrid shield
US9225085B2 (en) 2012-06-29 2015-12-29 Amphenol Corporation High performance connector contact structure
US9450344B2 (en) 2014-01-22 2016-09-20 Amphenol Corporation High speed, high density electrical connector with shielded signal paths
US20160285204A1 (en) * 2015-03-27 2016-09-29 Tyco Electronics Corporation Electrical connector and interconnection system having resonance control
US9484674B2 (en) 2013-03-14 2016-11-01 Amphenol Corporation Differential electrical connector with improved skew control
US9520689B2 (en) 2013-03-13 2016-12-13 Amphenol Corporation Housing for a high speed electrical connector
US9831588B2 (en) 2012-08-22 2017-11-28 Amphenol Corporation High-frequency electrical connector
US10122129B2 (en) 2010-05-07 2018-11-06 Amphenol Corporation High performance cable connector
US10205286B2 (en) 2016-10-19 2019-02-12 Amphenol Corporation Compliant shield for very high speed, high density electrical interconnection
US10243304B2 (en) 2016-08-23 2019-03-26 Amphenol Corporation Connector configurable for high performance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR877342A (en) * 1940-03-18 1942-12-03 Telefunken Gmbh A balun for shortwave
US2530048A (en) * 1950-11-14 Unbalanced-to-balanced impedance
US2581156A (en) * 1947-01-28 1952-01-01 Pye Ltd Hybrid transformer coupling network for very high frequencies

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2530048A (en) * 1950-11-14 Unbalanced-to-balanced impedance
FR877342A (en) * 1940-03-18 1942-12-03 Telefunken Gmbh A balun for shortwave
US2581156A (en) * 1947-01-28 1952-01-01 Pye Ltd Hybrid transformer coupling network for very high frequencies

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Fubini et al. A Wide Band Transformer from an Unbalanced to a Balanced Line in Proceedings of the IRE Waves and Electrons Section October, 1947; pages 1,153 1,155. *
MacKenzie Some Recent Advances in Coaxial Components for Sweep Frequency Instrumentation in the Microwave Journal June 1969; pages 73 74. *

