JPH04111419A - Method and apparatus for vapor growth of compound semiconductor - Google Patents

Method and apparatus for vapor growth of compound semiconductor

Info

Publication number
JPH04111419A
JPH04111419A JP23141490A JP23141490A JPH04111419A JP H04111419 A JPH04111419 A JP H04111419A JP 23141490 A JP23141490 A JP 23141490A JP 23141490 A JP23141490 A JP 23141490A JP H04111419 A JPH04111419 A JP H04111419A
Authority
JP
Japan
Prior art keywords
doping
growth
compound semiconductor
raw material
material gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23141490A
Other languages
Japanese (ja)
Inventor
Kenji Kurishima
賢二 栗島
Takashi Kobayashi
隆 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP23141490A priority Critical patent/JPH04111419A/en
Publication of JPH04111419A publication Critical patent/JPH04111419A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable high concentration doping even at a low growth temperature by preliminarily heating raw gas to a room temperature or higher through a preliminary heating furnace provided immediately before a growth chamber. CONSTITUTION:Each of N-type and P-type doping raw gases is supplied to a growth chamber 6 through a gas introduction pipe which is independent from host semiconductor crystal raw gas. A preliminary heating furnace 5 is provided to an introduction pipe of doping raw gas having less decomposition efficiency especially at a low temperature such as SiH4. Activated raw gas is directly supplied to a growth region by heating doping raw gas to a room temperature or higher. The method can be applied also to a doping method to group II to VI compound semiconductor crystal, etc., and compound semiconductor vapor growth method such as chloride vapor growth and a hydride vapor growth method excepting MOCVD method.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は化合物半導体の気相成長法において、低成長温
度での高濃度ドーピング技術に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a high concentration doping technique at a low growth temperature in a compound semiconductor vapor phase growth method.

(従来の技術) 化合物半導体気相成長法は、母体半導体結晶の原料ガス
や母体半導体結晶中へのドーピング用原料ガスとして有
機金属や水素化合物あるいは塩化物が供給されている。
(Prior Art) In the compound semiconductor vapor phase growth method, an organic metal, a hydrogen compound, or a chloride is supplied as a raw material gas for a base semiconductor crystal or a raw material gas for doping into the base semiconductor crystal.

この場合、化合物半導体のキャリア濃度は、ドーピング
用原料ガスの供給量を調節することによって制御するこ
とができ、ヘテロ・バイポーラトランジスタ(以下HB
Tと呼ぶ)や電界効果型トランジスタなどのデバイス作
製上重要な化合物半導体成長技術の一つである。
In this case, the carrier concentration of the compound semiconductor can be controlled by adjusting the supply amount of the doping raw material gas, and the carrier concentration of the compound semiconductor can be controlled by adjusting the supply amount of the doping raw material gas.
It is one of the compound semiconductor growth techniques that are important for manufacturing devices such as (referred to as T) and field effect transistors.

(発明が解決しようとする課題) このように化合物半導体気相成長法では、ドーピング量
の制御が容易に行われるわけであるが、例えば代表的な
化合物半導体であるガリウム砒素(GaAs)やインジ
ウムガリウム砒素(InGaAs )結晶中にドーピン
グを行う場合には、ドーピング元素によっては拡散が起
こりドーピング・プロファイルの急峻性が損なわれると
いう問題が生ずる。
(Problem to be Solved by the Invention) As described above, in the compound semiconductor vapor phase growth method, the doping amount can be easily controlled. When doping an arsenic (InGaAs) crystal, a problem arises in that some doping elements cause diffusion, which impairs the steepness of the doping profile.

これは、HBT等の急峻なp−n接合を必要とするデバ
イスにとって、デバイス設計上大きな支障をもたらす、
半導体中でのドーピング元素の拡散は一般に成長温度が
高い程大きく、従ってこれを防止する為には成長温度の
低温化が必要とされる。
This poses a major problem in device design for devices such as HBTs that require steep p-n junctions.
In general, the higher the growth temperature, the greater the diffusion of doping elements in a semiconductor, and therefore, in order to prevent this, it is necessary to lower the growth temperature.

しかしながら成長温度を低温化してゆくと、代表的なn
形ドーピング原料ガスであるシラン(Sign)等の水
素化合物は、その分解効率が低下する為にドーピング固
溶量も低下し、高濃度ドーピングが困難になるという問
題が生ずる0本発明は上記の欠点を改善するために提案
されたもので、その目的は、ドーピング元素の拡散抑制
に有効な低温成長においても分解効率の小さいドーピン
グ原料ガスを高濃度にドーピングさせることにある。
However, as the growth temperature is lowered, the typical n
Hydrogen compounds such as silane (Sign), which are raw material gases for type doping, have a problem in that their decomposition efficiency decreases, so the amount of doping solid solution also decreases, making high concentration doping difficult. The purpose of this method is to dope the doping material gas at a high concentration with low decomposition efficiency even during low-temperature growth, which is effective in suppressing the diffusion of doping elements.

(課題を解決するための手段) 上記の目的を達成するため、本発明は化合物半導体の気
相成長法において、n型、p型ドーピング用原料ガスを
各々母体半導体結晶用原料ガスとは独立のガス導入管に
よって成長室に供給し、特にSiH4等の低温度では分
解効率の小さいドーピング原料ガスの導入管に予備加熱
炉を設け、ドーピング原料ガスを常温以上の温度に加熱
することによって活性化された原料ガスを成長領域に直
接供給することを特徴とする。従来技術とは、ドーピン
グ原料ガス用のガス導入管に予備加熱炉を設けているこ
とが本質的に異なるものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a vapor phase growth method for compound semiconductors in which raw material gases for n-type and p-type doping are separated from raw material gases for host semiconductor crystals. The doping material gas is supplied to the growth chamber through a gas introduction pipe, and a preheating furnace is installed in the introduction pipe for the doping material gas, which has low decomposition efficiency at low temperatures, such as SiH4, and is activated by heating the doping material gas to a temperature above room temperature. It is characterized by directly supplying raw material gas to the growth region. This method is essentially different from the prior art in that a preheating furnace is provided in the gas introduction pipe for doping raw material gas.

(作用) 本発明においては、気相成長法による化合物半導体の成
長方法において、n型もしくはp型ドーピング用原料ガ
スを反応室に導入する際に、n型もしくはp型ドーピン
グ用原料ガスを常温以上の温度に加熱し、成長室に供給
することにより、活性化されたドーピング原料ガスを気
相成長室に供給するので、これによって高濃度のドーピ
ングを可能とすることができる。
(Function) In the present invention, in the method for growing a compound semiconductor using a vapor phase growth method, when introducing the raw material gas for n-type or p-type doping into the reaction chamber, the raw material gas for n-type or p-type doping is heated to a temperature higher than room temperature. The activated doping material gas is supplied to the vapor phase growth chamber by heating the doping material gas to a temperature of 1 and supplying it to the growth chamber, thereby making it possible to perform high-concentration doping.

(実施例) 次に本発明の実施例について説明する。なお、実施例は
一つの例示であって、本発明の精神を逸脱しない範囲で
、種々の変更あるいは改良を行いうることは言うまでも
ない。
(Example) Next, an example of the present invention will be described. Note that the embodiments are merely illustrative, and it goes without saying that various changes and improvements can be made without departing from the spirit of the present invention.

本発明の下記実施例では、■−■族化合物半導体結晶の
有機金属気相成長法(以下MOCVD法と呼ぶ)に限っ
て述べているが、本発明の主旨を逸脱しない範囲におい
て、II−VI族化合物半導体結晶等へのドーピング方
法やMOCVD法以外のクロライド気相成長法やハイド
ライド気相成長法等の化合物半導体気相成長法にも適用
できることは言うまでもない。
In the following embodiments of the present invention, only the metal organic chemical vapor deposition method (hereinafter referred to as MOCVD method) of group ■-■ compound semiconductor crystals is described, but within the scope of the gist of the present invention, II-VI Needless to say, the present invention can also be applied to methods for doping group compound semiconductor crystals, etc., and to compound semiconductor vapor phase growth methods other than MOCVD, such as chloride vapor phase growth and hydride vapor phase growth.

