JPH04113532A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH04113532A
JPH04113532A JP23169490A JP23169490A JPH04113532A JP H04113532 A JPH04113532 A JP H04113532A JP 23169490 A JP23169490 A JP 23169490A JP 23169490 A JP23169490 A JP 23169490A JP H04113532 A JPH04113532 A JP H04113532A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic layer
layer
magneto
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23169490A
Other languages
Japanese (ja)
Other versions
JP2708950B2 (en
Inventor
Yasuko Fuchigami
淵上 靖子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP23169490A priority Critical patent/JP2708950B2/en
Publication of JPH04113532A publication Critical patent/JPH04113532A/en
Application granted granted Critical
Publication of JP2708950B2 publication Critical patent/JP2708950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To dispense with magnets for initialization and bias magnets on overwriting by specifying the relation of Curie temps. of first to third magnetic layers and specifying the stray magnetic fields of the second and third magnetic layers to the first magnetic layer. CONSTITUTION:On a substrate 11, a first magnetic layer 12 having a magneto- optical effect, dielectric layer 13, antiparallel type second magnetic layer 14 having perpendicular magnetic anisotropy, and third magnetic layer 15 are successively formed. These three magnetic layers are formed to satisfy the relation Tc1<Tc2<Tc3, when Tc1, Tc2, and Tc3 are Curie temps. of the first, second and third magnetic layers 12, 14, 15 respectively, and relations Hd2 Hd3 at room temp., Hd2>Hd3 at near Tc1 and Hd2<Hd3 at temp. from Tc2 to Tc3, when Hd2 and Hd3 are the stray magnetic fields of the second magnetic layer 14 and third magnetic layer 15, respectively, to the first magnetic layer 12. In this case, by varying the power of laser light 16 according to the informa tion data to be recorded on overwriting, magnetic recording according to the information data to be recorded can be performed by using changes of the stray magnetic fields. Thereby, no initialization magnet nor bias magnet is required.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はオーバーライド(Overwrite)可能な
光磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to an overwriteable magneto-optical recording medium.

(ロ)従来の技術 従来、光変調法によりオーバーライド(重ね書き)可能
な光磁気記録媒体については第5図ないし第7図に示す
ものが提案されている(特開昭62−175948号公
報またはJapanese Journalof 、A
pplied Physics、〜o1.26(198
7)Supplement26−4. P2S5−15
9)。
(B) Conventional technology Conventionally, magneto-optical recording media that can be overwritten (overwritten) using optical modulation methods have been proposed as shown in FIGS. Japanese Journalof,A
pplied Physics, ~o1.26 (198
7) Supplement 26-4. P2S5-15
9).

即ち、第5図に示すように光磁気記録媒体1は、レーザ
光2と磁石3.4の磁界を利用して情報を高密度に記録
又は重ね書き記録し、レーザ光2を用いてカー効果によ
り記録情報が読み出されるものである。この光磁気記録
媒体1は、第6図に示すように基板上に記録層5と補助
層6とからなり、両層はその保磁力をHl、Hl、キュ
リー温度をT1、T、とするとき、H+ > Ht 、
 T + < T tの関係を有するものに材料が選定
される。この媒体1の温度と磁界の強さとの関係を第7
図に示す。
That is, as shown in FIG. 5, the magneto-optical recording medium 1 uses a laser beam 2 and the magnetic field of a magnet 3.4 to record or overwrite information at high density, and uses the laser beam 2 to generate the Kerr effect. The recorded information is read out. As shown in FIG. 6, this magneto-optical recording medium 1 consists of a recording layer 5 and an auxiliary layer 6 on a substrate. , H+ > Ht,
The material is selected to have the relationship T + < T t. The relationship between the temperature of the medium 1 and the strength of the magnetic field is expressed in the seventh
As shown in the figure.

尚、第7図中、Trは室温であり、Hbはバイアス磁石
の磁界の強さである。
In FIG. 7, Tr is room temperature, and Hb is the strength of the magnetic field of the bias magnet.

記録層5への記録に際して、例えば、記録デ−タフを書
き換える場合には、バイアス磁石3とこのバイアス磁界
と逆向きの磁界を発生する初期化磁石4を設ける。この
初期化磁石4からの磁界の大きさH1旧は、記録層5の
保磁力H1より小さく、補助層6の保磁力H2より大き
い。この記録層5・\の記録に際して、この初期化磁界
が回転している媒体1に常に印加されているので、媒体
1が図示矢印8方向に回転するとき、初期化磁石4によ
り補助層6を初期化磁石4の磁化方向、即ち図面上で下
向きに磁化している。
When recording on the recording layer 5, for example, when rewriting recorded data, a bias magnet 3 and an initialization magnet 4 that generate a magnetic field in the opposite direction to the bias magnetic field are provided. The magnitude H1 of the magnetic field from the initialization magnet 4 is smaller than the coercive force H1 of the recording layer 5 and larger than the coercive force H2 of the auxiliary layer 6. During recording on the recording layer 5, this initializing magnetic field is always applied to the rotating medium 1, so when the medium 1 rotates in the direction of arrow 8 in the figure, the auxiliary layer 6 is activated by the initializing magnet 4. The initialization magnet 4 is magnetized in the direction of magnetization, that is, downward in the drawing.