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4862189A (en) * 1987-02-11 1989-08-29 The Marconi Company Limited Microwave transformer
FR2652451A1 (en) * 1989-09-26 1991-03-29 Trt Telecom Radio Electr Balanced HYPERFREQUENCY MIXER WITH "BALUN" CIRCUIT.
EP0420337A1 (en) * 1989-09-26 1991-04-03 Trt Telecommunications Radioelectriques Et Telephoniques Balanced hyperfrequency with "balun" circuit
US20050088353A1 (en) * 2003-10-27 2005-04-28 Irion James M.Ii Method and apparatus for obtaining wideband performance in a tapered slot antenna
WO2005043682A2 (en) * 2003-10-27 2005-05-12 Raytheon Company Method and apparatus for obtaining wideband performance in a tapered slot antenna
WO2005043682A3 (en) * 2003-10-27 2005-06-16 Raytheon Co Method and apparatus for obtaining wideband performance in a tapered slot antenna
US7057570B2 (en) 2003-10-27 2006-06-06 Raytheon Company Method and apparatus for obtaining wideband performance in a tapered slot antenna
US8864521B2 (en) 2005-06-30 2014-10-21 Amphenol Corporation High frequency electrical connector
US20110230095A1 (en) * 2005-06-30 2011-09-22 Amphenol Corporation High frequency electrical connector
US8083553B2 (en) * 2005-06-30 2011-12-27 Amphenol Corporation Connector with improved shielding in mating contact region
US9705255B2 (en) 2005-06-30 2017-07-11 Amphenol Corporation High frequency electrical connector
US9219335B2 (en) 2005-06-30 2015-12-22 Amphenol Corporation High frequency electrical connector
US20070042639A1 (en) * 2005-06-30 2007-02-22 Manter David P Connector with improved shielding in mating contact region
US8998642B2 (en) 2005-06-30 2015-04-07 Amphenol Corporation Connector with improved shielding in mating contact region
US8926377B2 (en) 2009-11-13 2015-01-06 Amphenol Corporation High performance, small form factor connector with common mode impedance control
US9028281B2 (en) 2009-11-13 2015-05-12 Amphenol Corporation High performance, small form factor connector
US8771016B2 (en) 2010-02-24 2014-07-08 Amphenol Corporation High bandwidth connector
US10381767B1 (en) 2010-05-07 2019-08-13 Amphenol Corporation High performance cable connector
US10122129B2 (en) 2010-05-07 2018-11-06 Amphenol Corporation High performance cable connector
US8657627B2 (en) 2011-02-02 2014-02-25 Amphenol Corporation Mezzanine connector
US8636543B2 (en) 2011-02-02 2014-01-28 Amphenol Corporation Mezzanine connector
US8491313B2 (en) 2011-02-02 2013-07-23 Amphenol Corporation Mezzanine connector
US8801464B2 (en) 2011-02-02 2014-08-12 Amphenol Corporation Mezzanine connector
US9660384B2 (en) 2011-10-17 2017-05-23 Amphenol Corporation Electrical connector with hybrid shield
US9004942B2 (en) 2011-10-17 2015-04-14 Amphenol Corporation Electrical connector with hybrid shield
US9225085B2 (en) 2012-06-29 2015-12-29 Amphenol Corporation High performance connector contact structure
US9583853B2 (en) 2012-06-29 2017-02-28 Amphenol Corporation Low cost, high performance RF connector
US9831588B2 (en) 2012-08-22 2017-11-28 Amphenol Corporation High-frequency electrical connector
US9520689B2 (en) 2013-03-13 2016-12-13 Amphenol Corporation Housing for a high speed electrical connector
US9484674B2 (en) 2013-03-14 2016-11-01 Amphenol Corporation Differential electrical connector with improved skew control
US9509101B2 (en) 2014-01-22 2016-11-29 Amphenol Corporation High speed, high density electrical connector with shielded signal paths
US10348040B2 (en) 2014-01-22 2019-07-09 Amphenol Corporation High speed, high density electrical connector with shielded signal paths
US9774144B2 (en) 2014-01-22 2017-09-26 Amphenol Corporation High speed, high density electrical connector with shielded signal paths
US9450344B2 (en) 2014-01-22 2016-09-20 Amphenol Corporation High speed, high density electrical connector with shielded signal paths
US20160285204A1 (en) * 2015-03-27 2016-09-29 Tyco Electronics Corporation Electrical connector and interconnection system having resonance control
US9570857B2 (en) * 2015-03-27 2017-02-14 Tyco Electronics Corporation Electrical connector and interconnection system having resonance control
US10243304B2 (en) 2016-08-23 2019-03-26 Amphenol Corporation Connector configurable for high performance
US10205286B2 (en) 2016-10-19 2019-02-12 Amphenol Corporation Compliant shield for very high speed, high density electrical interconnection

Similar Documents

Publication Publication Date Title
Nicholson Microwave Rotary Joints for X-, C-, and S-band
Yoshimura A microstripline slot antenna (short papers)
Van Heuven A New Integrated Waveguide-Microstrip Transition (Short Papers)
Bokhari et al. A small microstrip patch antenna with a convenient tuning option
SE313882B (en)
US7656167B1 (en) Electric field generator incorporating a slow-wave structure
JP2951707B2 (en) Planar antenna
CN1270407C (en) Medium antenna
Campbell et al. Design of a stripline log-periodic dipole antenna
US5337065A (en) Slot hyperfrequency antenna with a structure of small thickness
US7079081B2 (en) Slotted cylinder antenna
US3740754A (en) Broadband cup-dipole and cup-turnstile antennas
EP0112361B1 (en) Radiofrequency transducer and method of using same
US4737797A (en) Microstrip balun-antenna apparatus
US5841330A (en) Series coupled filters where the first filter is a dielectric resonator filter with cross-coupling
US2207845A (en) Propagation of waves in a wave guide
US6794950B2 (en) Waveguide to microstrip transition
US2281550A (en) Electric-circuit element
US4001632A (en) High frequency excited electrodeless light source
US2755447A (en) Radio frequency coupling devices
Skinner et al. Wide-band orthomode transducers
Das et al. Impedance of a radiating slot in the ground plane of a microstripline
US3568206A (en) Transmission line loaded annular slot antenna
US2915716A (en) Microstrip filters
US4264881A (en) Microwave device provided with a 1/2 lambda resonator