JPH04113529A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPH04113529A
JPH04113529A JP2233030A JP23303090A JPH04113529A JP H04113529 A JPH04113529 A JP H04113529A JP 2233030 A JP2233030 A JP 2233030A JP 23303090 A JP23303090 A JP 23303090A JP H04113529 A JPH04113529 A JP H04113529A
Authority
JP
Japan
Prior art keywords
protective film
substrate
film
recording medium
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2233030A
Other languages
Japanese (ja)
Inventor
Yoshikazu Sato
嘉一 佐藤
Tanio Urushiya
多二男 漆谷
Kenji Ozawa
小沢 賢治
Shinji Ogino
慎次 荻野
Haruo Kawakami
春雄 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2233030A priority Critical patent/JPH04113529A/en
Publication of JPH04113529A publication Critical patent/JPH04113529A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable rewriting by about one million times without causing deterioration of the substrate on rewriting of record by forming a heat-resistant protective film between the substrate and a dielectric protective film of the optical recording medium. CONSTITUTION:On the substrate 1, a dielectric protective film 2, phase transition-type recording film 3, second dielectric protective film 4, reflecting and cooling film 6, and surface protective film 5 are successively formed in the order listed. Information is recorded, reproduced or erased by irradiating the medium with laser light entering from the substrate side to cause reversible phase transition in the phase transition type recording film 3. A heat-resistant protective film 8 is provided between the substrate 1 and the first dielectric protective film 2 of the medium. By providing the heat-resistant protective film 8 between the substrate 1 and the first dielectric protective film 2 to constitute the medium, transfer of heat of laser light to the tracking grooves in the substrate 1 is suppressed. This heat is required for the phase transition-type recording film 3 and is given by the laser light entering from the substrate side. Thus, the defectless state of the medium is maintained for about one million times of rewriting of record.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はオーバーライド可能な書き換え型の光記碌媒体
(元ディスク)に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an overwritable rewritable optical storage medium (original disk).

〔従来の技術〕[Conventional technology]

近年、情報記録の高密度化、大容量化lこ対する要求が
高まり、国内外でその研究開発が盛んに行なわれている
が、特にレーザを光源として用いる光記録媒体は従来の
磁気記録媒体に比べておよそ10〜100倍の記録密度
を有し、しかも記録、再生ヘッドと記録媒体とが非接触
状態で情報の記録。
In recent years, there has been an increasing demand for higher density and larger capacity information recording, and research and development has been actively conducted both domestically and internationally, but optical recording media that use lasers as a light source have fallen short of conventional magnetic recording media. It has a recording density that is approximately 10 to 100 times higher than that of the previous one, and information is recorded in a non-contact state between the recording/reproducing head and the recording medium.

再生ができるために記録媒体の損傷も少なく、長寿命で
あるなどの特徴があることから、膨大な情報量を記録、
再生する手段として有望である。
Because it can be played back, there is little damage to the recording medium and it has a long lifespan, so it can record a huge amount of information.
It is promising as a means of regeneration.

この元記碌媒体は用途に応じて再生専用製、追記型、書
き換え型の3種類に大別することができる。再生専用型
は情報の読み出しのみが可能な再生専用記録媒体であり
、追記型は必l!に応じて情報を記録、再生することは
できるが、記録した情報の消去は不可能なものである。
These recordable media can be roughly divided into three types depending on the purpose: reproduction-only, write-once, and rewritable. The read-only type is a read-only recording medium that can only read information, and the write-once type is a must! Although it is possible to record and reproduce information according to the information, it is impossible to erase the recorded information.

これに対して書き換え型は情報の記録、昇生とさらに記
録済みの情報を消去して書き換えることが可能であり、
コンピュータ用のデータファイルとしての利用が望まれ
最も期待の大きいものである。
On the other hand, the rewritable type allows information to be recorded, raised, and even recorded information to be erased and rewritten.
It is desired to be used as a data file for computers and has the highest expectations.