第1図は本発明の方法によるMOCVD装置の成長室部
分の断面模式図である0本発明においては、原料ガスと
してトリメチルインジウム(TMI)。
FIG. 1 is a schematic cross-sectional view of a growth chamber portion of an MOCVD apparatus according to the method of the present invention. In the present invention, trimethylindium (TMI) is used as the raw material gas.

トリエチルガリウム(τf!G) 、ホスフィン(PH
ff)。
Triethyl gallium (τf!G), phosphine (PH
ff).

アルシン(Ashs)を用いている。インジウム燐(I
nP)。
Arsine (Ashs) is used. Indium phosphorus (I)
nP).

インジウムガリウム砒素(lnGaAs) 、インジウ
ムガリウム砒素燐(InGaAsP)  等の結晶成長
に用いられ、ドーピング原料ガスとしてはジメチル亜鉛
(DMZn )と1001)P@水素希釈の5i114
を用いている。
It is used for crystal growth of indium gallium arsenide (lnGaAs), indium gallium arsenide phosphide (InGaAsP), etc., and the doping raw material gases are dimethyl zinc (DMZn) and 5i114 diluted with 1001)P@hydrogen.
is used.

TMl、 TEGの■族原料ガス供給の為の導入管l及
びPill、Ashsの■族原料ガス供給のための導入
管2とは独立にDMZn、 SiH4のガス導入管3.
4が設けられており、各原料ガスはこれらのガス導入管
から成長室6に直接供給される。特に低成長温度で分解
効率の小さい5fH4の導入管4には、常温から400
°Cまでの温度範囲で温度制御が可能である予備加熱炉
5が設けられている。 DMZnは低温度でも分解効率
が高いので予備加熱炉は必要としない。
DMZn, SiH4 gas introduction pipe 3.Independently from the introduction pipe 1 for supplying group Ⅰ raw material gas of TMl and TEG and the introduction pipe 2 for supplying group Ⅰ raw material gas of Pill and Ashs.3.
4 are provided, and each source gas is directly supplied to the growth chamber 6 from these gas introduction pipes. In particular, the introduction pipe 4 of 5fH4, which has a low growth temperature and low decomposition efficiency, has a temperature of 400
A preheating furnace 5 is provided, the temperature of which can be controlled in the temperature range up to °C. DMZn has high decomposition efficiency even at low temperatures, so a preheating furnace is not required.

予備加熱炉5を成長室6に可能な限り近づける為に成長
室6はスチール製で作られている。成長室6の内部には
基板7を置く為のモリブデン・サセプタ8が設置されて
おり、基板7はサセプタ日直下のカーボン・ヒータ9に
より加熱されるようになっている。
In order to bring the preheating furnace 5 as close as possible to the growth chamber 6, the growth chamber 6 is made of steel. A molybdenum susceptor 8 for placing a substrate 7 is installed inside the growth chamber 6, and the substrate 7 is heated by a carbon heater 9 directly under the susceptor.

この装置で、成長温度を550℃と低温度に設定し、r
nGaAsへのSin、によるn型ドーピングを、予備
加熱炉5を設けた時と設けない時とで行い、成長後のI
nGaAs中のキャリア濃度を室温でパンデルバアウ(
van der pau@)法によるホール効果測定に
より求めた。
With this equipment, the growth temperature was set at a low temperature of 550°C, and r
N-type doping of nGaAs with Sin was performed with and without the preheating furnace 5, and the I
The carrier concentration in nGaAs was determined by Panderbau (
It was determined by Hall effect measurement using the van der pau method.

第2図は第1図に示したMOCVD装置を用いてInG
aAa結晶中へのSiドーピングを行った結果である。
Figure 2 shows how InG is produced using the MOCVD apparatus shown in Figure 1.
This is the result of doping Si into aAa crystal.

横軸はドーピング原料ガスである5in4の供給量を、
また縦軸はキャリア濃度を示す、黒丸は本発明によるも
のを示し、加熱温度は約300℃〜350°Cである。
The horizontal axis is the supply amount of 5in4, which is the doping raw material gas,
Further, the vertical axis indicates the carrier concentration, the black circles indicate those according to the present invention, and the heating temperature is about 300°C to 350°C.

図に示す様に、予備加熱炉5を用いない時のSiドーピ
ング量が3 XIO”c■−3で飽和したのに対して、
予備加熱炉5を設けた場合には2 XIO”am−”と
−桁高い高濃度n型ドーピングが達成され、本発明の効
果が確認された。また、このInGaAs結晶中のSi
濃度を二次イオン買置分析法によって測定した結果、キ
ャリア濃度とは良い一致を示すことも確認された。
As shown in the figure, while the Si doping amount when the preheating furnace 5 was not used was saturated at 3XIO"c■-3,
When the preheating furnace 5 was provided, a high concentration of n-type doping of 2 XIO "am-" was achieved, which was an order of magnitude higher, and the effect of the present invention was confirmed. Moreover, the Si in this InGaAs crystal
As a result of measuring the concentration using a secondary ion analysis method, it was also confirmed that the concentration showed good agreement with the carrier concentration.

(発明の効果) 以上述べたように本発明によれば、気相成長法による化
合物半導体の成長方法において、n型もしくはP型ドー
ピング用原料ガスを反応室に導入する際に、n型もしく
はp型ドーピング用原料ガスを常温以上の温度に加熱し
、成長室に供給することにより、低成長温度において分
解効率が低く高濃度ドーピングが困難なドーピング原料
ガスでも、成長室直前に設けた予備加熱炉を通し原料ガ
スを常温以上に予備加熱させることによって、低成長温
度でも高濃度ドーピングが可能となる効果を有する。
(Effects of the Invention) As described above, according to the present invention, in the method for growing a compound semiconductor by vapor phase growth, when introducing the raw material gas for n-type or p-type doping into the reaction chamber, By heating the raw material gas for mold doping to a temperature higher than room temperature and supplying it to the growth chamber, even if the doping raw material gas has low decomposition efficiency and is difficult to perform high concentration doping at low growth temperatures, it can be used in a preheating furnace installed just before the growth chamber. By preheating the raw material gas to room temperature or higher through the process, it is possible to achieve high concentration doping even at low growth temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いるMOCVD装置の成長室部分の
断面模式図である。第2図はInGaAs結晶中のSt
ドーピングを行った結果を示す。 1・・・TMIやTEG等の■族原料ガス導入管2・・
・PH,やAsHz等のV族原料ガス導入管3・・・ド
ーピング原料ガスであるDMZnの導入管4・・・ドー
ピング原料ガスである51g4の導入管5・・・予備加
熱炉 6・・・成長室 7・・・基板 8・・・サセプタ 9・・・加熱ヒータ lO・・・サセプタ支持棒
FIG. 1 is a schematic cross-sectional view of the growth chamber portion of the MOCVD apparatus used in the present invention. Figure 2 shows St in the InGaAs crystal.
The results of doping are shown. 1... Group III raw material gas inlet pipe such as TMI or TEG 2...
・Introduction tube 3 for V group raw material gas such as PH, AsHz...Introduction tube 4 for DMZn which is doping raw material gas...Introduction tube 5 for 51g4 which is doping raw material gas...Preheating furnace 6... Growth chamber 7... Substrate 8... Susceptor 9... Heater lO... Susceptor support rod

Claims (2)

【特許請求の範囲】[Claims] (1)気相成長法による化合物半導体の成長方法におい
て、n型もしくはp型ドーピング用原料ガスを反応室に
導入する際に、n型もしくはp型ドーピング用原料ガス
を常温以上の温度に加熱し、成長室に供給することを特
徴とする化合物半導体気相成長法。
(1) In a method for growing compound semiconductors by vapor phase growth, when introducing the raw material gas for n-type or p-type doping into the reaction chamber, the raw material gas for n-type or p-type doping is heated to a temperature above room temperature. , a compound semiconductor vapor phase growth method characterized by supplying a compound semiconductor to a growth chamber.
(2)基板加熱用ヒータを設けた成長室に、複数のガス
導入管を設け、少なくとも1つのガス導入管に予備加熱
炉を設けたことを特徴とする化合物半導体気相成長装置
(2) A compound semiconductor vapor phase growth apparatus characterized in that a growth chamber provided with a heater for heating a substrate is provided with a plurality of gas introduction pipes, and at least one gas introduction pipe is provided with a preheating furnace.
JP23141490A 1990-08-31 1990-08-31 Method and apparatus for vapor growth of compound semiconductor Pending JPH04111419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23141490A JPH04111419A (en) 1990-08-31 1990-08-31 Method and apparatus for vapor growth of compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23141490A JPH04111419A (en) 1990-08-31 1990-08-31 Method and apparatus for vapor growth of compound semiconductor

Publications (1)

Publication Number Publication Date
JPH04111419A true JPH04111419A (en) 1992-04-13

Family

ID=16923222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23141490A Pending JPH04111419A (en) 1990-08-31 1990-08-31 Method and apparatus for vapor growth of compound semiconductor

Country Status (1)

Country Link
JP (1) JPH04111419A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136077A1 (en) 2010-04-28 2011-11-03 シャープ株式会社 Vapor deposition device, vapor deposition method, and semiconductor element manufacturing method
JP2015122540A (en) * 2015-03-16 2015-07-02 住友電気工業株式会社 Silicon carbide semiconductor, and method and apparatus for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136077A1 (en) 2010-04-28 2011-11-03 シャープ株式会社 Vapor deposition device, vapor deposition method, and semiconductor element manufacturing method
JP2015122540A (en) * 2015-03-16 2015-07-02 住友電気工業株式会社 Silicon carbide semiconductor, and method and apparatus for manufacturing the same

Similar Documents

Publication Publication Date Title
US4659401A (en) Growth of epitaxial films by plasma enchanced chemical vapor deposition (PE-CVD)
JPS6134928A (en) Growing process of element semiconductor single crystal thin film
US4773355A (en) Growth of epitaxial films by chemical vapor deposition
JPH04111419A (en) Method and apparatus for vapor growth of compound semiconductor
US5821155A (en) Method of growing n-type III-V semiconductor materials on a substrate using SiI4
JPH0574705A (en) Manufacture of semiconductor device
JP2687371B2 (en) Vapor growth of compound semiconductors
JPH0225018A (en) Manufacture of semiconductor device
Gotoda et al. Characteristics of carbon incorporation in GaAs grown by gas source molecular beam epitaxy
JPH02203520A (en) Growth of compound semiconductor crystal
JP2714824B2 (en) Molecular beam epitaxial growth method and apparatus for implementing the method
JP3141628B2 (en) Compound semiconductor device and method of manufacturing the same
JPH01224295A (en) Gas source molecular beam crystal growing apparatus
JPS58184721A (en) Vapor phase epitaxial growth of p type 3-5 family compound semiconductor
JP2924072B2 (en) Organometallic molecular beam epitaxial growth method and apparatus
JPH02273917A (en) Method of growing crystal of carbon doped iii-v compound semiconductor
JP2700210B2 (en) Vapor phase epitaxial growth of compound semiconductors
JPH07226381A (en) Organic metal vapor growth device
JPH03112127A (en) Method of forming silicon carbide
JPS61205696A (en) Vapor-phase crystal growth system for group iii-v compounds
JPH01141899A (en) Vapor growth method for iii-v compound semiconductor
JPH0346440B2 (en)
JPH07130667A (en) Metal organic vapor phase epitaxial growth method
JPH04155831A (en) Method of forming phosphorus nitride insulating film
JPH0536397B2 (en)