JPH04110803A - Near infrared transmission filter - Google Patents

Near infrared transmission filter

Info

Publication number
JPH04110803A
JPH04110803A JP22961290A JP22961290A JPH04110803A JP H04110803 A JPH04110803 A JP H04110803A JP 22961290 A JP22961290 A JP 22961290A JP 22961290 A JP22961290 A JP 22961290A JP H04110803 A JPH04110803 A JP H04110803A
Authority
JP
Japan
Prior art keywords
characteristic
wavelength
film
infrared
infrared transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22961290A
Other languages
Japanese (ja)
Inventor
Takasato Fukute
福手 香里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Techno Glass Co Ltd
Original Assignee
Toshiba Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Glass Co Ltd filed Critical Toshiba Glass Co Ltd
Priority to JP22961290A priority Critical patent/JPH04110803A/en
Publication of JPH04110803A publication Critical patent/JPH04110803A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the malfunction of a sensor in a photodetecting section by coating near IR transmittable and visible light absorptive glass with multilayered dielectric films and/or NESA film to allow the transmission of >=80% near IR rays in a specific wavelength region. CONSTITUTION:The near IR ray transmission filter 1 is constituted by vapor deposition of the multilayered dielectric films 3 on one surface of a substrate 2 consisting of the near IR transmittable and visible light absorptive glass. The substrate 2 has a spectral transmission characteristic 4. The films 3 have a spectral transmission characteristic 5. The spectral transmission characteristic of the filter 1 obtd. by vapor deposition of the films 3 having the characteristic 5 on the substrate 2 having the characteristic 4 is sharply cut in the required wavelength 7 in a remote operation, i.e. the wavelength of about 1,000nm be tween 950 and 1,050nm and, therefore, the filter has the characteristic to easily capture the near IR rays of the wavelength 7 of the remote operation. In addi tion, >=80% transmittance is maintained to prevent the omission of the transmis sion of the near IR rays at about 1,000nm wavelength.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、赤外線リモコンの受光部において用いられる
センサの近赤外線透過フィルタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a near-infrared transmission filter for a sensor used in a light receiving section of an infrared remote control.

(従来の技術) 従来、近赤外線をセンスするフォトダイオードは、TV
、VTR,ステレオ、エアコンなどのリモコンの受光用
センサとして広く用いられている。リモコン用としては
、10mの距離で操作できる位の感度が必要であるが、
フォトダイオードの感知する光の波長域は広いので、リ
モコンから発せられる近赤外線以外の波長の光を感知し
て反応してしまう可能性が高く、そのままでは実用に向
かない。
(Prior art) Conventionally, photodiodes that sense near-infrared rays are used in TVs.
It is widely used as a light-receiving sensor for remote controls such as , VTRs, stereos, and air conditioners. For remote control use, it needs to be sensitive enough to be operated at a distance of 10 meters.
Since the wavelength range of light that photodiodes detect is wide, there is a high possibility that they will detect and react to light at wavelengths other than the near-infrared rays emitted by the remote control, making them unsuitable for practical use as is.

そこで、現在、赤フィルタや有機フィルムにより必要な
波長の光を透過させ、余分な波長の光をカットするよう
にしている。
Therefore, currently, red filters and organic films are used to transmit light of the necessary wavelengths and cut out light of unnecessary wavelengths.

(発明が解決しようとする課題) しかしなから、現在使用されている赤フィルタの分光透
過率特性は、第9図に示すように、リモコンにおいて必
要とされている波長域、例えば950nm〜1050r
+m以外の波長の光も透過してしまうという問題かあり
、さらに狭い透過域を有するフィルタが要望されていた
(Problem to be Solved by the Invention) However, as shown in Figure 9, the spectral transmittance characteristics of the currently used red filters are limited to the wavelength range required for remote control, for example 950 nm to 1050 r.
There is a problem that light with wavelengths other than +m is also transmitted, and a filter with an even narrower transmission band has been desired.

