JPH04110690A - Temperature control device of energy dispersion type x-rays detector - Google Patents

Temperature control device of energy dispersion type x-rays detector

Info

Publication number
JPH04110690A
JPH04110690A JP2228604A JP22860490A JPH04110690A JP H04110690 A JPH04110690 A JP H04110690A JP 2228604 A JP2228604 A JP 2228604A JP 22860490 A JP22860490 A JP 22860490A JP H04110690 A JPH04110690 A JP H04110690A
Authority
JP
Japan
Prior art keywords
temperature
detector
heating
cooling
refrigerant tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2228604A
Other languages
Japanese (ja)
Inventor
Masayuki Taira
平 正之
Eiichi Watanabe
栄一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2228604A priority Critical patent/JPH04110690A/en
Publication of JPH04110690A publication Critical patent/JPH04110690A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To enable temperature of a detector to be maintained to a constant value by providing a cooling control means, a temperature measuring means, a heating means, and a heating control means and then controlling temperature near the detector to a constant value. CONSTITUTION:Control temperature of a cooling control device 8 is set to a specified temperature range for performing interrupted operation of a cooling device 7 automatically, temperature is measured by a thermocouple 9 which is set near a detector 2, and current or voltage is supplied to a heater 11 which turns around a heat-conductive bar 3 so that temperature at the detection part becomes constant. With this configuration, temperature at the detection part is maintained to be constant while the cooling device is at halt, thus enabling fluctuation of noise or drift of spectrum of a semiconductor detection element 2a and its initial stage amplifier to be suppressed and accuracy of X-rays analysis to be improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、エネルギー分散型X線検出器の温度制御装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a temperature control device for an energy dispersive X-ray detector.

[従来の技術] 第4図に電子顕微鏡等に付設されたエネルギー分散型X
線検出器の構成を示す。
[Prior art] Figure 4 shows an energy dispersive type X attached to an electron microscope, etc.
The configuration of the line detector is shown.

第4図において、1は電子顕微鏡筐筒、2は半導体X線
検出器、3は熱伝導棒、4は保護筒、5は冷媒槽(真空
断熱容器)、6は液体窒素、7は冷却装置、Sは試料で
ある。
In Fig. 4, 1 is an electron microscope housing, 2 is a semiconductor X-ray detector, 3 is a heat conduction rod, 4 is a protection tube, 5 is a refrigerant tank (vacuum insulation container), 6 is liquid nitrogen, and 7 is a cooling device. , S is the sample.

さて、上述したような構成の装置においては、冷媒槽5
に蓄えられた液体窒素の潜熱により熱伝導棒3を介して
該熱伝導棒の先端に取り付けられた半導体X線検出器2
が液体窒素温度に冷却されている。この液体窒素6のみ
によって検出器2を冷却する場合、液体窒素の温度は沸
点温度(常圧で約77K)で安定するか、該液体窒素の
蒸発による消費はまぬがれられない。そこで、冷媒槽5
内に冷却装置7を挿入して、該冷却装置によって液体窒
素を過冷却(沸点以下の温度に)することにより、液体
窒素の蒸発を抑え消費量を少なくするようにしている。
Now, in the apparatus configured as described above, the refrigerant tank 5
A semiconductor X-ray detector 2 is attached to the tip of the heat conduction rod 3 via the heat conduction rod 3 due to the latent heat of the liquid nitrogen stored in the
is cooled to liquid nitrogen temperature. When the detector 2 is cooled only by the liquid nitrogen 6, the temperature of the liquid nitrogen is stabilized at the boiling point temperature (approximately 77 K at normal pressure), or consumption of the liquid nitrogen by evaporation cannot be avoided. Therefore, the refrigerant tank 5
A cooling device 7 is inserted into the tank, and the cooling device subcools the liquid nitrogen (to a temperature below its boiling point), thereby suppressing evaporation of the liquid nitrogen and reducing consumption.

しかし、X線検出器使用中や電子顕微鏡像観察中は該冷
却装置によって発生される振動がX線検出器、電子顕微
鏡双方の分解能を悪くするため、分析中及び検鏡中は冷
却装置は停止される。
However, when the X-ray detector is in use or the electron microscope image is being observed, the vibrations generated by the cooling device deteriorate the resolution of both the X-ray detector and the electron microscope, so the cooling device is stopped during analysis and microscopy. be done.