オーバーライドは記録情報データ9に合わせて高パワー
と低パワーのレーザ光を照射することによって行われる
。即ち低パワーのレーザ光の照射時には、媒体1の温度
が記録層5のキュリー温度T1より高く、補助層6のキ
ュリー温度T、より低くなるように、また、高パワーの
レーザ光の照射時には補助層6のキュリー温度T、より
高くなるようにレーザ光のパワーが調整される。
Overriding is performed by irradiating high power and low power laser beams in accordance with the recorded information data 9. That is, when irradiating with a low power laser beam, the temperature of the medium 1 is set higher than the Curie temperature T1 of the recording layer 5, and the Curie temperature T of the auxiliary layer 6 is lower. The power of the laser beam is adjusted so that the Curie temperature T of the layer 6 becomes higher.

巳たがって、低パワーの照射時には、記録層5の磁化が
ゼロになるが、補助層6の磁化が残っているので、レー
ザ光の照射を中止した後の冷却時に補助層6からの交換
結合力によって記録層5:よ補助層6と同じ向き(初期
化磁界と同じ向き)に磁化される。一方、高パワーの照
射時には、記録層5及び補助層6の磁化がいずれもゼロ
になるため、レーザ光照射の中止後の両層の冷却時に最
初は補助層6がバイアス磁石3からの磁界の向きに磁化
され、続いて記録層5も同じ向きに磁化される。
Therefore, during low power irradiation, the magnetization of the recording layer 5 becomes zero, but since the magnetization of the auxiliary layer 6 remains, exchange coupling from the auxiliary layer 6 occurs during cooling after the laser light irradiation is stopped. Due to the force, the recording layer 5 is magnetized in the same direction as the auxiliary layer 6 (in the same direction as the initialization magnetic field). On the other hand, during high-power irradiation, the magnetization of both the recording layer 5 and the auxiliary layer 6 becomes zero, so when the two layers are cooled down after the laser beam irradiation is stopped, the auxiliary layer 6 initially absorbs the magnetic field from the bias magnet 3. Then, the recording layer 5 is also magnetized in the same direction.

このように、記録層5は、低パワー照射により初期化磁
界の方向に、又高パワー照射によりバイアス磁界の方向
に磁化される。
In this way, the recording layer 5 is magnetized in the direction of the initialization field by low power irradiation and in the direction of the bias field by high power irradiation.

(ハ)発明が解決しようとする課趙 巳かし、従来の光変調法によりオーバーライド可能な光
磁気記録媒体は、記録層と補助層とよりなるものである
から、オーバーライドのときに初期化磁石及びバイアス
磁石を必要とするものであり、記録装置が複雑になる欠
点がある。
(c) Issues to be solved by the invention: Since a magneto-optical recording medium that can be overridden by the conventional optical modulation method is composed of a recording layer and an auxiliary layer, an initializing magnet is required during overriding. This method requires a bias magnet and a disadvantage that the recording device becomes complicated.

本発明はかかる点に鑑み発明されたものにしてオーバー
ライドのときに初期化磁石及びバイアス磁石を必要とじ
ない光磁気記録媒体を提供しようとするものである。
The present invention was devised in view of the above points, and an object of the present invention is to provide a magneto-optical recording medium that does not require an initialization magnet or a bias magnet at the time of overriding.

(ニ)課題を解決するための手段 かかる課題を解決するために、本発明による光磁気記録
媒体は、基板上に、磁気光学効果を有する第1磁性層と
、誘電体層と、垂直磁気異方性を有しアンチパラレル型
の第2磁性層及び第3磁性層とを順次積層形成し、第1
ないし第3磁性層はそのキュリー温度をTc+、Tc、
、Tc、とするとき、Tc1<Tc、<Tc、であり、
且つ第1磁性層に対する第2磁性層及び第3磁性層の浮
遊磁界の大きさをI(d、、Hd、とするとき、室温で
はHd、#Hd、、Tc、近傍ではHd、>Hd、、T
c2ないしTc、の温度範囲ではHd、<)ld、の関
係にあることを特徴とするものである。
(d) Means for Solving the Problems In order to solve the problems, the magneto-optical recording medium according to the present invention includes a first magnetic layer having a magneto-optic effect, a dielectric layer, and a perpendicular magnetic anisotropy on a substrate. A second magnetic layer and a third magnetic layer of an anti-parallel type having orientation are sequentially laminated, and the first
The third magnetic layer has its Curie temperature Tc+, Tc,
, Tc, then Tc1<Tc, <Tc,
Further, when the magnitude of the stray magnetic field of the second magnetic layer and the third magnetic layer with respect to the first magnetic layer is I(d,,Hd,), at room temperature, Hd, #Hd,,Tc, and in the vicinity, Hd, >Hd, , T
In the temperature range from c2 to Tc, the relationship is Hd<)ld.