本発明は、上記事情に鑑みてなされたもので、近赤外線
透過可視光吸収ガラスに薄膜をコートすることにより、
近赤外線波長域のうち、必要とする狭い部分の近赤外線
を透過する近赤外線透過フィルタを提供することを目的
とする。
The present invention was made in view of the above circumstances, and by coating a thin film on near-infrared transmitting and visible light absorbing glass,
It is an object of the present invention to provide a near-infrared transmission filter that transmits near-infrared rays in a necessary narrow portion of the near-infrared wavelength range.

[発明の構成] (課題を解決するための手段と作用) 本発明は、上記目的を達成するために、近赤外線透過可
視光吸収ガラスに誘電体多層膜および/またはネサ膜を
コートし、近赤外線の特定の波長域で80%以上を透過
する構成としたので、必要とする波長域の近赤外線をと
らえ易くなり、受光部におけるセンサの誤動作を減少す
ることかできる。
[Structure of the Invention] (Means and Effects for Solving the Problems) In order to achieve the above object, the present invention coats near-infrared transmitting and visible light-absorbing glass with a dielectric multilayer film and/or a NESA film. Since it is configured to transmit 80% or more of infrared rays in a specific wavelength range, it becomes easier to capture near-infrared rays in the required wavelength range, and malfunctions of the sensor in the light receiving section can be reduced.

(実施例) 以下、図面を参照して本発明の詳細な説明するO 第1図は本発明の一実施例の近赤外線透過フィルタの断
面図で、同図に示すように、近赤外線透過フィルタ1は
、近赤外線透過可視光吸収ガラス基板(以下、単にガラ
ス基板と称す)2の一方の面上に誘電体多層膜(以下、
単に多層膜と称す)3を蒸着したもので、ガラス基板2
は第2図に実線で示す分光透過率特性4を有している。
(Example) Hereinafter, the present invention will be described in detail with reference to the drawings. 1 has a dielectric multilayer film (hereinafter referred to as "glass substrate") on one surface of a near-infrared transmitting and visible light absorbing glass substrate (hereinafter simply referred to as glass substrate) 2.
(simply referred to as a multilayer film) 3 is deposited on a glass substrate 2.
has a spectral transmittance characteristic 4 shown by a solid line in FIG.

また、多層膜3は、高屈折率物質として膜厚136nm
のTiO2と低屈折率物質として膜厚214nrQの5
IO2の薄膜をガラス基板2上に交互に9層ずつ蒸着し
、さらに最上層、つまり19層に上記膜厚の半分の膜厚
68nmのT r O2の薄膜を蒸着した交互層であり
、以下の蒸着条件の下で成膜されたものである。
In addition, the multilayer film 3 is made of a high refractive index material with a film thickness of 136 nm.
TiO2 and 5 with a film thickness of 214nrQ as a low refractive index material.
Nine layers of IO2 thin films are alternately deposited on the glass substrate 2, and a T r O2 thin film having a thickness of 68 nm, which is half of the above film thickness, is further deposited on the top layer, that is, the 19th layer, as shown below. The film was formed under vapor deposition conditions.

■真空度 : 2.67X 10−’ 〜1.07X 
10−”Pa(2X 10’ 〜8 X 10−’To
rr)■活性ガス:酸素ガス ■散乱ガス:アルゴンガス ■基板温度=300℃ ■蒸発源 : T I O2・・・抵抗加熱、SiO2
・・・電子ビーム この蒸着条件で形成された多層膜3の中心波長は125
0nmと設定したが、第2図に点線で示す分光透過率特
性5が得られた。
■Vacuum degree: 2.67X 10-' ~ 1.07X
10-"Pa (2X 10' to 8 X 10-'To
rr) ■ Active gas: oxygen gas ■ Scattering gas: argon gas ■ Substrate temperature = 300°C ■ Evaporation source: T I O2...resistance heating, SiO2
...Electron beam The center wavelength of the multilayer film 3 formed under these evaporation conditions is 125
Although it was set to 0 nm, a spectral transmittance characteristic 5 shown by the dotted line in FIG. 2 was obtained.