[発明が解決しようとする課題] さて、上述したように過冷却せずに液体窒素のみによっ
て検出器を冷却する場合、液体窒素の蒸発による消費量
はまぬがれられないが、このとき液体窒素の温度は沸点
温度で安定するため、検出器部の温度も略一定温度に保
たれることになる。
[Problems to be Solved by the Invention] As described above, when the detector is cooled only with liquid nitrogen without supercooling, consumption due to evaporation of liquid nitrogen cannot be avoided. is stabilized at the boiling point temperature, so the temperature of the detector section is also kept at a substantially constant temperature.

ところか、冷媒槽内の液体窒素を液体ヘリウムなどを利
用した冷却装置7によって過冷却した場合には、冷媒槽
部や保護筒部分からの熱の流入によって液体窒素の温度
か変動する。特に、前述した分析中及び検鏡中に冷却装
置か停止されている期間は液体窒素の温度が上昇するた
め、熱伝導棒3の先端部に取り付けられた検出器部分の
温度も変動することになる。この温度の変動は半導体検
出素子2aやその初段の増幅器(FET)の雑音を変動
させたりスペクトルのドリフトを発生する原因となるた
めX線分析に支障を来たすことが問題とされている。
On the other hand, when the liquid nitrogen in the refrigerant tank is supercooled by the cooling device 7 using liquid helium or the like, the temperature of the liquid nitrogen fluctuates due to the inflow of heat from the refrigerant tank and the protective cylinder. In particular, the temperature of the liquid nitrogen rises during the period when the cooling device is stopped during the analysis and microscopy mentioned above, so the temperature of the detector attached to the tip of the heat conduction rod 3 will also fluctuate. Become. This temperature fluctuation causes a fluctuation in the noise of the semiconductor detection element 2a and its first-stage amplifier (FET), and causes spectrum drift, which is considered to be a problem in that it interferes with X-ray analysis.

本発明は、上述した問題点を考慮し、検出器の温度をの
一定温度に保つことのできるエネルギー分散型X線検出
器の温度制御装置を提供することを目的としている。
The present invention takes the above-mentioned problems into consideration and aims to provide a temperature control device for an energy dispersive X-ray detector that can maintain the temperature of the detector at a constant temperature.

[課題を解決するための手段] 第1の本発明は、冷媒槽と、該冷媒槽に熱伝導棒を介し
て接続された半導体X線検出器と、該冷媒槽内に挿入さ
れた冷却手段と、前記冷媒を過冷却領域内の温度に維持
するように前記冷却手段を断続運転するための冷却制御
手段を備えると共に、前記検出器近傍の温度を測定する
手段と、検出器近傍を加熱するための加熱手段と、該測
定手段の測温結果に基づいて前記加熱手段を制御するた
めの加熱制御手段とを設け、前記加熱手段または冷却手
段によって前記検出器近傍の温度を一定温度に保つよう
に制御するようにしたことを特徴としている。
[Means for Solving the Problems] The first invention provides a refrigerant tank, a semiconductor X-ray detector connected to the refrigerant tank via a heat conduction rod, and a cooling means inserted into the refrigerant tank. and a cooling control means for intermittent operation of the cooling means so as to maintain the temperature of the refrigerant within a supercooled region, a means for measuring the temperature near the detector, and a means for heating the vicinity of the detector. and a heating control means for controlling the heating means based on the temperature measurement result of the measuring means, so that the temperature near the detector is maintained at a constant temperature by the heating means or the cooling means. It is characterized by the fact that it is controlled by

第2の本発明は、冷媒槽と、該冷媒槽に熱伝導棒を介し
て接続された半導体X線検出器と、該冷媒槽内に挿入さ
れた冷却手段と、前記冷媒を過冷却領域内の温度に維持
するように前記冷却手段を断続運転するためのため冷却
制御手段を備えると共に、前記検出器近傍の温度を測定
する手段と、前記検出器に付設された増幅器を加熱する
ための加熱手段と、該測定手段の測温結果に基づいて前
記加熱手段を制御するための加熱制御手段とを設け、前
記加熱手段によって前記増幅器を過冷却領域内の一定温
度に保つように制御するようにしたことを特徴としてい
る。
A second aspect of the present invention includes a refrigerant tank, a semiconductor X-ray detector connected to the refrigerant tank via a heat conduction rod, a cooling means inserted into the refrigerant tank, and a refrigerant in a supercooling region. a cooling control means for intermittent operation of the cooling means to maintain the temperature at a temperature of and a heating control means for controlling the heating means based on the temperature measurement result of the measuring means, the heating means controlling the amplifier to maintain a constant temperature within a supercooling region. It is characterized by what it did.