(ホ)作用 オーバーライドのときには、レーザ光照射時における第
2及び第3磁性層からの浮遊磁界が利用される。また、
レーザ光は記録情報データに合わせて高パワーと低パワ
ーにパワーが調整されて使用される この低パワーの照射は第1磁性層のキュリー温度Tc、
近傍の温度に光磁気記録媒体を加熱し、また、高パワー
の照射は第2磁性層のキュリー温度Tc、と第3磁性層
のキュリー温度Tc、の範囲の温度に光磁気記録媒体を
加熱するように、それぞれのパワーが調整される。
(e) At the time of effect override, stray magnetic fields from the second and third magnetic layers during laser beam irradiation are utilized. Also,
The laser beam is used with its power adjusted to high power and low power according to the recorded information data.This low power irradiation increases the Curie temperature Tc of the first magnetic layer,
The magneto-optical recording medium is heated to a temperature in the vicinity, and the high-power irradiation heats the magneto-optical recording medium to a temperature in the range of the Curie temperature Tc of the second magnetic layer and the Curie temperature Tc of the third magnetic layer. The power of each is adjusted accordingly.

一方、第2磁性層及び第3磁性層はアンチパラレル型で
あるため、これらの磁性層が第1磁性層に及ぼす浮遊磁
界の方向が異なり、しかもレーザ光の低パワー照射時に
おけるTc、近傍ではHd、>Hd、であるから、第1
磁性層はその冷却時に第2磁性層の浮遊磁界Hd、の交
換結合力によりその浮遊磁界Hd、の方向に磁化される
。これに対し、レーザ光の高パワー照射時においてはキ
ュノー温度TCIとTc、の範囲の温度に光磁気記録媒
体を加熱し、この温度範囲ではHd2<Hd3であるか
ら、第1磁性層はその冷却時に第3磁性層の浮遊磁界H
d、の交換結合力によりその浮遊磁界Hd sの方向に
磁化される。
On the other hand, since the second magnetic layer and the third magnetic layer are anti-parallel, the direction of the stray magnetic field exerted by these magnetic layers on the first magnetic layer is different, and Tc at the time of low-power laser beam irradiation is different from that in the vicinity. Since Hd, > Hd, the first
When the magnetic layer is cooled, it is magnetized in the direction of the stray magnetic field Hd by the exchange coupling force of the stray magnetic field Hd of the second magnetic layer. On the other hand, during high-power irradiation with laser light, the magneto-optical recording medium is heated to a temperature in the range of Cunot temperatures TCI and Tc, and since Hd2<Hd3 in this temperature range, the first magnetic layer is cooled. Sometimes the stray magnetic field H of the third magnetic layer
Due to the exchange coupling force of d, it is magnetized in the direction of its stray magnetic field Hd s.

j足って、オーバーライドのときに、従来では必要であ
ったバイアス磁石を必要としない。
Therefore, when overriding, there is no need for a bias magnet, which was required in the past.

(へ)実施例 本発明の一実施例を図面に基すいて説明する。(f) Example An embodiment of the present invention will be described based on the drawings.

第1図は本発明による光磁気記録媒体の模式断面図であ
り、オーバーライド時を概念的に示している。
FIG. 1 is a schematic sectional view of a magneto-optical recording medium according to the present invention, conceptually showing the state of overriding.

この図面において、光磁気記録媒体10は、透明基板1
1上に磁気光学効果を有する第1磁性層12と、誘電体
層13と、垂直磁気異方性を有しアンチパラレル型の第
2磁性層14及び第3磁性層15とを順次積層して構成
される。これらの磁性層はそのキュリー温度をTct、
Tct、Tcsとするとき、Tct<Tc、<Tctで
あり、また第1磁性層12に対する第2磁性層14及び
第3磁性層15の浮遊磁界の大きさをHd、、Hd、と
するとき、室温ではHd t≠Hd、、Tc+近傍では
Hd = > Hd s、TctないしTc、の温度範
囲ではHd =<Hd hの関係にあるものが使用され
る。
In this drawing, a magneto-optical recording medium 10 includes a transparent substrate 1
1, a first magnetic layer 12 having a magneto-optical effect, a dielectric layer 13, and a second and third magnetic layer 14 and a third magnetic layer 15 of an anti-parallel type having perpendicular magnetic anisotropy are sequentially laminated. configured. These magnetic layers have their Curie temperatures Tct,
When Tct and Tcs, Tct<Tc and <Tct, and when the magnitude of the stray magnetic field of the second magnetic layer 14 and third magnetic layer 15 with respect to the first magnetic layer 12 is Hd, , Hd, The relationship Hd t≠Hd at room temperature, Hd = > Hd s near Tc+, and Hd = <Hd h in the temperature range from Tct to Tc is used.

