JPH04113174A - Method of manufacturing air of low temperature - Google Patents

Method of manufacturing air of low temperature

Info

Publication number
JPH04113174A
JPH04113174A JP23388090A JP23388090A JPH04113174A JP H04113174 A JPH04113174 A JP H04113174A JP 23388090 A JP23388090 A JP 23388090A JP 23388090 A JP23388090 A JP 23388090A JP H04113174 A JPH04113174 A JP H04113174A
Authority
JP
Japan
Prior art keywords
air
liquid
temperature
compressed
liquid nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23388090A
Other languages
Japanese (ja)
Inventor
Katsuhiko Tsukada
塚田 勝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYODO SANSO KK
Original Assignee
KYODO SANSO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYODO SANSO KK filed Critical KYODO SANSO KK
Priority to JP23388090A priority Critical patent/JPH04113174A/en
Publication of JPH04113174A publication Critical patent/JPH04113174A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/28Quick cooling

Abstract

PURPOSE:To produce a large amount of low temperature air in a less-expensive manner by a method wherein one or more than two kinds of compressed air, compressed liquid nitrogen, liquid air and liquid argon is supplied to a mixing device through a flow rate adjusting valve, compressed air is cooled, and it is mixed with gasified nitrogen, air and argon. CONSTITUTION:After air 1 is compressed by a compressor 2, moisture content is removed by a dehumidifying device 3 and then the dehumidified air is supplied to a mixing device 6 through a flow rate adjusting valve 4 and a flow rate meter 5. In turn, liquid nitrogen 7 is supplied under its pressurized condition to a low temperature container 8 or the like through a flow rate adjusting valve 9. Compressed air 1 and liquid nitrogen 7 are mixed in a mixing device 6, the compressed air 1 is cooled by an evaporating latent heat and a sensitive heat to become air of low temperature. The gasified nitrogen gas becomes a part of the low temperature air, discharged out of an outlet port of the mixing device 6, guided to an object to be cooled through a pipe 10. Temperature of the low temperature air is adjusted to a predetermined temperature by adjusting a flow rate adjusting valve 9 and controlling an amount of liquid nitrogen 7 in response to the object to be cooled.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、任意の温度の低温空気を工業的に大量、安
価に製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for industrially producing low-temperature air at any temperature in large quantities at low cost.

従来の技術 鋳物の冷却や大型鋼類試験における冷却、あるイハアル
ミニウム、銅等の押出成形機のダイス等の冷却等、大量
の低温空気や低温不活性ガスを吹付けて急速に冷却する
場合、大量の低温空気や不活性低温ガスが使用される。
Conventional technology Cooling of castings, cooling of large steel tests, cooling of dies, etc. of extrusion molding machines for aluminum, copper, etc., when rapidly cooling by blowing a large amount of low-temperature air or low-temperature inert gas, Large quantities of cold air or inert cold gases are used.

しかし、低温空気のうち常温〜−30℃までの低温空気
の製造方法としては、冷凍機と熱交換器を組合せた技術
的が経済的に確立されている。
However, as a method for producing low-temperature air from room temperature to -30° C., a technology that combines a refrigerator and a heat exchanger has been economically established.

例えば、冷凍機により冷却された低温液フロン等の冷媒
と冷却ガスを、熱交換器内において熱交換せしめ、冷凍
機膨張弁の制御により予め設定された設定温度に調整す
る装置(実開平1−135112号公報)等が提案゛さ
れている。
For example, a device that exchanges heat between a refrigerant such as low-temperature liquid Freon cooled by a refrigerator and cooling gas in a heat exchanger, and adjusts the temperature to a preset temperature by controlling a refrigerator expansion valve. 135112) etc. have been proposed.

また、−190℃での冷凍については、液体窒素を利用
する方法が公知である。
Furthermore, for freezing at -190°C, a method using liquid nitrogen is known.

一方、空気をその液化点付近で精製分離する方法が、今
日でも酸素、窒素およびアルゴン製造用の主流として用
いられている。
On the other hand, the method of purifying and separating air near its liquefaction point is still used today as the main method for producing oxygen, nitrogen, and argon.