[実施例コ 以下、本発明の実施例を図面に基づいて説明する。第1
図は第1の本発明の一実施例を説明するための装置構成
図、第2図は動作を説明するための図、第3図は第2の
本発明の一実施例を説明するための装置構成図である。
[Embodiments] Hereinafter, embodiments of the present invention will be described based on the drawings. 1st
The figure is an apparatus configuration diagram for explaining an embodiment of the first invention, FIG. 2 is a diagram for explaining the operation, and FIG. 3 is a diagram for explaining an embodiment of the second invention. It is a device configuration diagram.

第1図において、第4図と同一の構成要素には同一番号
を付すと共に、説明を省略する。第1図に示す第1の本
発明による実施例が従来例と異なるのは、冷媒6を過冷
却領域内の温度に維持するように冷却装置7を断続運転
するための冷却制御装置8と、検出器近傍の温度を測定
するための熱電対9及び温度検出器10と、熱伝導棒3
を加熱するためのヒータ11とを設けると共に、該熱電
対の出力に基づいて前記ヒーター電流または電圧を制御
するため加熱制御手段12を設けた点である。
In FIG. 1, the same components as in FIG. 4 are given the same numbers and their explanations are omitted. The first embodiment according to the present invention shown in FIG. 1 differs from the conventional example in that a cooling control device 8 for intermittent operation of a cooling device 7 so as to maintain the temperature of the refrigerant 6 within the supercooling region; A thermocouple 9 and a temperature detector 10 for measuring the temperature near the detector, and a heat conductive rod 3
In addition to providing a heater 11 for heating the thermocouple, a heating control means 12 is provided for controlling the heater current or voltage based on the output of the thermocouple.

前記冷却制御装置8は熱電対13及び温度検出器14に
よって検出された冷媒の温度に基づいて前記冷却装置7
を自動的に断続運転し、液体窒素の温度が70に〜75
にの間の任意の温度に維持されるようにしている。
The cooling control device 8 controls the cooling device 7 based on the temperature of the refrigerant detected by the thermocouple 13 and the temperature detector 14.
Automatically operates intermittently until the temperature of liquid nitrogen reaches 70~75.
It is maintained at any temperature between.

液体窒素が冷媒槽内に注入されると同時に冷却装置が動
作されると該冷媒槽内の液体窒素は第2図(a)に実線
Aで示すように過冷却される。この冷却により液体窒素
を沸点77に以下の温度に保つことにより蒸発を防止す
ることができるため、本実施例においては前記冷却制御
装置8の制御温度を70Kから75にの間に設定して冷
却装置7を自動的に断続運転している。そのため、液体
窒素の温度が70Kに達すると冷却制御装置8より第2
図(b)に示すような制御信号が冷却装置7のポンプに
供給されて、冷却装置7が自動的に停止される。該冷却
装置7の停止と共に、液体窒素の温度は徐々に上昇し始
めるので、検出器2近傍に設けられた熱電対9によって
温度を計測しながら、該検出部の温度が一定になるよう
に熱伝導棒3に旋回されたヒータ11に電流または電圧
を供給するようにしている。このとき、ヒータに供給さ
れる電流または電圧は概ね第2図(C)に示すように変
化される。
When the cooling device is operated at the same time that liquid nitrogen is injected into the refrigerant tank, the liquid nitrogen in the refrigerant tank is supercooled as shown by the solid line A in FIG. 2(a). This cooling can prevent evaporation by keeping the liquid nitrogen at a temperature below the boiling point 77. Therefore, in this embodiment, the control temperature of the cooling control device 8 is set between 70K and 75K to cool the liquid nitrogen. The device 7 is automatically operated intermittently. Therefore, when the temperature of liquid nitrogen reaches 70K, the cooling control device 8
A control signal as shown in Figure (b) is supplied to the pump of the cooling device 7, and the cooling device 7 is automatically stopped. When the cooling device 7 stops, the temperature of the liquid nitrogen starts to rise gradually, so while measuring the temperature with a thermocouple 9 installed near the detector 2, heat is added so that the temperature of the detection part remains constant. Current or voltage is supplied to the heater 11 which is rotated around the conduction rod 3. At this time, the current or voltage supplied to the heater is changed approximately as shown in FIG. 2(C).

これにより、液体窒素の温度か75Kまで上昇する間、
前記検出器2部分の温度は例えば80に程度の温度に保
たれる。そして、液体窒素の温度が75Kに達すると冷
却装置の運転が自動的に再開されて液体窒素は再び冷却
されるので、ヒータ電流または電圧は検出部の温度を一
定にするように増加される。
As a result, while the temperature of liquid nitrogen rises to 75K,
The temperature of the detector 2 portion is maintained at a temperature of about 80° C., for example. Then, when the temperature of the liquid nitrogen reaches 75K, the operation of the cooling device is automatically restarted and the liquid nitrogen is cooled again, so that the heater current or voltage is increased to keep the temperature of the detection part constant.

このように、冷却装置の停止中に検出部の温度が一定に
保たれることにより、半導体検出素子2aやその初段の
増幅器(FET)の雑音の変動やスペクトルのドリフト
を抑えることができるので、X線分析の精度を向上させ
ることができる。
In this way, by keeping the temperature of the detection part constant while the cooling device is stopped, it is possible to suppress noise fluctuations and spectral drifts of the semiconductor detection element 2a and its first stage amplifier (FET). The accuracy of X-ray analysis can be improved.

さて、電子顕微鏡等に使用されるX線検出器は冷媒槽を
含む全体を鏡筒内に組み込むことは構造上難しいため、
X線検出器部分だけを鏡筒内の試料近傍に配置されるよ
うに冷媒槽5と検出器2との間に熱伝導棒3が設けられ
、該熱伝導棒3を介して冷却が行なわれている。そのた
め、該熱伝導棒部分での熱損失(熱の流入)は避け1う
れず、冷媒槽5と検出器2との温度を比較すると検出器
部側の温度か若干高くなる傾向にある。上述したように
冷却装置7の停止期間中に熱伝導棒3に旋回されたヒー
タ11に電流または電圧を供給して検出器部分の温度を
一定に保つように制御を行なった場合、ヒータ11が熱
伝導棒3の中間部付近に配置されていると熱伝導棒3を
介して冷媒槽5に流入する熱によって冷媒の温度上昇が
速められることになる。そのため、冷却装置7の運転回
数が増えて分析時間または電子顕微鏡像観察時間が制約
される問題が発生することになる。
Now, it is structurally difficult to incorporate the entire X-ray detector, including the refrigerant tank, into the lens barrel used in electron microscopes, etc.
A heat conduction rod 3 is provided between the coolant tank 5 and the detector 2 so that only the X-ray detector portion is placed near the sample inside the lens barrel, and cooling is performed via the heat conduction rod 3. ing. Therefore, heat loss (inflow of heat) in the heat conduction rod portion is unavoidable, and when comparing the temperatures of the refrigerant tank 5 and the detector 2, the temperature on the detector portion side tends to be slightly higher. As described above, when the heater 11 rotated by the heat conduction rod 3 is controlled to keep the temperature of the detector portion constant by supplying current or voltage to the heater 11 while the cooling device 7 is stopped, the heater 11 If it is disposed near the middle of the heat conduction rod 3, the heat flowing into the refrigerant tank 5 through the heat conduction rod 3 will accelerate the temperature rise of the refrigerant. Therefore, the number of times the cooling device 7 is operated increases, resulting in a problem that the analysis time or electron microscope image observation time is restricted.

また、ヒータ11を検出器部側に近付けて配置した場合
には半導体検出素子2aに付設された増幅器(FET)
の温度は一定に保たれるものの、本来低温であることが
望ましい半導体検出素子2aの温度が該ヒータ11の熱
及び保護筒外からの熱の流入によって比較的高い温度に
保たれることになる。
In addition, when the heater 11 is placed close to the detector section, an amplifier (FET) attached to the semiconductor detection element 2a
Although the temperature of the semiconductor detection element 2a, which is originally desirable to be kept at a low temperature, is kept at a relatively high temperature due to the heat of the heater 11 and the inflow of heat from outside the protective cylinder. .

そこで、第2の本発明では第3図に示すように、半導体
検出素子2aに付設された増幅器(FET)15近傍の
温度を測定するための熱電対9aと、前記増幅器(FE
T)1.5を加熱するための加熱ヒータllaを増幅器
15に隣接して設けている。
Therefore, in the second aspect of the present invention, as shown in FIG.
T) A heater lla for heating the amplifier 1.5 is provided adjacent to the amplifier 15.

このように、増幅器15のみを加熱する場合にはヒータ
11aの消費電力を極めて小さくできるので、該加熱に
よって生じた熱か熱伝導棒を介して冷媒槽5に流入する
ことを抑えることができる。
In this manner, when only the amplifier 15 is heated, the power consumption of the heater 11a can be made extremely small, so that the heat generated by the heating can be prevented from flowing into the refrigerant tank 5 via the heat conduction rod.

これより、冷却装置7の停止時間、即ち分析時間または
電子顕微鏡像観察時間長くすることができる。また、小
電力で増幅器15のみを加熱しているため半導体検出素
子の温度上昇を防ぐことができる。
This makes it possible to lengthen the stop time of the cooling device 7, that is, the analysis time or the electron microscope image observation time. Furthermore, since only the amplifier 15 is heated with a small amount of electric power, it is possible to prevent the temperature of the semiconductor detection element from rising.

なお、上述した実施例は本発明の一実施例に過ぎず、本
発明は種々変形して実施することができる。例えば、上
述した実施例においては、冷媒を液体窒素とした場合に
過冷却温度を70に〜75にの間に保つように冷却装置
を制御するようにしたが、該温度の設定範囲は冷媒の種
類によって任意に設定されるものである。
Note that the above-described embodiment is only one embodiment of the present invention, and the present invention can be implemented with various modifications. For example, in the above-described embodiment, when the refrigerant is liquid nitrogen, the cooling device is controlled to maintain the subcooling temperature between 70 and 75, but the temperature setting range is limited to the refrigerant. It is set arbitrarily depending on the type.

[発明の効果] 以上の説明から明らかなように、第1の本発明によれば
、冷媒槽と、該冷媒槽に熱伝導棒を介して接続された半
導体X線検出器と、該冷媒槽内に挿入された冷却手段と
、前記冷媒を過冷却領域内の温度に維持するように前記
冷却手段を断続運転するための冷却制御手段を備えると
共に、前記検出器近傍の温度を測定する手段と、検出器
近傍を加熱するための加熱手段と、該測定手段の測温結
果に基づいて前記加熱手段を制御するための加熱制御手
段とを設け、前記加熱手段または冷却手段によって前記
検8器近傍の温度を一定温度に保つように制御するよう
にしたことにより、半導体検出素子やその初段の増幅器
(FET)熱雑音の変動やスペクトルのドリフトを抑え
ることができるので、X線分析の精度を向上させること
ができる。
[Effects of the Invention] As is clear from the above description, according to the first invention, a refrigerant tank, a semiconductor X-ray detector connected to the refrigerant tank via a heat conductive rod, and a refrigerant tank are provided. and a cooling control means for intermittent operation of the cooling means so as to maintain the refrigerant at a temperature within a supercooled region, and means for measuring the temperature near the detector. , a heating means for heating the vicinity of the detector, and a heating control means for controlling the heating means based on the temperature measurement result of the measuring means, and the heating means or the cooling means heats the vicinity of the detector. By controlling the temperature to maintain a constant temperature, it is possible to suppress fluctuations in the thermal noise of the semiconductor detection element and its first stage amplifier (FET) and drift in the spectrum, improving the accuracy of X-ray analysis. can be done.

また、第2の本発明によれば、冷媒槽と、該冷媒槽に熱
伝導棒を介して接続された半導体X線検出器と、該冷媒
槽内に挿入された冷却手段と、前記冷媒を過冷却領域内
の温度に維持するように前記冷却手段を断続運転するた
めの冷却制御手段を備えると共に、前記検出器近傍の温
度を測定する手段と、前記検出器に付設された増幅器を
加熱するための加熱手段と、該測定手段の測温結果に基
づいて前記加熱手段を制御するための加熱制御手段とを
設け、前記加熱手段によって前記増幅器を一定温度に保
つように制御するようにしたことにより、温度制御のた
めの電力を小さくすることかできるので、加熱によって
生じた熱が熱伝導棒を介して冷媒槽部分に流入すること
を抑えることかできる。これより、X線分析の精度を向
上させると共に分析時間や電子顕微鏡像観察時間を長く
することができる。
Further, according to the second aspect of the present invention, a refrigerant tank, a semiconductor X-ray detector connected to the refrigerant tank via a heat conduction rod, a cooling means inserted in the refrigerant tank, and a A cooling control means is provided for intermittent operation of the cooling means to maintain the temperature within a supercooled region, and a means for measuring the temperature near the detector and heating an amplifier attached to the detector. and a heating control means for controlling the heating means based on the temperature measurement result of the measuring means, and the amplifier is controlled to be kept at a constant temperature by the heating means. As a result, the electric power required for temperature control can be reduced, so that it is possible to suppress the heat generated by heating from flowing into the refrigerant tank portion through the heat conduction rod. This can improve the accuracy of X-ray analysis and lengthen the analysis time and electron microscope image observation time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1の本発明の一実施例を説明するための装置
構成図、第2図は動作を説明するための図、第3図は第
2の本発明の一実施例を説明するための装置構成図、第
4図は従来例を説明するための図である。 電子顕微鏡筐筒 熱伝導棒 冷媒槽 冷却装置 熱電対 ヒータ 熱電対 増幅器 試料 4 : 6 : 8 : 10 : 14 : 半導体X線検出器 保護筒 液体窒素 冷却制御装置 温度検出器 加熱制御手段 温度検出器
FIG. 1 is an apparatus configuration diagram for explaining an embodiment of the first invention, FIG. 2 is a diagram for explaining the operation, and FIG. 3 is an illustration of an embodiment of the second invention. FIG. 4 is a diagram for explaining a conventional example. Electron microscope housing Heat conduction rod Refrigerant tank Cooling device Thermocouple heater Thermocouple amplifier Sample 4 : 6 : 8 : 10 : 14 : Semiconductor X-ray detector Protection tube Liquid nitrogen cooling control device Temperature detector Heating control means Temperature detector

Claims (2)

【特許請求の範囲】[Claims] (1)冷媒槽と、該冷媒槽に熱伝導棒を介して接続され
た半導体X線検出器と、該冷媒槽内に挿入された冷却手
段と、前記冷媒を過冷却領域内の温度に維持するように
前記冷却手段を断続運転するための冷却制御手段を備え
ると共に、前記検出器近傍の温度を測定する手段と、検
出器近傍を加熱するための加熱手段と、該測定手段の測
温結果に基づいて前記加熱手段を制御するための加熱制
御手段とを設け、前記加熱手段または冷却手段によって
前記検出器近傍の温度を一定温度に保つように制御する
ようにしたことを特徴とするエネルギー分散型X線検出
器の温度制御装置。
(1) A refrigerant tank, a semiconductor X-ray detector connected to the refrigerant tank via a heat conduction rod, a cooling means inserted into the refrigerant tank, and maintaining the refrigerant at a temperature within a supercooling region. a cooling control means for intermittent operation of the cooling means, a means for measuring the temperature in the vicinity of the detector, a heating means for heating the vicinity of the detector, and a temperature measurement result of the measuring means. and a heating control means for controlling the heating means based on the above, and the heating means or the cooling means controls the temperature near the detector to be maintained at a constant temperature. Temperature control device for type X-ray detector.
(2)冷媒槽と、該冷媒槽に熱伝導棒を介して接続され
た半導体X線検出器と、該冷媒槽内に挿入された冷却手
段と、前記冷媒を過冷却領域内の温度に維持するように
前記冷却手段を断続運転するための冷却制御手段を備え
ると共に、前記検出器近傍の温度を測定する手段と、前
記検出器に付設された増幅器を加熱するための加熱手段
と、該測定手段の測温結果に基づいて前記加熱手段を制
御するための加熱制御手段とを設け、前記加熱手段によ
って前記増幅器を一定温度に保つように制御するように
したことを特徴とするエネルギー分散型X線検出器の温
度制御装置。
(2) A refrigerant tank, a semiconductor X-ray detector connected to the refrigerant tank via a heat conduction rod, a cooling means inserted into the refrigerant tank, and maintaining the refrigerant at a temperature within a supercooling region. a cooling control means for intermittent operation of the cooling means so as to perform the measurement; a means for measuring the temperature near the detector; a heating means for heating an amplifier attached to the detector; and a heating control means for controlling the heating means based on the temperature measurement result of the means, the energy dispersion type Line detector temperature control device.
JP2228604A 1990-08-30 1990-08-30 Temperature control device of energy dispersion type x-rays detector Pending JPH04110690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2228604A JPH04110690A (en) 1990-08-30 1990-08-30 Temperature control device of energy dispersion type x-rays detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2228604A JPH04110690A (en) 1990-08-30 1990-08-30 Temperature control device of energy dispersion type x-rays detector