書き換え型の光記録媒体は、光凪気方式と相変化方式の
二つの記録方式の開発が進められているが、ここではこ
れら二つの記録方式のうち、相変化方式について述べる
Two recording methods are being developed for rewritable optical recording media: an optical lull method and a phase change method. Of these two recording methods, the phase change method will be described here.

相変化方式は一般にレーザ光を光記録媒体の記録面lこ
集光して加熱し、レーザ光のパルス出力とパルス幅を制
御することによりて生ずる記録材料の相変化、即ち結晶
状態から非結晶状態への移行または相転移などを起こさ
せ、それぞれの状態における反射率の違いから情報の記
録と消去を行なうものである。
The phase change method generally focuses a laser beam on the recording surface of an optical recording medium and heats it, and then controls the pulse output and pulse width of the laser beam to change the phase of the recording material, that is, from a crystalline state to an amorphous state. It causes a state transition or phase transition, and records and erases information based on the difference in reflectance in each state.

この相変化方式を用いる光記録媒体の構造の一例を第2
図の模式断面図に示す。第2図において。
An example of the structure of an optical recording medium using this phase change method is shown in the second section.
This is shown in the schematic cross-sectional view of the figure. In fig.

この光記録媒体は、多くのトラッキング溝を設け1こポ
リカーボネートなどの透明基板lの上に。
This optical recording medium has many tracking grooves on a transparent substrate such as polycarbonate.

ZnSなどのセラミ・lクスからなる第1の誘電体保護
膜2.この第1の誘電体保護膜2の上着こ記録用材料即
ちGe5bTeなどの相変化記録膜3.さらにその上に
第1の誘電体保護膜2と同じセラミックスなどの第2の
誘電体保m膜4および有機物の表面保護@5を4112
次積層9た構造としたものである。
First dielectric protective film made of ceramic lx such as ZnS2. This first dielectric protective film 2 is coated with a recording material, ie, a phase change recording film 3 such as Ge5bTe. Furthermore, a second dielectric protective film 4 made of the same ceramic material as the first dielectric protective film 2 and a surface protection @5 of an organic material are applied on top of the first dielectric protective film 2.
It has a structure in which nine layers are stacked.

また、第3図(こは第2のg重体保護膜4と界面保護膜
5との間に、 h13などの冷却@6を設けることも行
われている例を模式断面図として示し1こ。冷却膜6は
相変化記録膜3が結晶状態から非結晶状態へ変化する際
、溶融状態からの冷却速度を上げるためのものであり、
このとき二つの誘電体保護膜2.4は断熱層としての役
割も果たす。さらに冷却lI![6は冷却効果のはかに
、入射した光の反射膜としての機能も有すものであり、
その効果については、Alan、 E、 Be1lらの
” AntireflecHon 5tr−uC1ur
e8 for 0ptlcal recording″
により、雑誌IEEE、 J、 Quant、 Ele
ct、 、 QE−14巻、7号、487Jj (19
78)に言及されている。そしてレーザ光は基板の積層
暎を有する側と反対の面から入射させるのが普通であり
、レーザ光は1pfrL程度のスポット状に透明基板1
のトラッキング溝に来光される。
In addition, FIG. 3 (FIG. 3) shows a schematic cross-sectional view of an example in which cooling @ 6 such as h13 is also provided between the second g-heavy protection film 4 and the interface protection film 5. The cooling film 6 is for increasing the cooling rate from a molten state when the phase change recording film 3 changes from a crystalline state to an amorphous state.
At this time, the two dielectric protective films 2.4 also serve as a heat insulating layer. Even more cooling! [6] In addition to having a cooling effect, it also functions as a reflective film for incident light;
Regarding its effect, see Alan, E. Beil et al.
e8 for 0ptlcal recording''
by IEEE, J., Quant, Ele.
ct, , QE-14, No. 7, 487Jj (19
78). The laser beam is normally incident on the side of the substrate opposite to the side with the laminated layer, and the laser beam is applied to the transparent substrate in the form of a spot of about 1 pfrL.
The light comes into the tracking groove.