従って、分光透過率特性4のガラス基板2上に分光透過
率特性5の多層膜3を蒸着して得られる近赤外線透過フ
ィルタ10分光透過率特性としては、第3図に示す特性
6が得られた。このようにして得られた近赤外線透過フ
ィルタ】の分光透過率特性6は、図から明らかなように
、リモコン操作における必要波長7、すなわち950か
ら11050nの11000n付近の前後の波長か鋭く
カットされているので、リモコン操作の必要波長7の近
赤外線をとらえ易い特性となっており、その上、100
0nIIl付近の波長の近赤外線の透過を落とさないよ
う80%以上の透過率か保たれている。
Therefore, the spectral transmittance characteristic of the near-infrared transmission filter 10 obtained by depositing the multilayer film 3 having the spectral transmittance characteristic 5 on the glass substrate 2 having the spectral transmittance characteristic 4 is the characteristic 6 shown in FIG. Ta. As is clear from the figure, the spectral transmittance characteristic 6 of the near-infrared transmission filter obtained in this way is sharply cut from the wavelength 7 necessary for remote control operation, that is, the wavelength around 11000n from 950n to 11050n. This makes it easy to capture near-infrared rays with a wavelength of 7, which is necessary for remote control operation.
A transmittance of 80% or more is maintained so as not to reduce the transmission of near-infrared rays with wavelengths around 0nIIl.

また、基板として近赤外線透過可視光吸収ガラス基板2
を用いたことにより、必要とする立ち上がり波長をガラ
ス基板2の分光透過率特性4から得ることかでき、長波
長側の光のカットのみで済んだ。
In addition, a near-infrared transmitting visible light absorbing glass substrate 2 is used as a substrate.
By using this, the required rising wavelength can be obtained from the spectral transmittance characteristic 4 of the glass substrate 2, and only the light on the long wavelength side needs to be cut.

第2の実施例として第4図乃至第6図を参照し説明する
A second embodiment will be described with reference to FIGS. 4 to 6.

第4図は本発明の第2の実施例の近赤外線透過フィルタ
の断面図で、同図に示すように、近赤外線透過フィルタ
8は、ガラス基板2の一方の面上にネサ膜9を蒸着した
もので、ネサ膜9は膜厚的8Or+mの単層膜で以下の
蒸着条件の下で成膜されたものである。
FIG. 4 is a cross-sectional view of a near-infrared transmission filter according to a second embodiment of the present invention. The NESA film 9 is a single layer film with a film thickness of 8 Or+m and was formed under the following vapor deposition conditions.

■真空度 :  2XlO−3〜lXl0 ”Torr
■活性ガス:酸素ガス ■散乱ガス、アルゴンガス ■基板温度=300℃ ■蒸発源 : S n O2・・・電子ビームこの蒸着
条件で形成されたネサ膜9の分光透過率特性は第5図に
点線で示す特性10が得られ、また、ガラス基板2は上
記第1の実施例と同様の第5図に実線で示す分光透過率
特性4を有しているので、分光透過率特性4のガラス基
板2上に分光透過率特性10のネサ膜9を蒸着して得ら
れる近赤外線透過フィルタ8の分光透過率特性としては
、第6図に示す特性11が得られた。この様にして得ら
れた近赤外線透過フィルタ8は、上記第1の実施例の近
赤外線透過フィルタ1と同様の特性を有している。すな
わち、リモコン操作の必要波長7の近赤外線をとらえ易
い特性となっており、その上、11000n付近の波長
の近赤外線の透過を落とさないよう80%以上の透過率
が保たれている。
■Vacuum degree: 2XlO-3~lXl0 ”Torr
■Active gas: oxygen gas ■Scattering gas, argon gas ■Substrate temperature = 300℃ ■Evaporation source: S n O2...electron beam The spectral transmittance characteristics of the NESA film 9 formed under these evaporation conditions are shown in Figure 5. Since the characteristic 10 shown by the dotted line is obtained, and the glass substrate 2 has the spectral transmittance characteristic 4 shown by the solid line in FIG. As the spectral transmittance characteristic of the near-infrared transmission filter 8 obtained by depositing the NESA film 9 having the spectral transmittance characteristic 10 on the substrate 2, the characteristic 11 shown in FIG. 6 was obtained. The near-infrared transmission filter 8 obtained in this manner has the same characteristics as the near-infrared transmission filter 1 of the first embodiment. In other words, it has a characteristic that makes it easy to catch near-infrared rays with a wavelength of 7 necessary for remote control operation, and moreover, a transmittance of 80% or more is maintained so as not to reduce the transmission of near-infrared rays with a wavelength around 11,000 nm.