具体的には、透明基板11として厚さ1.2mmのつ゛
ラス板又はポリカーボネート街脂が使用され、各磁性層
と−では、希土類金属元素(Gd、 Tb等と遷移金属
元素(Fe、 Co等、・よりなるアモルファス材料を
使用し、各磁性層はその材料をスパッターすることによ
り形成される。この実施例では第1磁性層12としてT
bFeを使用L、第2磁性層13及び第3磁性層14と
してTbFeCoを使用した。
Specifically, a glass plate or polycarbonate street resin with a thickness of 1.2 mm is used as the transparent substrate 11, and each magnetic layer is made of rare earth metal elements (Gd, Tb, etc.) and transition metal elements (Fe, Co, etc.). , and each magnetic layer is formed by sputtering the material. In this embodiment, the first magnetic layer 12 is T.
TbFeCo was used as the second magnetic layer 13 and the third magnetic layer 14.

この場合に、アモルファス合金の各部位から外部に現れ
る磁化の方向及び大きさは、アモルファス合金内の希土
類金属原子のスピンの方向及び大きさと遷移金属原子の
スピンの方向及び大きさにより定まり、希土類金属元素
であるTbの組成比を26〜27%にすることによりア
モルファス合金内の希土類金属原子のスピンの方向及び
大きさと遷移金属原子のスピンの方向及び大きさがほぼ
等しい補償組成とすることができる。また2つの磁性層
の各組成において、両層ともに希土類金属元素が上記組
成比(26〜27%)より多い又は少ないときには、両
層の磁化の方向が同じとなり、この状態の両層をパラレ
ル型というに対し、一方の磁性層の希土類金属元素が上
記組成比(26〜27eδ)より多く、他方の磁性層の
希土類金属元素が上記組成比(26〜27%)より少な
いときには、両層の磁化の方向が異なり、この状態の両
層をアンチパラレル型という。
In this case, the direction and magnitude of magnetization appearing externally from each part of the amorphous alloy is determined by the spin direction and magnitude of the rare earth metal atoms within the amorphous alloy and the spin direction and magnitude of the transition metal atoms. By setting the composition ratio of the element Tb to 26 to 27%, a compensation composition can be obtained in which the spin direction and magnitude of the rare earth metal atoms in the amorphous alloy are almost equal to the spin direction and magnitude of the transition metal atoms. . In addition, in each composition of the two magnetic layers, when the rare earth metal element in both layers is more or less than the above composition ratio (26 to 27%), the direction of magnetization of both layers is the same, and both layers in this state are combined into a parallel type. On the other hand, when the rare earth metal element in one magnetic layer is more than the above composition ratio (26 to 27eδ) and the rare earth metal element in the other magnetic layer is less than the above composition ratio (26 to 27%), the magnetization of both layers is The directions of the two layers are different, and both layers in this state are called antiparallel type.

第1磁性層12は補償組成にされ、第2磁性層14及び
第3磁性層15はアンチパラレル型にされる。さらに、
Coの組成比を高めることによりキュリー温度を高める
ことができる。
The first magnetic layer 12 has a compensation composition, and the second magnetic layer 14 and the third magnetic layer 15 have an antiparallel type. moreover,
The Curie temperature can be increased by increasing the Co composition ratio.

また、第1磁性層12の厚みとして500〜1000人
、第2磁性層14及び第3磁性層15の厚みは熱容量を
考慮してそれぞt′L1000〜2000人とすること
ができる。
Further, the thickness of the first magnetic layer 12 can be set to 500 to 1000, and the thicknesses of the second magnetic layer 14 and the third magnetic layer 15 can be set to t'L of 1000 to 2000, respectively, considering heat capacity.

実施例においては、第1磁性層12としては、Tbts
Fettを厚み700人に形成し、キュリー温度TC1
が130℃であった。第2磁性層14としては、Tb+
、Fe1yCO2oを厚み2000人に形成して、キュ
ノー温度Tc、が200℃であった。第3磁性層15と
しては、Tb+、Fe1yCO2oを厚み2000人に
形成して、キュリー温度Tc、が300℃であった。
In the embodiment, the first magnetic layer 12 is Tbts
Fett is formed to a thickness of 700 people, and the Curie temperature is TC1.
was 130°C. As the second magnetic layer 14, Tb+
, Fe1yCO2o was formed to a thickness of 2000 mm, and the Cunot temperature Tc was 200°C. The third magnetic layer 15 was formed of Tb+, FelyCO2o to a thickness of 2000 mm, and the Curie temperature Tc was 300°C.