通常の相変化型光記録媒体では、初期状態は相変化記録
膜3を結晶状態としておき、情報記録時にこれにレーザ
光を照射し、営射都を溶融した後急冷却して非結晶状態
のスポットを形成する。消去時にはCの非結晶状態のス
ポットをレーザ光によりアニールして結晶状態へ戻すの
である。
In a normal phase-change optical recording medium, the phase-change recording film 3 is initially in a crystalline state, and when recording information, it is irradiated with laser light to melt the film and then rapidly cooled to form an amorphous state. Form a spot. During erasing, the amorphous C spot is annealed with a laser beam to return it to a crystalline state.

孔質化mft、記録媒体においては、1本のレーザ光源
を用いてオーバーライドを行なうことが可能である。即
ち、光源のパワーを時間とともに変調することによりて
、既lこ薔き込まれたデータの上に消去、再書き込みと
いう2段階の過程を経て新しいデータに書き換えるので
はなくて、消去過程を経ることなく1回で、新しいデー
タに書き換えてしまうことができる。第3図は光源のパ
ワーを時間とともに変調することと記録しようとする2
僅化データとの対しを示した関係図である。第3図にお
いてデータ1は記録パワー、データ0は消去パワーとな
る時間系列に対してf調された元がスポット状に回転し
ている光記録媒体に照射されてオーバーライドがなされ
る。7はウィンドウ幅を表わす。
In porous mft recording media, overriding can be performed using a single laser light source. In other words, by modulating the power of the light source over time, the data is erased rather than being rewritten with new data through a two-step process of erasing and rewriting over previously written data. You can rewrite the data with new data in one go without having to worry about it. Figure 3 shows how the power of a light source is modulated over time and is recorded.
It is a relationship diagram showing a pair with slight reduction data. In FIG. 3, data 1 is the recording power, data 0 is the erasing power, and the source adjusted to f is irradiated onto the rotating optical recording medium in the form of a spot for a time series and overriding is performed. 7 represents the window width.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

光記録媒体を用いた装置では、コードデータを記録する
ディジタル記録Iこおいては、その記録の書き換えが1
00万回程度は必要とされている。しかしながら、現状
では相変化型光記録媒体のデータの書き換えは10万回
程度が限度である。その原因は可逆的相変化を生ずる相
変化記録膜3にかかる熱がこの媒体の透明基板1のトラ
ッキング溝の面まで伝達され、この熱によって耐熱性の
低いポリカーボネートなどの透明基板1を劣化させ、と
くlこトラッキング溝の形状が損なわれることなどにあ
る。
In a device using an optical recording medium, rewriting of the digital recording for recording code data takes only one time.
Approximately 1,000,000 times are required. However, at present, data on a phase change optical recording medium can only be rewritten approximately 100,000 times. The reason for this is that the heat applied to the phase change recording film 3, which causes a reversible phase change, is transmitted to the surface of the tracking groove of the transparent substrate 1 of this medium, and this heat deteriorates the transparent substrate 1, which is made of polycarbonate or the like, which has low heat resistance. In particular, the shape of the tracking groove may be damaged.

本発明は上述の点に鑑みてなされたものであり。The present invention has been made in view of the above points.

その目的は耐熱用保護膜を備えた構造とすることにより
、記録の省き換えに際して基板が劣化することなく、1
00万回程夏の書き換え可能な光記録媒体を提供するこ
とにある。
The purpose of this is to create a structure with a heat-resistant protective film, so that the substrate will not deteriorate when replacing the recording.
The purpose of the present invention is to provide an optical recording medium that can be rewritten approximately one million times.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記の課題を解決するために1元記録媒体の基
板と第1の誘電体保1i[との間に耐熱用保護膜を介在
させたものである。
In order to solve the above-mentioned problems, the present invention provides a heat-resistant protective film interposed between the substrate of the one-source recording medium and the first dielectric support 1i.