第3の実施例として第7図と第8図を参照し説明する。A third embodiment will be described with reference to FIGS. 7 and 8.

第7図は本発明の第3の実施例の近赤外線透過フィルタ
の断面図で、同図に示すように、近赤外線透過フィルタ
12は、ガラス基板2の一方の面上に上記第1の実施例
の多層膜3を、他方の面上に上記第2の実施例のネサ膜
9をそれぞれ蒸着したもので、多層膜3を蒸着した近赤
外線透過フィルタ1か第3図に示す分光透過率特性6を
有し、またネサ膜9を蒸着した近赤外線透過フィルタ8
が第6図に示す分光透過率特性11を有していることに
より、多層膜3とネサ膜9の両方を蒸着した近赤外線透
過フィルタ12の特性としては第8図に示す分光透過率
特性13が得られた。この近赤外線透過フィルタ12は
、上記第1、第2の実施例の近赤外線透過フィルタ1.
8と同様の特性を有して(する。
FIG. 7 is a cross-sectional view of a near-infrared transmitting filter according to a third embodiment of the present invention. The multilayer film 3 of the example is deposited on the other side of the NESA film 9 of the second embodiment, and the near-infrared transmission filter 1 on which the multilayer film 3 is deposited has the spectral transmittance characteristics shown in FIG. 6, and a near-infrared transmission filter 8 having a Nesa film 9 deposited thereon.
has the spectral transmittance characteristic 11 shown in FIG. 6, so that the near-infrared transmission filter 12 with both the multilayer film 3 and the Nesa film 9 deposited has the spectral transmittance characteristic 13 shown in FIG. was gotten. This near-infrared transmission filter 12 is similar to the near-infrared transmission filter 1. of the first and second embodiments.
It has the same characteristics as 8.

なお、上記第1、第3の実施例では、多層膜3を蒸着法
に形成したが、デイ・ソピング法で多層膜3を形成して
もよく、以下デイ・ソピング法について説明する。
In the first and third embodiments, the multilayer film 3 is formed by a vapor deposition method, but the multilayer film 3 may also be formed by a day-sopping method, and the day-sopping method will be described below.

ディッピング液として、テトラプロピルチタネートなど
のTiのアルコラードのモノマーまたはポリマーを、ア
ルコールと水の混合溶液で加水分解・重合させ、アルコ
ール、酢酸、酢酸エチル、酢酸メチルなどの混合溶液に
混合して用意する。
A dipping liquid is prepared by hydrolyzing and polymerizing a Ti alcoholade monomer or polymer such as tetrapropyl titanate in a mixed solution of alcohol and water, and mixing it with a mixed solution of alcohol, acetic acid, ethyl acetate, methyl acetate, etc. .

また、テトラエトキシシランなどのSiのアルコラード
のモノマーまたはポリマーを同様に混合して用意する。
Further, Si alcoholade monomers or polymers such as tetraethoxysilane are similarly mixed and prepared.