また誘電体層13としてはSi、\、、 ZnS、 S
in、等を使用することができ、この実施例ではSi+
\、を用いた。
Further, as the dielectric layer 13, Si, \, ZnS, S
in, etc., and in this example, Si+
\, was used.

第1図において、第2及び第3磁性層14及び15の合
金内部の遷移金属原子のスピンの方向及び大きさを実線
のベクトル↑で示し、希土類金属原子のスピンの方向及
び大きさを破線のベクトル千で示し、合金全体の磁化の
方向及び大きさを二重実線のベクトル官で示す。この場
合に二重実線のベクトル?は実線のベクトル↑と破線の
ベクトルφの和で示される。但し、合金内部では遷移金
属原子のスピンと希土類金属原子のスピンとの相互作用
のため、実線のベクトル↑と破線のベクトルやは方向が
必ず逆になっている。従ってそのベクトル和がゼロのと
きは、二重実線のベクトル?はゼロ、即ち外部に現れる
磁化の大きさがゼロになる(このときの合金組成が前述
の補償組成である)。
In FIG. 1, the direction and magnitude of the spin of the transition metal atoms inside the alloys of the second and third magnetic layers 14 and 15 are indicated by the solid line vector ↑, and the direction and magnitude of the spin of the rare earth metal atoms are indicated by the broken line. The vector is shown in 1,000, and the direction and magnitude of magnetization of the entire alloy are shown in double solid vector lines. Double solid vector in this case? is indicated by the sum of the solid line vector ↑ and the broken line vector φ. However, inside the alloy, due to the interaction between the spin of transition metal atoms and the spin of rare earth metal atoms, the directions of the solid line vector ↑ and the dashed line vector are always opposite. Therefore, when the vector sum is zero, is it a double solid line vector? is zero, that is, the magnitude of magnetization appearing externally is zero (the alloy composition at this time is the above-mentioned compensation composition).

また、第2磁性層14は希土類金属元素の割合が補償組
成における割合より少ないため、実線のベクトル1の大
きさが逆方向の破線のベクトル7の大きさより大きい。
Furthermore, since the proportion of the rare earth metal element in the second magnetic layer 14 is smaller than the proportion in the compensation composition, the magnitude of the solid line vector 1 is larger than the magnitude of the broken line vector 7 in the opposite direction.

これに対して、第3磁性層15は希土類金属元素の割合
が補償組成における割合より多いため、実線のベクトル
↑の大きさが逆方向の破線のベクトルTの大きさより小
さい。
On the other hand, in the third magnetic layer 15, the proportion of the rare earth metal element is greater than the proportion in the compensation composition, so the magnitude of the solid line vector ↑ is smaller than the magnitude of the dashed line vector T in the opposite direction.

第1磁性層に及ぼす第2及び第3磁性層からの浮遊磁界
の温度特性を第2図に示す。この図面から、室温TRて
”はHd、#Hd、、Tc、近傍ではHd、>Hd、、
Teyない−Tc、の温度範囲ではHd2<Hd、の関
係にあるにあることが分かる。
FIG. 2 shows the temperature characteristics of the stray magnetic fields from the second and third magnetic layers exerted on the first magnetic layer. From this drawing, the room temperature TR is Hd, #Hd, , Tc, and in the vicinity Hd, >Hd, .
It can be seen that in the temperature range of Tey - Tc, there is a relationship of Hd2<Hd.

オーバーライドのときには、レーザ光16のみを使用す
る。このレーザ光16は記録情報データに合わせて高パ
ワーと低パワーに調整されて使用される。この低パワー
の照射は、第1磁性層12をそのキュリー温度Tc、よ
り高めて第1磁性層12に記録されていた磁気記録情報
を消去し、第1磁性層12の冷却時に第2磁性層14か
らの浮遊磁界Hd2の交換結合力によりその浮遊磁界H
d、の方向に磁化記録する。これに対し、高パワーの照
射は第2磁性層14のキュリー温度Tc2より高いが、
第3磁性層15のキュリー温度Tc3より低い温度に光
磁気記録媒体10を加熱して、第1磁性層12に記録さ
れていた磁気記録情報を消去口、第1磁性層12の冷却
時に第3磁性層15からの浮遊磁界Hd 、の交換結合
力によりその浮遊磁界Hd、の方向に磁化記録する。
At the time of override, only the laser beam 16 is used. This laser beam 16 is used with its power adjusted to high and low depending on the recorded information data. This low power irradiation raises the first magnetic layer 12 to its Curie temperature Tc, erases the magnetic recording information recorded in the first magnetic layer 12, and when the first magnetic layer 12 is cooled, the second magnetic layer Due to the exchange coupling force of the stray magnetic field Hd2 from 14, the stray magnetic field H
Magnetization is recorded in the direction of d. On the other hand, although high power irradiation is higher than the Curie temperature Tc2 of the second magnetic layer 14,
The magneto-optical recording medium 10 is heated to a temperature lower than the Curie temperature Tc3 of the third magnetic layer 15, and the magnetic recording information recorded in the first magnetic layer 12 is erased. Due to the exchange coupling force of the floating magnetic field Hd from the magnetic layer 15, magnetization is recorded in the direction of the floating magnetic field Hd.