〔作用〕[Effect]

本発明の光記録媒体は上記のように、基板と第1の誘電
体保護膜との関に、耐熱用保護膜を設けるように構成し
たために、基板側から照射されるレーザ光の相変化記録
膜に必要な熱が基板のトラッキング溝まで伝達されるの
を抑制し、記録の書き換えに対して100万回程度は基
板の健全性を保持することができる。
As described above, since the optical recording medium of the present invention is configured to provide a heat-resistant protective film between the substrate and the first dielectric protective film, phase change recording of laser light irradiated from the substrate side is possible. The heat required for the film is suppressed from being transmitted to the tracking grooves of the substrate, and the integrity of the substrate can be maintained for about 1 million times when recording is rewritten.

〔実施例〕〔Example〕

以下、本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.

第1図は本発明による光記録媒体の構成を示す模式断面
図であり、第2図、第3図と共通部分奢こ同一符号を用
いである。本発明の光記録媒体は透明基板1と第1の舖
電体保鏝膜2との間に耐熱用保護@8を設けてあり、そ
の他は基本的fこは第2図、第3図に示したものと同じ
構造を有するが、ここでは冷却@6を備えた第3図の光
記録媒体を改良したものとして示した。耐熱用法l!I
膜8が第2図の構造を持つ光記録媒体にも適用し得るこ
とは勿論である。
FIG. 1 is a schematic cross-sectional view showing the structure of an optical recording medium according to the present invention, and the same reference numerals are used for common parts with FIGS. 2 and 3. The optical recording medium of the present invention is provided with a heat-resistant protection @ 8 between the transparent substrate 1 and the first electrolyte protection film 2, and other basic features are shown in FIGS. 2 and 3. An improved version of the optical recording medium of FIG. 3 is shown having the same structure as shown, but now with cooling@6. Heat resistant usage! I
Of course, the film 8 can also be applied to an optical recording medium having the structure shown in FIG.

第1図の光記録媒体は通常のRFまたはDCマグネトロ
ンスパッタ法lこより容易ζこ作製するCとができ、そ
の作製手順は次の如くである。先ず1(Fマグネトロン
スパッタ法によりポリカーホネートの透明基板1上に、
膜厚207amの5tOa、sを耐熱用保護膜8として
形成し、この上に膜厚120nmのZnSを@1の誘電
体保護膜2として形成した後、相変化記録膜3としてG
ezSbzTes +第2の誘電体保護膜4として膜厚
180nmのZnSを順次形成する。次いでυをターゲ
ットとして、アルゴンガス中でDCスパッタを行ない、
膜厚Zoo nmのAJ冷却膜6を形成し、さらにスピ
ンコード法によりU■41I脂を塗布した後、紫外線硬
化させて1OPfF1 厚の表面保護1[15を設ける
。光記録媒体の直径は130雪冨である。
The optical recording medium shown in FIG. 1 can be manufactured more easily than the usual RF or DC magnetron sputtering method, and the manufacturing procedure is as follows. First, 1 (on a polycarbonate transparent substrate 1 by F magnetron sputtering method,
A film of 5 tOa, s with a film thickness of 207 am is formed as a heat-resistant protective film 8, and a ZnS film with a film thickness of 120 nm is formed thereon as a dielectric protective film 2, and then a G film is formed as a phase change recording film 3.
ezSbzTes+ZnS with a thickness of 180 nm is sequentially formed as the second dielectric protective film 4. Next, using υ as a target, DC sputtering is performed in argon gas,
An AJ cooling film 6 with a film thickness of Zoo nm is formed, and a U241I resin is further applied by a spin code method, followed by UV curing to provide a surface protection layer 1[15] with a thickness of 1 OPfF1. The diameter of the optical recording medium is 130 mm.