これらのディッピング液を用いて、以下の条件でガラス
基板2にコーティングする。
Using these dipping liquids, the glass substrate 2 is coated under the following conditions.

■引き上げ速度=Tl液・・・35層口/min。■ Pulling speed = Tl liquid...35 layer ports/min.

Si液−40cl/min ■膜構成   :膜厚136nmのT IO2層と膜厚
214r+mのS iO2 層を9層ずつ交互層と、最 上層(19層)に半分の膜 厚68nmのT iO2層の多 層膜(19層目のみ引き上 げ速度は70m/rajn) ■乾燥条件  :150℃、10分 ■焼成条件  ・550℃、60分 この条件で形成された多層膜は、蒸着法で形成された多
層膜3と同様の分光透過率特性を有する。
Si liquid - 40 cl/min ■ Film structure: 9 alternating layers of 136 nm thick TIO2 layer and 214 r+m thick SiO2 layer, and half the 68 nm thick TiO2 layer as the top layer (19 layers). Multilayer film (pulling speed of 19th layer only is 70m/rajn) ■ Drying conditions: 150°C, 10 minutes ■ Baking conditions - 550°C, 60 minutes The multilayer film formed under these conditions is a multilayer film formed by vapor deposition. It has the same spectral transmittance characteristics as No. 3.

また、上記第2、第3の実施例では、ネサ膜9を蒸着法
に形成したか、ディッピング法でネサ膜を形成してもよ
く、以下ディッピング法について説明する。
Further, in the second and third embodiments described above, the NESA film 9 was formed by a vapor deposition method, or the NESA film may be formed by a dipping method.The dipping method will be described below.

ディッピング溶液として、テトラ−1−プロポキシ錫な
どのSnのアルコラードのモノマーまたはポリマーを上
記多層膜3のディッピング法と同様に混合して用意する
。さらに、上記ディッピング法と同し条件で成膜するこ
とにより、80層mの膜厚のS n O2膜が得られる
。このディッピング法で形成されたネサ膜は、蒸着法で
形成されたネサ膜9と同様の分光透過率特性を有する。
A dipping solution is prepared by mixing Sn alcoholade monomers or polymers such as tetra-1-propoxytin in the same manner as in the dipping method for the multilayer film 3 described above. Further, by forming the film under the same conditions as the dipping method described above, a S n O 2 film having a thickness of 80 layers can be obtained. The NESA film formed by this dipping method has the same spectral transmittance characteristics as the NESA film 9 formed by the vapor deposition method.

また、上記第3の実施例では、近赤外線透過フィルタ1
2をガラス基板2の両面に蒸着法により多層膜3とネサ
膜9を蒸着することにより得るようにしたか、以下の組
合わせによって得るようにしてもよく、この組合わせに
より得られる近赤外線透過フィルタは、第8図の近赤外
線透過フィルタ12の分光透過率特性13と同様の分光
透過率特性を有する。すなわち、 ■ディッピング法で形成された多層膜とネサ膜との組み
合わせ ■蒸着法で形成された多層膜3とディッピング法で形成
されたネサ膜との組合わせ ■ディッピング法で形成された多層膜と蒸着法で形成さ
れたネサ膜9との組合わせ の3通りの組合わせから、いずれかを選択してもよい。
Furthermore, in the third embodiment, the near-infrared transmission filter 1
2 can be obtained by depositing the multilayer film 3 and the Nesa film 9 on both sides of the glass substrate 2 using a vapor deposition method, or may be obtained by the following combination, and the near-infrared transmission obtained by this combination The filter has a spectral transmittance characteristic similar to the spectral transmittance characteristic 13 of the near-infrared transmission filter 12 in FIG. In other words, ■ Combination of multilayer film formed by dipping method and NESA film ■ Combination of multilayer film 3 formed by vapor deposition method and NESA film formed by dipping method ■ Multilayer film formed by dipping method and Any one of the three combinations with the NESA film 9 formed by vapor deposition may be selected.