このオーバーライドを、レーザ光のパワーが高いときと
低いときに分けて第3図及び第4図に基ずいて詳述する
This override will be explained in detail based on FIGS. 3 and 4, separately for when the power of the laser beam is high and when the power of the laser beam is low.

第3図Aは低パワ7のレーザ光照射時の媒体の模式断面
図、同図Bはその冷却時の同断面図である。
FIG. 3A is a schematic cross-sectional view of the medium when irradiated with a laser beam of low power 7, and FIG. 3B is a cross-sectional view of the medium when it is cooled.

第3図Aにおいて、オーバーライドに際して記録情報デ
ータに応じて低パワーのレーザ光を媒体10に照射する
と、媒体10の温度は、第1磁性層12のキュリー温度
Tc+より少し高い温度になるので、第1磁性層12の
磁化がゼロとなる。
In FIG. 3A, when the medium 10 is irradiated with a low-power laser beam according to the recorded information data during override, the temperature of the medium 10 becomes slightly higher than the Curie temperature Tc+ of the first magnetic layer 12. The magnetization of the first magnetic layer 12 becomes zero.

ここでレーザ光15の照射を中止して第1磁性層12を
冷却し始めると、キュリー温度Tc、近傍の温度領域で
は第2図から明かのように第1磁性層12に及ぼす第2
磁性層14からの浮遊磁界Hd2が第3磁性層15がら
の浮遊磁界Hd、より大きいので、第1磁性層12は第
3図A中の矢印17で示すように第2磁性層14がらの
交換結合力によって第2磁性層14の磁化の向きと同じ
向きに第3図B中の矢印18で示されるように磁化され
る。
When the irradiation of the laser beam 15 is stopped and the first magnetic layer 12 is started to be cooled, the Curie temperature Tc is reached.
Since the stray magnetic field Hd2 from the magnetic layer 14 is larger than the stray magnetic field Hd from the third magnetic layer 15, the first magnetic layer 12 replaces the second magnetic layer 14 as shown by the arrow 17 in FIG. 3A. Due to the bonding force, the second magnetic layer 14 is magnetized in the same direction as the magnetization direction as shown by the arrow 18 in FIG. 3B.

次に、第4図Aは高パワーのレーザ光照射時の媒体の模
式断面図、同図Bはその冷却時の同断面図である。
Next, FIG. 4A is a schematic cross-sectional view of the medium when it is irradiated with a high-power laser beam, and FIG. 4B is a schematic cross-sectional view of the medium when it is cooled.

第4図Aに示すように高パワーのレーザ光を媒体10に
照射すると、媒体10の温度は、第2磁性層13のキュ
リー温度Tc、より高いが、第3磁性層14のキュリー
温度Tc、より低い温度に加熱されるから、第1磁性層
12の磁化がゼロになる。ここでレーザ光15の照射を
中止して媒体10を冷却し始めると、キュリー温度Tc
、近傍の温度領域では第2図から明かのように第1磁性
層12に及ぼす第3磁性層15がらの浮遊磁界Hd、が
第2磁性層14からの浮遊磁界Hd、より大きいので、
第1磁性層12は第4図A中の矢印19で示すように第
3磁性層15がらの交換結合力によって第3磁性層15
の磁化の向きと同じ向きに第4図B中の矢印20で示さ
れるように磁化される。その後、第1磁性層12は室温
T6に至る過程において温度T c +を経由するが、
この時の第2及び第3磁性層14及び15の温度は、そ
の熱容量が第1磁性層12より大きいので第1磁性層1
2の温度より高い。このため、温度Tc、近傍における
第1磁性層12に及ぼす第2磁性層14からの浮遊磁界
Hd tが第3磁性層15からの浮遊磁界Hd sより
大きいことの影響を受けることがない。
When the medium 10 is irradiated with a high-power laser beam as shown in FIG. Since it is heated to a lower temperature, the magnetization of the first magnetic layer 12 becomes zero. At this point, when the irradiation of the laser beam 15 is stopped and the medium 10 is started to be cooled, the Curie temperature Tc
As is clear from FIG. 2, in the temperature range near , the stray magnetic field Hd from the third magnetic layer 15 exerted on the first magnetic layer 12 is larger than the stray magnetic field Hd from the second magnetic layer 14.
As shown by the arrow 19 in FIG.
It is magnetized in the same direction as the direction of magnetization, as shown by arrow 20 in FIG. 4B. Thereafter, the first magnetic layer 12 passes through a temperature T c + in the process of reaching room temperature T6;
At this time, the temperature of the second and third magnetic layers 14 and 15 is higher than that of the first magnetic layer 12 because their heat capacity is larger than that of the first magnetic layer 12.
Temperature higher than 2. Therefore, it is not affected by the temperature Tc and the fact that the stray magnetic field Hd t from the second magnetic layer 14 exerted on the first magnetic layer 12 in the vicinity is larger than the stray magnetic field Hd s from the third magnetic layer 15 .