この際、基板1のポリカーボネートの屈折率が1.58
であり、第1の誘電体保@gj2の屈折率が2.33で
あるから、耐熱用保護膜8はこれらの中間の屈折率とな
るように、屈折率2.0を持つ5iOo、sを用い、そ
の膜厚は使用レーザ光波長(λ)をその2倍の屈折率(
n)で除した値、λ/2nとした。
At this time, the refractive index of the polycarbonate of the substrate 1 is 1.58.
Since the refractive index of the first dielectric material @gj2 is 2.33, the heat-resistant protective film 8 is made of 5iOo,s with a refractive index of 2.0 so that it has a refractive index between these two. The film thickness is determined by the refractive index (λ), which is twice the wavelength of the laser light used (λ).
The value divided by n) was set as λ/2n.

次にこのようにして得られた光記録媒体を周速g 2c
n/ secで回転させながら、波長830 nm r
出力10mWのレーザ光を照射して初期化を行なった。
Next, the optical recording medium obtained in this way has a circumferential speed of g 2c
Wavelength 830 nm r while rotating at n/sec
Initialization was performed by irradiating a laser beam with an output of 10 mW.

光記録媒体面のレーザスポット径は約1μ情である。ス
パッタ@後の相変化記録膜3は非結晶状態であり、その
光反射率は約6%であったが、レーザ光の照射番こより
光反射率は約18%にまで上昇した。光記録媒体の同じ
場所を同様の条件で再度レーザ光照射したとき1反射軍
は18%から変化が認められない。反射率が変化するの
は相変化記録膜3が非結晶状態から結晶状態へ変化した
からであり、再度のレーザ光照射で反射率が変化しなか
ったのは、最初のレーザ光照射により結晶化が十分(こ
行なわれたことを示している。
The diameter of the laser spot on the surface of the optical recording medium is about 1 μm. The phase change recording film 3 after sputtering was in an amorphous state and had a light reflectance of about 6%, but the light reflectance increased to about 18% after laser light irradiation. When the same location on the optical recording medium was irradiated with laser light again under the same conditions, no change was observed in the 1st reflection force from 18%. The reason why the reflectance changes is because the phase change recording film 3 changes from an amorphous state to a crystalline state, and the reason why the reflectance does not change after the second laser beam irradiation is because it was crystallized by the first laser beam irradiation. It shows that this has been done sufficiently.

以上の初期化を行なった後、光記録媒体の回転数を3.
60Orpmとし第4図に示した記録レベルとして11
mW、消去レベルとして6mWのパワー:に論を行ない
、第4図に示すウィンドウ幅7を67n’sfこ設定シ
て(2,7) RLI、コードで記録を行なった。
After performing the above initialization, the rotation speed of the optical recording medium is increased to 3.
60 Orpm and the recording level shown in Figure 4 is 11
mW and a power of 6 mW as the erasing level.The window width 7 shown in FIG. 4 was set to 67n'sf, and recording was performed using the (2,7) RLI code.

情報の書き込みを行なった後の東ね書きも上記と同じ条
件で行ない、光記録媒体の再生出力としてCN比で48
dBの値が得られた。これを上記と同じパワーで前の情
報を消去すると、消え残りの信号レベルは13dBまで
低下し、はぼ完全に消去することができた。
After writing the information, writing was performed under the same conditions as above, and the reproduction output of the optical recording medium was 48 in CN ratio.
A value in dB was obtained. When the previous information was erased using the same power as above, the remaining signal level dropped to 13 dB, making it possible to erase it almost completely.

また、(2,7)RLL  コードのランダムなパター
ンでオーバーライドを行なった結果から、耐熱用保護膜
8を備えていない従来の光記録媒体が1万回オーバーラ
イドを行なった時点で書き込み及び読み出しエラーが生
ずるのに対して1本発明の光記録媒体は100万回のオ
ーバーライドを行なっても、書き込み及び読み出しエン
−が生じないことも確認された。
In addition, from the results of overriding with a random pattern of (2,7) RLL codes, it was found that a conventional optical recording medium without a heat-resistant protective film 8 would have no write or read errors after 10,000 overrides. However, it was also confirmed that the optical recording medium of the present invention does not cause write or read errors even after overwriting one million times.

さらに本発明の光記録媒体と従来の光記録媒体との両者
について、比較のため10万回オーバーライドを行なっ
た後、これらを弗酸中に浸漬して、透明基板1のみを残
してその他の部分を完全に除去した試料を炸裂し、これ
を観察した結果、従来の光記録媒体の基板1はトラッキ
ング溝の形状が漬れていたのに対して1本発明の光記録
媒体に用いられた基板1では、トラッキング溝の形状は
初期の状態と全く変化していなかった。このことからも
1本発明の光記録媒体の方が書き換えの寿命が著しく長
くなることがわかる。
Furthermore, after overwriting both the optical recording medium of the present invention and the conventional optical recording medium 100,000 times for comparison, they were immersed in hydrofluoric acid, leaving only the transparent substrate 1 and other parts. As a result of exploding and observing a sample from which the substrate 1 had been completely removed, it was found that the tracking groove shape of the substrate 1 of the conventional optical recording medium was dimpled, whereas the shape of the tracking groove of the substrate 1 of the optical recording medium of the present invention was diluted. In No. 1, the shape of the tracking groove was not changed at all from the initial state. This also shows that the optical recording medium of the present invention has a significantly longer rewriting life.

〔発明の効果〕〔Effect of the invention〕

相変化型光記録媒体は、相変化記録膜に与える熱によっ
てポリカーボネートなどの基板が劣化し、そのトラッキ
ング溝に変形を生ずることなどに起因して、=−ドデー
タのディジタル記録の書き換えがlO万同程度しかでき
なかったが、本発明の光記脅媒体では冥施例で述べた如
く、基板と第1のI電体保護膜との間に耐熱用保!!!
膜を介在させたために、記録膜の結晶・非結晶の相変化
の際、基板のトラッキング溝まで熱が伝達されるのを抑
制し、トラッキング溝に変形を起こすことなく、記録の
書き換えを100万回行なうことができるようになった
In phase-change optical recording media, the heat applied to the phase-change recording film deteriorates the substrate such as polycarbonate, causing deformation of the tracking groove, which makes it impossible to rewrite digitally recorded data. However, in the optical recording medium of the present invention, as described in the second embodiment, there is a heat-resistant insulation layer between the substrate and the first I-electric protection film. ! !
Because the film is interposed, heat is suppressed from being transmitted to the tracking groove of the substrate when the recording film undergoes a crystalline/amorphous phase change, and recording can be rewritten over 1 million times without deforming the tracking groove. Now you can go around.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光記録媒体のS成を示す模式断面
図、第2図、第3図は従来の光記録媒体の構成を示す模
式断面図、第4図はレーザ九と時系列の関係で示したパ
ワー変調の睨明図である。 1:透明基板、2:第1のき電体保睡膜、3:相変化記
録膜、4:第2の瀦を体保1i膜。 5:表面保護@、6:冷却膜、7:ウインドウ幅、ネ1
 図
FIG. 1 is a schematic sectional view showing the S configuration of the optical recording medium according to the present invention, FIGS. 2 and 3 are schematic sectional views showing the structure of a conventional optical recording medium, and FIG. It is a perspective view of power modulation shown in relation. 1: Transparent substrate, 2: First current feeding body retention film, 3: Phase change recording film, 4: Second energy retention body 1i film. 5: Surface protection@, 6: Cooling film, 7: Window width, Ne1
figure

Claims (1)

【特許請求の範囲】 1)基板上に第1の誘電体保護膜、相変化記録膜、第2
の誘電体保護膜、反射冷却膜、表面保護膜がこの順に積
層形成され、前記基板側からレーザ光を入射して前記相
変化記録膜に可逆的相変化を起こさせることにより情報
の記録、再生、消去を行なう光記録媒体の前記基板と前
記第1の誘電体保護膜との間に耐熱用保護膜を形成した
ことを特徴とする光記録媒体。 2)請求項1記載の光記録媒体において、耐熱用保護膜
の屈折率が基板の屈折率と第1の誘電体保護膜の屈折率
との間の値を有することを特徴とする光記録媒体。 3)請求項1または2記載の光記録媒体において、耐熱
用保護膜の厚さをλ/2n(λは使用するレーザ光の波
長、nは耐熱用保護膜の屈折率)とすることを特徴とす
る光記録媒体。 4)請求項1ないし3記載の光記録媒体において、基板
がポリカーボネート、耐熱用保護膜がSiO_0_._
6からなることを特徴とする光記録媒体。
[Claims] 1) A first dielectric protective film, a phase change recording film, and a second dielectric protective film on a substrate.
A dielectric protective film, a reflective cooling film, and a surface protective film are laminated in this order, and a laser beam is incident from the substrate side to cause a reversible phase change in the phase change recording film, thereby recording and reproducing information. . An optical recording medium, characterized in that a heat-resistant protective film is formed between the substrate of the optical recording medium to be erased and the first dielectric protective film. 2) The optical recording medium according to claim 1, wherein the refractive index of the heat-resistant protective film has a value between the refractive index of the substrate and the refractive index of the first dielectric protective film. . 3) The optical recording medium according to claim 1 or 2, characterized in that the thickness of the heat-resistant protective film is λ/2n (λ is the wavelength of the laser beam used, and n is the refractive index of the heat-resistant protective film). optical recording medium. 4) In the optical recording medium according to claims 1 to 3, the substrate is polycarbonate, and the heat-resistant protective film is SiO_0_. _
An optical recording medium characterized by comprising 6.
JP2233030A 1990-09-03 1990-09-03 Optical recording medium Pending JPH04113529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2233030A JPH04113529A (en) 1990-09-03 1990-09-03 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2233030A JPH04113529A (en) 1990-09-03 1990-09-03 Optical recording medium

Publications (1)

Publication Number Publication Date
JPH04113529A true JPH04113529A (en) 1992-04-15

Family

ID=16948708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2233030A Pending JPH04113529A (en) 1990-09-03 1990-09-03 Optical recording medium

Country Status (1)

Country Link
JP (1) JPH04113529A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006510157A (en) * 2002-12-13 2006-03-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Rewritable optical record carrier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006510157A (en) * 2002-12-13 2006-03-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Rewritable optical record carrier
US8325586B2 (en) 2002-12-13 2012-12-04 Koninklijke Philips Electronics N.V. Rewritable optical record carrier

Similar Documents

Publication Publication Date Title
JP3698905B2 (en) Optical information recording medium, information recording method thereof, and information erasing method thereof
JPH11250502A (en) Optical disk
JPH06187662A (en) Optical recording medium
JPH06155921A (en) Optical recording medium
JPH04113529A (en) Optical recording medium
JPH11328733A (en) Phase transition optical disk having noble metal reflection layer and its optical data storage system
JPH02128330A (en) Optical recording medium
JP3159374B2 (en) Optical information recording medium
JPH07104424A (en) Optical information recording medium
JP2518384B2 (en) Optical recording medium
JP3165354B2 (en) Optical information recording medium
JP2643566B2 (en) Optical recording medium
JPH03141028A (en) Recording and erasing method for optical disk
JPH02278518A (en) Rewriting method for information
JPH023119A (en) Optical recording medium
JP2510320B2 (en) Optical recording medium
JPH03216827A (en) Optical recording medium
JP2900862B2 (en) Phase change optical disk
JP2972435B2 (en) Information optical recording medium and recording / reproducing method thereof
KR100266219B1 (en) Phase-changing optical recording medium and manufacturing method for it
JPH083912B2 (en) Novel optical recording medium and manufacturing method thereof
JPH11259909A (en) Optical record medium substrate and its production method and optical record medium and its production method
JPH0821176B2 (en) Phase change optical recording medium
JP2002245665A (en) Information recording medium
JP2984538B2 (en) Information optical recording media