Publications (1)

Publication Number Publication Date
JPH04110690A true JPH04110690A (en) 1992-04-13

Family

ID=16878957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2228604A Pending JPH04110690A (en) 1990-08-30 1990-08-30 Temperature control device of energy dispersion type x-rays detector

Country Status (1)

Country Link
JP (1) JPH04110690A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302831A (en) * 1992-04-30 1994-04-12 North American Philips Corporation Dewar construction for cooling radiation detector cold finger
WO1999022252A1 (en) * 1996-04-17 1999-05-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device and method for producing images in digital dental radiography
WO2001071383A1 (en) * 2000-03-21 2001-09-27 Commissariat A L'energie Atomique RADIATION DETECTOR WITH SEMICONDUCTOR JUNCTION FOR MEASURING HIGH RATES OF X RADIATION OR η RADIATION DOSE
JP2007003397A (en) * 2005-06-24 2007-01-11 Fuji Electric Holdings Co Ltd Sample analyzer
JP2009289670A (en) * 2008-05-30 2009-12-10 Hitachi High-Technologies Corp Ion beam device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302831A (en) * 1992-04-30 1994-04-12 North American Philips Corporation Dewar construction for cooling radiation detector cold finger
WO1999022252A1 (en) * 1996-04-17 1999-05-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device and method for producing images in digital dental radiography
WO2001071383A1 (en) * 2000-03-21 2001-09-27 Commissariat A L'energie Atomique RADIATION DETECTOR WITH SEMICONDUCTOR JUNCTION FOR MEASURING HIGH RATES OF X RADIATION OR η RADIATION DOSE
FR2806807A1 (en) * 2000-03-21 2001-09-28 Commissariat Energie Atomique RADIATION DETECTOR WITH SEMICONDUCTOR JUNCTION FOR MEASURING HIGH FLOW RATES OF X OR GAMMA RADIATION
JP2007003397A (en) * 2005-06-24 2007-01-11 Fuji Electric Holdings Co Ltd Sample analyzer
JP4692742B2 (en) * 2005-06-24 2011-06-01 富士電機ホールディングス株式会社 Sample analyzer
JP2009289670A (en) * 2008-05-30 2009-12-10 Hitachi High-Technologies Corp Ion beam device

Similar Documents

Publication Publication Date Title
KR101099899B1 (en) Circulation cooling system for cryogenic cable
US7309987B2 (en) Anticipative temperature regulation of cryogenic NMR probes
JP4896620B2 (en) Superconducting magnet
US6578367B1 (en) Liquid nitrogen cooling system
EP2028505A2 (en) Coolant assembly of a DNP apparatus
US4697269A (en) Laser apparatus
US6653835B2 (en) Magnetic resonance tomograph with a temperature controller for thermally highly sensitive components
JPH04110690A (en) Temperature control device of energy dispersion type x-rays detector
US5013159A (en) Thermal analysis apparatus
US9638774B2 (en) Discharge controlled superconducting magnet
EP3617728B1 (en) Nmr probe system and method of using the nmr probe system
El Matarawy Comparison of the realization of water triple point metallic cell through its preparation techniques in new modified adiabatic calorimeter at NIS-Egypt
El Matarawy et al. New adiabatic calorimeter for realization the triple point of water in metallic-sealed cell at NIS-Egypt
Charles et al. 20 K coaxial pulse tube using passive precooling
JP3075377U (en) Energy dispersive X-ray detector
JP5146373B2 (en) Laser oscillator and laser processing machine
US10278273B2 (en) X-ray generator and X-ray analyzer
Wang et al. Operational parameters for the superconducting cavity maser
Wellenstein et al. A regulated filament temperature power supply for electron guns
JPS5914182B2 (en) thermal testing equipment
SU362232A1 (en) CRYOSTAT FOR X-RAY MATERIALS
KR101526902B1 (en) Aperture with Heating Structure for Improving Contrast Ratio of Cryo Image of TEM
JPH04143644A (en) Temperature control apparatus for electronic element
JPS596484B2 (en) electromagnet device
JPH05332841A (en) Cooling temperature compensation circuit of infrared ray detection element