また、上記第3の実施例では、必要波長を11000n
付近としたが、これに限定されることはなく、用途に応
じ必要波長を変更することは可能である。
In addition, in the third embodiment, the required wavelength is 11000 nm.
However, the wavelength is not limited to this, and it is possible to change the required wavelength depending on the application.

また、本発明は上記実施例に限定されることなく、本発
明の要旨を逸脱しない範囲において、種々変形可能なこ
とは勿論である。
Furthermore, it goes without saying that the present invention is not limited to the above embodiments, and can be modified in various ways without departing from the gist of the present invention.

[発明の効果コ 以上詳述したように、本発明の近赤外線透過)ィルタに
よれば、近赤外線透過可視光吸収カラスに誘電体多層膜
および/またはネサ膜をコートすることにより、近赤外
線の特定の波長域で8096以上を透過するので、必要
とする波長域の近赤外線をとらえ易くなり、受光部にお
けるセンサの誤動作を減少することかできる。
[Effects of the Invention] As detailed above, according to the near-infrared transmitting filter of the present invention, near-infrared transmitting and visible light-absorbing glass is coated with a dielectric multilayer film and/or a NESA film. Since it transmits 8096 or more in a specific wavelength range, it becomes easier to capture near-infrared rays in the required wavelength range, and malfunctions of the sensor in the light receiving section can be reduced.

また、必要とする波長域での透過率か高いので、センサ
か反応し易くなる。
In addition, since the transmittance in the required wavelength range is high, it becomes easier for the sensor to react.

また、基板として近赤外線透過可視光吸収ガラスを用い
ているので、長波長側の光のカットのみて済み、生産性
を向上することかできる。
Furthermore, since near-infrared transmitting and visible light-absorbing glass is used as the substrate, only light on the long wavelength side can be cut, and productivity can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の近赤外線透過フィルタの断
面図、第2図は近赤外線透過可視光吸収ガラスと誘電体
多層膜の分光透過率特性を示す曲線図、第3図は本発明
の一実施例の近赤外線透過フィルタの分光透過率特性を
示す曲線図、第4図は本発明の第2の実施例の近赤外線
透過フィルタの断面図、第5図は近赤外線透過可視光吸
収ガラスとネサ膜の分光透過率特性を示す曲線図、第6
図は本発明の第2の実施例の近赤外線透過フィルタの分
光透過率特性を示す曲線図、第7図は本発明の第3の実
施例の近赤外線透過フィルタの断面図、第8図は本発明
の第3の実施例の近赤外線透過フィルタの分光透過率特
性を示す曲線図、第9図は現在使用されている赤フィル
タの分光透過率特性を示す曲線図である。 1.8.12・・・近赤外線透過フィルタ、2・・・近
赤外線透過可視光吸収ガラス基板(近赤外線透過可視光
吸収ガラス)、 3 ・・誘電体多層膜、  9・・・ネサ膜。 代理人  弁理士  大 胡 典 夫
Fig. 1 is a cross-sectional view of a near-infrared transmitting filter according to an embodiment of the present invention, Fig. 2 is a curve diagram showing the spectral transmittance characteristics of near-infrared transmitting visible light absorbing glass and dielectric multilayer film, and Fig. 3 is a diagram of the present invention. A curve diagram showing the spectral transmittance characteristics of a near-infrared transmission filter according to an embodiment of the invention, FIG. 4 is a cross-sectional view of a near-infrared transmission filter according to a second embodiment of the invention, and FIG. 5 is a curve diagram showing near-infrared transmission visible light. Curve diagram showing the spectral transmittance characteristics of absorption glass and Nesa film, No. 6
The figure is a curve diagram showing the spectral transmittance characteristics of the near-infrared transmitting filter according to the second embodiment of the present invention, FIG. 7 is a cross-sectional view of the near-infrared transmitting filter according to the third embodiment of the present invention, and FIG. FIG. 9 is a curve diagram showing the spectral transmittance characteristics of the near-infrared transmission filter according to the third embodiment of the present invention, and FIG. 9 is a curve diagram showing the spectral transmittance characteristics of the red filter currently used. 1.8.12...Near infrared transmission filter, 2...Near infrared transmission visible light absorption glass substrate (near infrared transmission visible light absorption glass), 3...Dielectric multilayer film, 9...Nesa film. Agent Patent Attorney Norio Ogo

Claims (1)

【特許請求の範囲】[Claims]  近赤外線透過可視光吸収ガラスに誘電体多層膜および
/またはネサ膜をコートし、近赤外線の特定の波長域で
80%以上を透過することを特徴とする近赤外線透過フ
ィルタ。
A near-infrared transmitting filter characterized by coating near-infrared transmitting visible light absorbing glass with a dielectric multilayer film and/or a NESA film, and transmitting 80% or more of near-infrared light in a specific wavelength range.
JP22961290A 1990-08-31 1990-08-31 Near infrared transmission filter Pending JPH04110803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22961290A JPH04110803A (en) 1990-08-31 1990-08-31 Near infrared transmission filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22961290A JPH04110803A (en) 1990-08-31 1990-08-31 Near infrared transmission filter

Publications (1)

Publication Number Publication Date
JPH04110803A true JPH04110803A (en) 1992-04-13

Family

ID=16894909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22961290A Pending JPH04110803A (en) 1990-08-31 1990-08-31 Near infrared transmission filter

Country Status (1)

Country Link
JP (1) JPH04110803A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047097A1 (en) 2011-09-26 2013-04-04 ソニー株式会社 Image pickup apparatus and filter
KR20170106448A (en) * 2015-01-23 2017-09-20 마테리온 코포레이션 Near-infrared optical interference filter with improved transmission
CN110109207A (en) * 2019-05-20 2019-08-09 深圳市利丰达展贸科技有限公司 A kind of photosensitive radar coating structure of polychrome and film plating process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047097A1 (en) 2011-09-26 2013-04-04 ソニー株式会社 Image pickup apparatus and filter
KR20170106448A (en) * 2015-01-23 2017-09-20 마테리온 코포레이션 Near-infrared optical interference filter with improved transmission
CN110109207A (en) * 2019-05-20 2019-08-09 深圳市利丰达展贸科技有限公司 A kind of photosensitive radar coating structure of polychrome and film plating process

Similar Documents

Publication Publication Date Title
US11131794B2 (en) Optical filter and sensor system
US5398133A (en) High endurance near-infrared optical window
US10809427B2 (en) Infrared-absorbing composition, infrared-cut filter, and imaging optical system
JP5741283B2 (en) Infrared light transmission filter and imaging apparatus using the same
GB2080339A (en) A Multi-layer System for Heat Protective Applications
JPS5890604A (en) Infrared-ray shielding laminate
JPH0763915A (en) Thin film nd filter and its production
WO2020244223A1 (en) Optical filter plate
JPS5860701A (en) Reflection preventing film
JPH04110803A (en) Near infrared transmission filter
JPH07101241B2 (en) Semiconductor optical filter
CN210015252U (en) Optical filter
JPS6371801A (en) Antireflection film
JP2566634B2 (en) Multi-layer antireflection film
JPH05241017A (en) Optical interference multilayered film having yellow filter function
JPS6238402A (en) Optical filter
JPH02213803A (en) Near infrared ray cutting filter
JPH012004A (en) Ultra-narrowband optical multilayer film
WO2023095574A1 (en) Method for producing bandpass filter, and bandpass filter
JPH027042B2 (en)
JPH07270601A (en) Optical thin film
RU1598697C (en) Correcting filter
JPH07244215A (en) Interference filter for infrared ray
JPS63284502A (en) Production of multi-layered dielectric film filter
RU2708302C1 (en) Glass with low-emission coating, resistant to heat treatment