以上のようにレーザ光のパワーが記録情報データに応じ
て高低に調整され、第1磁性層12の磁化の方向を記録
情報データに応じたものにすることができる。
As described above, the power of the laser beam is adjusted to be high or low according to the recorded information data, and the direction of magnetization of the first magnetic layer 12 can be made according to the recorded information data.

室温において、第1磁性層12の磁気記録は誘電体層1
3の存在により、第2及び第3磁性層14及び15から
の浮遊磁界Hd、及びHd sの影響を受けることがな
い。
At room temperature, magnetic recording in the first magnetic layer 12 is performed on the dielectric layer 1.
3, it is not affected by the stray magnetic fields Hd and Hds from the second and third magnetic layers 14 and 15.

(ト)発明の効果 本発明は基板上に、磁気光学効果を有する第1磁性層と
、誘電体層と、垂直磁気異方性を有しアンチパラレル型
の第2磁性層及び第3磁性層とを順次積層形成し、第1
ない5第3磁性層はそのキュリー温度をTc+、Tc7
、Tc、とするとき、Tc+<Tc+<Tc+であり、
且つ第1磁性層に対する第2磁性層及び第3磁性層の浮
遊磁界の大きさをHd、、Hd、とするとき、室温では
Hd+4=;Hd、、Tc、近傍ではHdt > Hd
 h、Tc。
(G) Effects of the Invention The present invention provides a substrate with a first magnetic layer having a magneto-optic effect, a dielectric layer, and a second and third magnetic layer having perpendicular magnetic anisotropy and having an antiparallel type. and are sequentially laminated, and the first
5 The third magnetic layer has its Curie temperature Tc+, Tc7
, Tc, then Tc+<Tc+<Tc+,
Moreover, when the magnitude of the stray magnetic field of the second magnetic layer and the third magnetic layer with respect to the first magnetic layer is Hd,, Hd, at room temperature, Hd+4=;Hd,, Tc, and in the vicinity, Hdt > Hd.
h, Tc.

ないしTc、の温度範囲では)Id、<Hdlの関係に
あることを特徴とするものであるから、オーバーライド
に際してレーザ光のパワーが記録情報データに応じて高
低に切り替えることによって上記浮遊磁界の大きさの変
化を利用して、上記記録情報データに応じた磁気記録が
可能となり、従来の初期化磁石及びバイアス磁石を必要
としない光磁気記録媒体を提供することができる。
Since it is characterized by the relationship of Id<Hdl in the temperature range from Tc to Tc, the magnitude of the stray magnetic field can be adjusted by switching the power of the laser beam to high or low in accordance with the recorded information data during override. By utilizing this change, magnetic recording can be performed in accordance with the recorded information data, and it is possible to provide a magneto-optical recording medium that does not require conventional initialization magnets and bias magnets.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ない5第4図jは本発明の一実施fM+を示−1
第1図(シ本発明による光磁気記録媒体の模式断面図、
第2図は第2及び第3磁性層からの浮遊磁界の大きさと
温度の関係説明図、第3図Aは低パワーのレーザ光照射
時の媒体の模式断面図、同図Biシその冷却時の同断面
図、第4図Aは高ハワーのレーザ光照射時の媒体の模式
断面図、同図Bはその冷却時の同断面図である。第5図
ない:第7図は従来例を示し、第5図は従来の光磁気記
録媒体の斜視図、第6図はその媒体の模式断面図、第7
図は媒体の各磁性層の温度と磁界の強さとの関係説明図
である。 10−−−−−−−5光磁気記録媒体、l 1−−−−
−−−一基板、12〜−一一一一一第1磁性層、13−
−−−−−−一誘電体層、14−−−−−−5第2磁性
層、15−−−−−−5第3磁性層、16〜−−−−−
−−レーザ光。
Figures 1-5 and 4-j show one implementation of the present invention fM+-1
FIG. 1 (Schematic sectional view of a magneto-optical recording medium according to the present invention,
Fig. 2 is an explanatory diagram of the relationship between the magnitude of the stray magnetic field from the second and third magnetic layers and temperature, Fig. 3A is a schematic cross-sectional view of the medium during irradiation with a low-power laser beam, and Fig. 3A is a schematic cross-sectional view of the medium when it is cooled. FIG. 4A is a schematic cross-sectional view of the medium when it is irradiated with a high-power laser beam, and FIG. 4B is a schematic cross-sectional view of the medium when it is cooled. Figure 5 not shown: Figure 7 shows a conventional example, Figure 5 is a perspective view of a conventional magneto-optical recording medium, Figure 6 is a schematic sectional view of the medium, Figure 7 shows a conventional example.
The figure is an explanatory diagram of the relationship between the temperature of each magnetic layer of the medium and the strength of the magnetic field. 10-------5 magneto-optical recording medium, l 1-----
---1 substrate, 12--11-11 first magnetic layer, 13-
---------1st dielectric layer, 14------5 2nd magnetic layer, 15------5 3rd magnetic layer, 16~------
--Laser light.