この液化分離装置は、原料空気圧縮工程、不純物除去工
程、冷熱回収および冷熱発生工程(熱交換器、膨張機)
、精留工程、製品貯蔵圧送工程に大別できる。不純物除
去は、主として水分と炭酸ガスを対象とするもので、中
小容量の場合、合成ゼオライトによる吸着器が広く使用
され、大容量の場合は蓄冷器または再生式熱交換器が一
般に用いられる。
This liquefaction separation equipment consists of a raw material air compression process, an impurity removal process, a cold heat recovery process, and a cold heat generation process (heat exchanger, expander).
It can be broadly divided into , rectification process, and product storage and pumping process. Impurity removal primarily targets moisture and carbon dioxide gas, and adsorbers made of synthetic zeolite are widely used for small to medium capacity, while regenerators or regenerative heat exchangers are generally used for large capacity.

熱交換器としては、アルミプレートフィン式が、また、
冷熱発生用膨張機としては、半径流反動式膨張タービン
が多く用いられる。
As a heat exchanger, there is an aluminum plate fin type, and
A radial reaction type expansion turbine is often used as an expander for generating cold heat.

しかし、任意の温度の低温空気を工業的に大量、安価に
製造する技術は、いまだに確立されていない。
However, a technology for industrially producing large quantities of low-temperature air at a desired temperature at low cost has not yet been established.

発明が解決しようとする課題 前記の冷凍機と熱交換機を組合せる方法は、0〜−30
℃程度の低温空気しか製造できず、また、設備そのもの
が大型化し、経済的に有利な方法ではない。
Problems to be Solved by the Invention The method of combining the above-mentioned refrigerator and heat exchanger is
It is not an economically advantageous method because it can only produce air at a low temperature of about ℃, and the equipment itself becomes large.

この発明の目的は、工業的規模で、大量、安価に任意温
度の低温空気を製造する方法を提供することである。
An object of the present invention is to provide a method for producing low-temperature air at any temperature on an industrial scale, in large quantities, and at low cost.

課題を解決するための手段 本発明者らは、上記目的を達成すべく種々検討の結果、
圧縮した原料空気と加圧した液体窒素、液体空気あるい
は液体アルゴンのうちの1種または2種以上を混合すれ
ば、液体窒素、液体空気あるいは液体アルゴンの蒸発潜
熱と顕然によって圧縮空気が冷却されると共に、ガス化
した窒素、空気あるいはアルゴンの混入した低温空気が
得られること、また、液体窒素、液体空気あるいは液体
アルゴンの混合割合を制御することによって、0〜−1
80℃の間の任意温度の低温空気を調整できることを究
明し、この発明に到達した。
Means for Solving the Problems As a result of various studies to achieve the above object, the present inventors found that
When compressed raw air is mixed with one or more of pressurized liquid nitrogen, liquid air, or liquid argon, the compressed air is cooled by the latent heat of vaporization of liquid nitrogen, liquid air, or liquid argon. In addition, by controlling the mixing ratio of liquid nitrogen, liquid air, or liquid argon, it is possible to obtain low-temperature air mixed with gasified nitrogen, air, or argon.
We have discovered that it is possible to adjust low-temperature air at any temperature between 80°C and have arrived at this invention.

すなわちこの発明は、圧縮機で圧縮した原料圧縮空気と
、加圧された液体窒素、液体空気あるいは液体アルゴン
のうちの1種または2種以上をそれぞれ流量調整弁を介
して混合器に供給し、液体窒素、液体空気あるいは液体
アルゴンの蒸発潜熱と顕然により圧縮空気を冷却すると
共に、ガス化した窒素、空気あるいはアルゴンと混合す
るのである。
That is, this invention supplies raw material compressed air compressed by a compressor and one or more of pressurized liquid nitrogen, liquid air, or liquid argon to a mixer through flow rate adjustment valves, The compressed air is cooled by the latent heat of vaporization of liquid nitrogen, liquid air, or liquid argon, and mixed with gasified nitrogen, air, or argon.

また、加圧された液体窒素、液体空気あるいは液体アル
ゴンの供給量を制御して低温空気の温度を調整するので
ある。
In addition, the temperature of the low-temperature air is adjusted by controlling the supply amount of pressurized liquid nitrogen, liquid air, or liquid argon.

作    用 この発明においては、圧縮機で圧縮した原料圧縮空気と
、加圧された液体窒素、液体空気あるいは液体アルゴン
の1種または2種以上をそれぞれ流量調整弁を介して混
合器に供給して混合し、液体窒素、液体空気あるいは液
体アルゴンの蒸発潜熱と顕然により圧縮空気を冷却する
と共に、ガス化した窒素、空気あるいはアルゴンと混合
するので、液体窒素、液体空気あるいは液体アルゴンの
潜熱と顕然の両方が有効利用できると共に、ガス化した
窒素、空気あるいはアルゴンは、低温空気として利用す
るから、経済的に有利である。
Function In this invention, raw compressed air compressed by a compressor and one or more of pressurized liquid nitrogen, liquid air, or liquid argon are supplied to the mixer through flow rate regulating valves. The compressed air is cooled by the latent heat of vaporization of liquid nitrogen, liquid air, or liquid argon and the latent heat of vaporization of liquid nitrogen, liquid air, or liquid argon is mixed. Both gases can be used effectively, and gasified nitrogen, air, or argon can be used as low-temperature air, which is economically advantageous.

また、加圧された液体窒素、液体空気あるいは液体アル
ゴンの供給量を制御して低温空気の温度を調整するので
、0〜−180℃の間の任意の温度の低温空気を安定し
て製造することができる。
In addition, the temperature of the low-temperature air is adjusted by controlling the supply amount of pressurized liquid nitrogen, liquid air, or liquid argon, so low-temperature air at any temperature between 0 and -180°C can be stably produced. be able to.

なお、圧縮空気の冷却に加圧した液体窒素、液体空気あ
るいは液体アルゴンを用いたのは、0〜180℃の低温
空気を得るためには、−200℃程度の沸点を有してい
る冷媒が必要である。しかし液体窒素、液体空気あるい
は液体アルゴンを使用すれば、蒸発潜熱ならびに顕然の
双方を利用できるばかりでなく、ガス化した窒素、空気
あるいはアルゴンは、低温空気として使用できるという
利点を有する。
The reason why pressurized liquid nitrogen, liquid air, or liquid argon is used to cool compressed air is that in order to obtain low-temperature air between 0 and 180 degrees Celsius, a refrigerant with a boiling point of about -200 degrees Celsius is used. is necessary. However, the use of liquid nitrogen, liquid air or liquid argon has the advantage that not only can both latent and actual heat of vaporization be utilized, but gasified nitrogen, air or argon can also be used as cold air.

なお、液体窒素、液体空気あるいは液体アルゴンのいず
れも使用できるが、液体窒素を使用するのが経済的に有
利である。
Although liquid nitrogen, liquid air, or liquid argon can be used, it is economically advantageous to use liquid nitrogen.

実施例 第1図は、この液体窒素を用いて本発明方法を実施する
試験装置の一例を示す系統図である。
Embodiment FIG. 1 is a system diagram showing an example of a test apparatus for carrying out the method of the present invention using this liquid nitrogen.

第1図において、空気(1)は圧縮機(2)により2〜
5kg/cm”程度まで圧w3されたのち、脱湿器(3
)で水分が除去され、流量調節弁(4)、流量計(5)
を介して混合器(6)に供給される。
In Figure 1, air (1) is compressed by a compressor (2) to
After the pressure w3 has been increased to about 5 kg/cm”, use a dehumidifier (3
), the water is removed by the flow control valve (4) and the flow meter (5).
to the mixer (6).

一方、液体窒素(7)は、低温容器等(8)から7〜1
0kg/ cm”程度に加圧された状態で流量調節弁(
9)を介して混合器(6)に供給される。
On the other hand, liquid nitrogen (7) is supplied from a cryogenic container (8) to 7 to 1
When pressurized to approximately 0 kg/cm", open the flow control valve (
9) to the mixer (6).

混合器(6)に供給された圧縮空気(1)と液体窒素(
7)は、混合器(6)で混合され、圧縮空気(1)は液
体窒素(7)の蒸発潜熱と顕然により冷却されて低温空
気となり、ガス化した窒素ガスは、低温空気の一部とな
って混合機(6)の出口から排出される。
Compressed air (1) and liquid nitrogen (
7) is mixed in the mixer (6), and the compressed air (1) is cooled by the latent heat of vaporization and heat of liquid nitrogen (7) to become low-temperature air, and the gasified nitrogen gas is a part of the low-temperature air. and is discharged from the outlet of the mixer (6).

混合機(6)から排出された低温空気は、配管(10)
により冷却目的物まで導かれ、吹付けられる。低温空気
の温度は、冷却目的物に応じて流量調整弁(9)の開度
を調整して液体窒素(7)量を制御し、所定の温度に調
節される。
The low temperature air discharged from the mixer (6) is transferred to the pipe (10)
is guided to the object to be cooled and sprayed. The temperature of the low-temperature air is adjusted to a predetermined temperature by controlling the amount of liquid nitrogen (7) by adjusting the opening degree of the flow rate regulating valve (9) depending on the object to be cooled.

なお、混合器(6)としては、噴霧式、邪魔板式、旋回
羽根式あるいは充填物式等を使用することができる。
In addition, as the mixer (6), a spray type, baffle plate type, swirl vane type, packed type, etc. can be used.

実施例I 第1図に示す試験装置を使用し、3kg/cm” に圧
縮した30℃の圧縮空気を 1.7Nm3/ minで
噴霧式混合器(6)に供給し、他方7kg/ cm’ 
に加圧した液体窒素を 1.517m1nで噴霧供給し
、低温空気を製造した。
Example I Using the test apparatus shown in Figure 1, compressed air at 30°C compressed to 3 kg/cm' was supplied to the spray mixer (6) at 1.7 Nm3/min, and the other was 7 kg/cm'
Liquid nitrogen pressurized to 1.517 mL was sprayed and supplied to produce low-temperature air.

そして混合器(6)出口からの低温空気温度と送入開始
からの経過時間ならびに低温空気流量を測定した。その
結果を第2図に示す。
Then, the temperature of the low-temperature air from the outlet of the mixer (6), the elapsed time from the start of feeding, and the flow rate of the low-temperature air were measured. The results are shown in FIG.

第2図に示すとおり、10分経過後から一75℃の低温
空気が安定して得られており、安定して低温空気を供給
できることを示している。
As shown in FIG. 2, low-temperature air of -75° C. was stably obtained after 10 minutes, indicating that low-temperature air could be stably supplied.

実施例2 実施例1で使用した試験装置を用い、温度30℃の圧縮
乾燥空気の供給量をINm’/hrとし、液体窒素また
は液体アルゴンの供給量を 0.3〜2.41/hrの
間で変化せしめ、液体窒素または液体アルゴンの供給量
と出口空気温度の関係を測定した。
Example 2 Using the test apparatus used in Example 1, the supply rate of compressed dry air at a temperature of 30°C was set to INm'/hr, and the supply rate of liquid nitrogen or liquid argon was set to 0.3 to 2.41/hr. The relationship between the supply amount of liquid nitrogen or liquid argon and the outlet air temperature was measured.

その結果を第3図に示す。The results are shown in FIG.

第3図に示すとおり、液体窒素または液体アルゴンの供
給量を調節することにより、出口空気温度を0〜−18
0℃の範囲で自在にコントロールすることができる。
As shown in Figure 3, by adjusting the supply amount of liquid nitrogen or liquid argon, the outlet air temperature can be adjusted from 0 to -18.
It can be freely controlled within the range of 0°C.

発明の効果 以上述べたとおり、この発明方法によれば、液体窒素、
液体空気あるいは液体アルゴンの潜熱と顕然の双方を有
効利用できると共に、ガス化した窒素、空気あるいはア
ルゴンを低温空気の一部として使用できるから、きわめ
て経済的である。しかも、液体窒素、液体空気あるいは
液体アルゴンの供給量を制御することにより、任意の温
度の低温空気を安定して製造することができるから、被
冷却対象物に応じて最適温度の低温空気を安定供給する
ことができる。
Effects of the invention As described above, according to the method of the invention, liquid nitrogen,
It is extremely economical because both the latent and explicit heat of liquid air or liquid argon can be effectively utilized, and gasified nitrogen, air, or argon can be used as part of the low-temperature air. Moreover, by controlling the supply amount of liquid nitrogen, liquid air, or liquid argon, it is possible to stably produce low-temperature air at any temperature, so low-temperature air can be stably produced at the optimal temperature depending on the object to be cooled. can be supplied.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明方法を実施する装置の一例を示す系統
図、第2図は実施例1における低温空気温度と送入開始
からの経過時間ならびに低温空気流量との関係を示すグ
ラフ、第3図は実施例2における液体窒素および液体ア
ルゴンの供給量と低温空気温度との関係を示すグラフで
ある。 7・液体窒素、 10・配管、 8 低温容器等、
FIG. 1 is a system diagram showing an example of an apparatus for carrying out the method of the present invention, FIG. 2 is a graph showing the relationship between low temperature air temperature, elapsed time from the start of feeding, and low temperature air flow rate in Example 1, and FIG. The figure is a graph showing the relationship between the supply amount of liquid nitrogen and liquid argon and the low temperature air temperature in Example 2. 7. Liquid nitrogen, 10. Piping, 8. Low temperature container, etc.

Claims (1)

【特許請求の範囲】 1 圧縮機で圧縮した圧縮空気と、加圧された液体窒素
、液体空気あるいは液体アルゴンのうちの1種または2
種以上をそれぞれ流量調整弁を介して混合器に供給し、
液体窒素、液体空気あるいは液体アルゴンの蒸発潜熱と
顕然により圧縮空気を冷却すると共に、ガス化した窒素
、空気あるいはアルゴンと混合することを特徴とする低
温空気の製造方法。 2 加圧された液体窒素、液体空気あるいは液体アルゴ
ンの供給量を制御して低温空気の温度を調整することを
特徴とする請求項1記載の低温空気の製造方法。
[Claims] 1. Compressed air compressed by a compressor, and one or two of pressurized liquid nitrogen, liquid air, or liquid argon.
Each of the seeds or more is supplied to the mixer via a flow rate adjustment valve,
A method for producing low-temperature air, which comprises cooling compressed air using the latent heat of vaporization of liquid nitrogen, liquid air, or liquid argon, and mixing the compressed air with gasified nitrogen, air, or argon. 2. The method for producing low-temperature air according to claim 1, wherein the temperature of the low-temperature air is adjusted by controlling the supply amount of pressurized liquid nitrogen, liquid air, or liquid argon.
JP23388090A 1990-09-03 1990-09-03 Method of manufacturing air of low temperature Pending JPH04113174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23388090A JPH04113174A (en) 1990-09-03 1990-09-03 Method of manufacturing air of low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23388090A JPH04113174A (en) 1990-09-03 1990-09-03 Method of manufacturing air of low temperature

Publications (1)

Publication Number Publication Date
JPH04113174A true JPH04113174A (en) 1992-04-14

Family

ID=16962014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23388090A Pending JPH04113174A (en) 1990-09-03 1990-09-03 Method of manufacturing air of low temperature

Country Status (1)

Country Link
JP (1) JPH04113174A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103768880A (en) * 2014-02-14 2014-05-07 王燕春 Nanofiltration membrane generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103768880A (en) * 2014-02-14 2014-05-07 王燕春 Nanofiltration membrane generator
CN103768880B (en) * 2014-02-14 2015-12-23 王燕春 Receive film generator

Similar Documents

Publication Publication Date Title
US4609390A (en) Process and apparatus for separating hydrocarbon gas into a residue gas fraction and a product fraction
TWI314637B (en) Process of liquefying a gaseous, methane-rich feed to obtain liquefied natural gas
US3962881A (en) Liquefaction of a vapor utilizing refrigeration of LNG
US2526996A (en) Method and apparatus for separating mixed gases
CN1096578A (en) The pressure fractionation air is produced the method and apparatus of gaseous oxygen and/or gaseous nitrogen
US20060272352A1 (en) Air separator
US4597268A (en) Method and apparatus for gas-cooling
EP0619866A1 (en) Method and apparatus for automatic production of blocks of solid co 2? at low pressure
US3933003A (en) Cryostat control
JPH04113174A (en) Method of manufacturing air of low temperature
US3914949A (en) Method and apparatus for liquefying gases
JP2004069215A (en) Heat exchanger system, control method thereof, and carbon dioxide gas liquefying method utilizing cold of liquefied natural gas
US2926501A (en) Method of and apparatus for recovering nitrogen from air by use of a cold boiling liquid such as nitrogen
JPH06281321A (en) Method and apparatus for manufacturing slush hydrogen
US2951346A (en) Liquid nitrogen generator
CN201858822U (en) Device for introducing refrigerating capacity of water chiller into cooling system
US3261167A (en) Method for removal of contaminants from gas
US3064441A (en) Low temperature cleaning of an impurity-containing gas
JPS6042162B2 (en) Dry ice manufacturing method
US1949616A (en) Freezing out of water vapors contained in compressed gases or gas mixtures to be liquefied
JPH01260265A (en) Very-low-temperature refrigeration device
JP3021389B2 (en) High-purity nitrogen gas production equipment
US3119676A (en) Process and apparatus for purifying and separating compressed gas mixtures
JPH0611255A (en) High purity nitrogen gas preparing device
JPH0418652Y2 (en)