Claims (1)

【特許請求の範囲】[Claims] (1)基板上に、磁気光学効果を有する第1磁性層と、
誘電体層と、垂直磁気異方性を有しアンチパラレル型の
第2磁性層及び第3磁性層とを順次積層形成し、第1な
いし第3磁性層はそのキュリー温度をTc_1、Tc_
2、Tc_3とするとき、Tc_1<Tc_2<Tc_
3 であり、且つ第1磁性層に対する第2磁性層及び第3磁
性層の浮遊磁界の大きさをHd_2、Hd_3とすると
き、室温ではHd_2≒Hd_3Tc_1近傍ではHd
_2>Hd_3、Tc_2ないしTc_3の温度範囲で
はHd_2<Hd_3の関係にあることを特徴とする光
磁気記録媒体。
(1) a first magnetic layer having a magneto-optic effect on the substrate;
A dielectric layer, a second magnetic layer and a third magnetic layer of an anti-parallel type having perpendicular magnetic anisotropy are sequentially laminated, and the first to third magnetic layers have their Curie temperatures Tc_1, Tc_
2. When Tc_3, Tc_1<Tc_2<Tc_
3, and when the magnitudes of the floating magnetic fields of the second and third magnetic layers with respect to the first magnetic layer are Hd_2 and Hd_3, at room temperature Hd_2≒Hd_3 Near Tc_1, Hd
A magneto-optical recording medium characterized by a relationship of Hd_2<Hd_3 in the temperature range of _2>Hd_3 and Tc_2 to Tc_3.
JP23169490A 1990-08-31 1990-08-31 Magneto-optical recording medium Expired - Fee Related JP2708950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23169490A JP2708950B2 (en) 1990-08-31 1990-08-31 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23169490A JP2708950B2 (en) 1990-08-31 1990-08-31 Magneto-optical recording medium

Publications (2)

Publication Number Publication Date
JPH04113532A true JPH04113532A (en) 1992-04-15
JP2708950B2 JP2708950B2 (en) 1998-02-04

Family

ID=16927535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23169490A Expired - Fee Related JP2708950B2 (en) 1990-08-31 1990-08-31 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JP2708950B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0684600A1 (en) * 1994-05-09 1995-11-29 Canon Kabushiki Kaisha Magneto-optical recording medium and reproducing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0684600A1 (en) * 1994-05-09 1995-11-29 Canon Kabushiki Kaisha Magneto-optical recording medium and reproducing method therefor
US5661716A (en) * 1994-05-09 1997-08-26 Canon Kabushiki Kaisha Magneto-optical recording medium and reproducing method therefor

Also Published As

Publication number Publication date
JP2708950B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
JPH0695404B2 (en) Magneto-optical recording method
JP2579631B2 (en) Magneto-optical recording method
US5418076A (en) Magnetic-optical recording medium
JP2503708B2 (en) Magneto-optical recording medium and device
JPS63268103A (en) Thermomagnetic recording method
JPH0863810A (en) Magnetooptical recording medium and information reproducing method therefor
JPH0395745A (en) Magneto-optical recording method and recording device
JPH04355239A (en) Magneto-optical recording method and magneto-optical recording medium
JPH04113532A (en) Magneto-optical recording medium
JP2829970B2 (en) Thermomagnetic recording medium
JP3249713B2 (en) Magneto-optical recording medium and recording method thereof
JP3359804B2 (en) Magneto-optical recording medium and magneto-optical recording method using the same
JPH0536141A (en) Magneto-optical recorder
JP2805070B2 (en) Thermomagnetic recording method
JPH01217744A (en) Magneto-optical recording medium
JP3126459B2 (en) Magneto-optical recording method and magneto-optical recording device
JP2805787B2 (en) Magneto-optical recording method
JP3395189B2 (en) Magneto-optical recording method
KR100253556B1 (en) Over-writable magneto-optical recording medium
JP2674815B2 (en) Magneto-optical recording method
JP3613267B2 (en) Magneto-optical recording medium
JP3090891B2 (en) Thermomagnetic recording medium
JPH06176412A (en) Magneto-optical recording medium
JP2809224B2 (en) Thermomagnetic recording device
JP2757560B2 (en) Magneto-optical recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees