JPH0410973B2 - - Google Patents

Info

Publication number
JPH0410973B2
JPH0410973B2 JP60053786A JP5378685A JPH0410973B2 JP H0410973 B2 JPH0410973 B2 JP H0410973B2 JP 60053786 A JP60053786 A JP 60053786A JP 5378685 A JP5378685 A JP 5378685A JP H0410973 B2 JPH0410973 B2 JP H0410973B2
Authority
JP
Japan
Prior art keywords
wave
acceleration
component
observation
acceleration sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60053786A
Other languages
Japanese (ja)
Other versions
JPS61212716A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5378685A priority Critical patent/JPS61212716A/en
Publication of JPS61212716A publication Critical patent/JPS61212716A/en
Publication of JPH0410973B2 publication Critical patent/JPH0410973B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は加速度センサを用いた波浪観測装置、
殊にそのトレンド成分を除去したものに関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention provides a wave observation device using an acceleration sensor,
In particular, it relates to those from which trend components have been removed.

(従来の技術) 海洋波浪の問題は船舶の運航や設計、或は海岸
構造物、港湾の護岸構造等に密接に関連し波浪現
象の研究解明は重要な課題である。
(Prior Art) The problem of ocean waves is closely related to the operation and design of ships, coastal structures, seawall structures of ports, etc., and research and elucidation of wave phenomena is an important issue.

従来、波浪観測は所望海域に船舶域は航空機を
航行して目視による観測にたよつていたが台風等
に於ける波浪観測には多大な経費を要するのみな
らず搭乗員の危険を伴うと云う問題があつた。
Conventionally, wave observation has relied on visual observation by sailing an aircraft to the desired sea area, but wave observation during typhoons etc. not only requires a large amount of expense but also poses danger to the crew. There was a problem.

このため近年各種の波浪観測方法及び装置が提
案されるようになり、その一つに加速度センサを
搭載したブイを海面に浮遊させ波高、波動周期或
は波動方向を観測するものがある。
For this reason, various wave observation methods and devices have been proposed in recent years, one of which is to float a buoy equipped with an acceleration sensor on the sea surface to observe wave height, wave period, or wave direction.

その一例として加速度センサを用いた従来の波
高観測装置、殊にその加速度/変位変換部につい
て説明する。
As an example, a conventional wave height observation device using an acceleration sensor, particularly its acceleration/displacement converter, will be explained.

第2図aは従来の加速度センサを用いた波高観
測装置の加速度/変位変換部を示すブロツク図で
あつて、1は上下加速度センサであり、その出力
を直流増幅器2を介して二回積分器3に入力する
よう構成したものである。
FIG. 2a is a block diagram showing the acceleration/displacement conversion section of a wave height observation device using a conventional acceleration sensor, in which 1 is a vertical acceleration sensor, and its output is passed through a DC amplifier 2 to a double integrator. 3.

これは加速度成分を一回積分すれば速度成分を
得、更にもう一度積分すれば距離即ち変位を求め
ることができることを利用したものであつて、前
記加速度/変位変換装置を搭載したブイが波浪に
追従して運動する際生ずる加速度成分を上下の変
位として抽出し波高値を求めるものである。
This takes advantage of the fact that the velocity component can be obtained by integrating the acceleration component once, and the distance, that is, displacement, can be obtained by integrating the acceleration component once more.The buoy equipped with the acceleration/displacement conversion device follows the waves. The wave height value is determined by extracting the acceleration component that occurs when moving as a vertical displacement.

加速度センサを用いた波浪観測には上述の上下
加速度センサによる波高観測装置の他、水平方向
加速度センサを設けて波動方向を観測するもの或
は立体的に直交する3軸(x,y,z軸)方向
夫々に加速度センサを設け各々のセンサに生ずる
加速度を前記3軸の夫々の成分に分離し抽出する
ことによつて前記ブイの傾斜を補正しつつ波高、
波動方向及び波動周期等をより正確かつ同時に観
測するもの等種々の波浪観測が考えられる。
In addition to the above-mentioned wave height observation device using the vertical acceleration sensor, wave observation using an acceleration sensor may also include a horizontal acceleration sensor to observe the wave direction, or three-dimensional orthogonal three-axes (x, y, z axes). ) An acceleration sensor is provided in each direction, and the acceleration generated in each sensor is separated and extracted into components of each of the three axes, thereby correcting the inclination of the buoy and adjusting the wave height,
Various types of wave observation are possible, including those that more accurately and simultaneously observe the wave direction, wave period, etc.

このように、加速度センサを搭載したブイを海
面に浮遊せしめて行う波浪観測は、従来行なわて
いた他の方法例えば、海面下或は海底に圧力(水
力)センサを設ける波高観測方法、超音波パルス
を海面に反射させて海面位置を検出する音波式観
測方法或は目盛を付した数mの波浪柱の下に30〜
70mのワイヤでおもりをつるし前記波浪柱の一部
を海面上に立設固定せしめ目視等によつて波高を
観測するフルード波高計等に比して波浪の動きに
対する追従性がよいので測定可能な波高範囲が大
きくかつ正確であると云う優れた特長を有するこ
とから、今後の波浪観測の一手段として注目され
ている。
In this way, wave observation using a buoy equipped with an acceleration sensor floating on the sea surface can be performed using other conventional methods, such as wave height observation methods using pressure (hydraulic) sensors below the sea surface or on the seabed, and ultrasonic pulse observation methods. A sonic observation method that detects the sea surface position by reflecting the wave on the sea surface, or a wave column of several meters with a scale attached to the surface of the sea.
Compared to the Froude wave height meter, which suspends a weight from a 70m wire and fixes a part of the wave column above the sea surface to visually observe the wave height, it has a better ability to track the movement of waves, so it can be measured. It is attracting attention as a means of future wave observation because it has the excellent features of a wide wave height range and accuracy.

しかしながら、上述した如き加速度センサを用
いた波浪観測方法に於いては、加速度を速度或は
変位に変換する際用いる積分器の出力に種々の原
因によつて波浪周期に比しかなり長周期の変動成
分所謂トレンド(tred又はドリフトとも云う)成
分が重畳し以後のデータ処理が複雑化し装置が高
価となる欠点があつた。
However, in the wave observation method using the acceleration sensor as described above, the output of the integrator used to convert acceleration into velocity or displacement may have fluctuations with a period considerably longer than the wave period due to various causes. This method has the disadvantage that so-called trend (also called tred or drift) components are superimposed, complicating subsequent data processing and making the device expensive.

本発明の理解を助けるため以下トレンドの発生
及び従来の対策を詳細に説明する。
In order to facilitate understanding of the present invention, the occurrence of the trend and conventional countermeasures will be explained in detail below.

即ち、海洋上に浮遊するブイは波浪に追従して
運動する他、大きな波頭から落下して海面に着水
する際又は魚その他漂流物に衝突する際過大な加
速成分を生ずることがある。又、電源として乾電
池を内臓し消費電流軽減のため間欠的に電源投入
する際発生する電気的インパルスによりあたかも
過大な加速度を生じたかの如く作用する。このよ
うな原因によつて生ずる加速度成分は波浪による
連続的なものと異なりインパルス的な単発成分で
ある。
That is, a buoy floating on the ocean not only moves by following the waves, but also may generate an excessive acceleration component when it falls from the crest of a large wave and lands on the sea surface, or when it collides with fish or other floating objects. In addition, it has a built-in dry battery as a power source, and in order to reduce current consumption, the electrical impulses generated when the power is turned on intermittently act as if excessive acceleration were generated. Acceleration components caused by such causes are impulse-like single-shot components, unlike continuous acceleration components caused by waves.

一方、積分器にインパルス成分が入力するとそ
の出力には周知の如く若干遅れて最大値を有し以
後定数によつて決定される曲線に従つて減衰する
ような応答波形を生ずるが、通常これら積分器は
演算増幅器を用いかつ積分出力の飽和を避けるた
め負帰還機能を付加するよう構成するのが一般的
であるから前記応答波は振動波となる。
On the other hand, when an impulse component is input to an integrator, its output produces a response waveform that reaches its maximum value with a slight delay and then attenuates according to a curve determined by a constant. The response wave is an oscillatory wave because it is common to use an operational amplifier and add a negative feedback function to avoid saturation of the integrated output.

従つて、上述した積分器に衝撃性インパルスが
入力すると結果的に第2図bに示す如く振動減水
波成分が出力され、一般に該振動波成分周期は大
略20乃至30秒程度の長周期となる。
Therefore, when an impact impulse is input to the above-mentioned integrator, an oscillating water-reducing wave component is output as shown in FIG. .

又、前記積分器に付された負帰還作用は前段の
直流増幅器等から生ずる微少雑音入力成分が時間
とともに蓄積され所定の出力レベルとなつた場合
にも働き結果的に前記第2図bと類似した振動減
衰波成分即ちトレンド成分を生ずる。
Furthermore, the negative feedback effect applied to the integrator works even when minute noise input components generated from the preceding stage DC amplifier etc. are accumulated over time and reach a predetermined output level, resulting in a signal similar to that shown in Fig. 2b. This produces an oscillating damped wave component, that is, a trend component.

斯かる応答特性をもつた加速度/変位変換装置
を用いた波浪観測では波動に追従して生ずる加速
度成分が前記トレンドに重畳した波形となつて出
力されるから、求めた変位量の絶対値から波高を
読みとることが不可能である。
In wave observation using an acceleration/displacement conversion device with such response characteristics, the acceleration component generated by following the wave is output as a waveform superimposed on the trend, so the wave height can be calculated from the absolute value of the determined displacement amount. is impossible to read.

このため、従来は第2図cに示すようにトレン
ド成分に重畳する波浪成分の半周期ごとに最高値
と最低値との差(p−p値)を求めたうえで両者
の平均値を得、更に該平均値と前記最高値との差
又は最低値との和のいづれかを算出して得た結果
をトレンド成分とみなし、該成分と前記最高値及
び最低値との差を検知することによつて波浪成分
を抽出することを行つていた。
For this reason, conventionally, as shown in Figure 2c, the difference between the highest and lowest values (p-p value) is calculated for each half cycle of the wave component superimposed on the trend component, and then the average value of both is calculated. Furthermore, the result obtained by calculating either the difference between the average value and the maximum value or the sum of the minimum value is regarded as a trend component, and the difference between the component and the maximum value and the minimum value is detected. Therefore, we were working on extracting wave components.

換言すれば長周期のトレンド成分に重畳する短
周期波浪成分の各周期に於ける平均値を新らたな
基準値とすることによつて波浪成分のみを抽出し
ていた。
In other words, only the wave component was extracted by using the average value in each period of the short-period wave component superimposed on the long-period trend component as a new reference value.

一般にこれらの処理は演算過程で行つており、
処理すべきデータ量が多く、故に装置が複雑高価
となるばかりでなく測定精度を高く出来ないと云
う問題があつた。
Generally, these processes are performed during the calculation process,
There was a problem that the amount of data to be processed was large, which not only made the device complicated and expensive, but also made it impossible to achieve high measurement accuracy.

特に、前記観測ブイを海洋に浮遊せしめ無線回
線によつてデータ収集する場合には伝送し得る情
報の制限上極めて大きな問題となつていた。
In particular, when the observation buoy is floated in the ocean and data is collected via a wireless line, this poses an extremely serious problem due to limitations on the information that can be transmitted.

(発明の目的) 本発明は上述したような従来の加速度センサを
用いた波浪観測装置、殊にその加速度/速度又は
加速度/変位変換部の問題点を解決するためにな
されたものであつて、従来必然的に生じていたト
レンド成分の影響を除去し波浪成分の抽出を容易
にした波浪観測装置を提供することを目的とす
る。
(Object of the Invention) The present invention was made in order to solve the problems of the above-mentioned conventional wave observation device using an acceleration sensor, especially its acceleration/velocity or acceleration/displacement converter. It is an object of the present invention to provide a wave observation device that facilitates the extraction of wave components by removing the influence of trend components that have conventionally occurred.

(発明の概要) この目的の為本発明は前記積分器の後段に所要
帯域を有する高域波器又は帯域波器を介在せ
しめることによつて一般に長周期であるトレンド
成分を除去するよう波浪観測装置を構成する。
(Summary of the Invention) For this purpose, the present invention provides a wave observation method in which a trend component having a generally long period is removed by interposing a high frequency wave generator or a band wave wave generator having a required band after the integrator. Configure the device.

(実施例) 以下本発明を図示した実施例に基づいて詳細に
説明する。
(Example) The present invention will be described in detail below based on an illustrated example.

第1図は本発明に係かる波高観測装置の加速
度/変位変換部の一実施例を示すブロツク図であ
る。
FIG. 1 is a block diagram showing an embodiment of the acceleration/displacement conversion section of the wave height observation device according to the present invention.

同図において、1,2及び3は前記第2図aと
同様上下加速度センサ、直流増幅器及び二回積分
器であつて、本発明では前記積分器3の後段に以
下に詳説する如き帯域波器(BPF)4を挿入
接続する。
In the figure, 1, 2, and 3 are vertical acceleration sensors, DC amplifiers, and double integrators as in FIG. (BPF) 4 is inserted and connected.

即ち、前記BPF4は低域遮断周期を20(秒)か
つ周期30(秒)成分に対する減衰量を10(dB)以
上とした高域波器と、高域遮断周期を3(秒)
としかつ周期1(秒)における減衰量を20(dB)
以上とした低域波器とを組合せて帯域波器を
構成したものである。
That is, the BPF 4 has a high frequency filter with a low cutoff period of 20 (seconds) and an attenuation amount of 10 (dB) or more for the period 30 (second) component, and a high frequency cutoff period of 3 (seconds).
And the attenuation in period 1 (seconds) is 20 (dB).
A band wave device is constructed by combining the above-described low band wave device.

尚参考までに説明すれば周期T(秒)と周波数
F(Hz)との関係はF=1/Tであるから、上述
の各周期は夫々T=30(秒)はF=0.033(Hz)、T
=20(秒)はF=0.05(Hz)、T=3(秒)はF=
0.33(Hz)及びT=1(秒)はF=1(Hz)である。
For reference, the relationship between period T (seconds) and frequency F (Hz) is F = 1/T, so each of the above periods is T = 30 (seconds) and F = 0.033 (Hz). , T
= 20 (seconds) is F = 0.05 (Hz), T = 3 (seconds) is F =
0.33 (Hz) and T=1 (second), F=1 (Hz).

又、このような超低周波波器は例えば演算増
幅器を用いたアクテイブフイルタによつて実現可
能であつて、この際使用する容量及び抵抗器等の
部品は直流リ−ク特性に優れたものを選択する必
要がある。
In addition, such an ultra-low frequency device can be realized by, for example, an active filter using an operational amplifier, and the components used in this case, such as capacitors and resistors, should have excellent DC leakage characteristics. You need to choose.

更に、フイルタの設計法は既存のどんなもので
もよいが通過帯域内のリツプルを小さくする必要
性がら最大平担特性設計法即ちバタワース型フイ
ルタが最適であろう。
Furthermore, although any existing filter design method may be used, the maximum flat characteristic design method, that is, the Butterworth filter, is most suitable because of the need to reduce ripples within the passband.

第3図a,b及びcに前記フイルタの一実施例
として四次バターワース高域波器及び低域波
器の回路図及び夫々の特性図を示す。
FIGS. 3a, b, and c show circuit diagrams and characteristic diagrams of a fourth-order Butterworth high-frequency filter and a low-frequency filter as an embodiment of the filter.

即ち、同図aは演算増幅器OPを用いたバター
ワース型高域波器を示す回路図であつて、一般
にアクテイブフイルター段はRCフイルタの2段
に相当するから四次バターワースフイルタは同図
に示す如くアクテイブフイルタ2段によつて実現
できる。
That is, Figure a is a circuit diagram showing a Butterworth-type high-frequency filter using an operational amplifier OP, and since the active filter stage generally corresponds to two stages of RC filters, the fourth-order Butterworth filter is as shown in the diagram. This can be realized by using two stages of active filters.

同様に第3図bは四次バターワース型低域波
器の回路図を示し、以上2つの波器を直列接続
することによつて所望の帯域波器を実現するこ
とができる。
Similarly, FIG. 3b shows a circuit diagram of a fourth-order Butterworth type low-band waver, and by connecting the above two wavers in series, a desired band-pass waver can be realized.

参考までに、前記回路図の主要素子の数値とそ
のときの帯域波特性を第3図cに示す。
For reference, the numerical values of the main elements of the circuit diagram and the band wave characteristics at that time are shown in FIG. 3c.

先ず、同図aに於いて、波特性を決定する回
路素子の各値はR1≒13KΩ、R3≒300KΩ、C1
C2≒1μF、R5≒620KΩ、R6≒360KΩ、C4,C5
2.2μFである。
First, in Figure a, the values of the circuit elements that determine the wave characteristics are R 1 ≒13KΩ, R 3 ≒300KΩ, C 1 ,
C 2 ≒1μF, R 5 ≒620KΩ, R 6 ≒360KΩ, C 4 , C 5
It is 2.2μF.

又同図bに於いてはR9,R10≒950KΩ、C7
C10≒0.47μF、C8≒0.4μF、R12,R14≒2.3MΩ、
C11≒0.068μFである。尚可変抵抗VR1及びVR2
レベル調整用である。各回路素子を以上の如く決
定した時の総合特性は第3図cに示す通りであ
る。
Also, in the same figure b, R 9 , R 10 ≒950KΩ, C 7 ,
C 10 ≒0.47μF, C 8 ≒0.4μF, R 12 , R 14 ≒2.3MΩ,
C 11 ≒0.068μF. Note that variable resistors VR 1 and VR 2 are for level adjustment. The overall characteristics when each circuit element is determined as described above are as shown in FIG. 3c.

以上詳細に説明したような波器を積分器の後
段に位置せしめることによつて該積分器出力に含
まれるトレンド成分が除去されフイルタの通過域
周期信号のみを抽出することが可能となりこの出
力から波浪成分の波高値を直ちに求めることがで
きる。
By placing the wave generator as described in detail above after the integrator, the trend component included in the integrator output is removed, making it possible to extract only the passband periodic signal of the filter from this output. The wave height value of the wave component can be immediately obtained.

尚、上述の実施例では帯域波器を用いた場合
を示したがこれはトレンド成分と同時に高域雑音
成分をも除去するためであつて、トレンド成分の
みを除去するには高域波器のみで充分であるか
ら、例えば前記第3図aに示した如く遮断周期を
20(秒)としたバターラース型アクテイブフイル
タを使用すればよい。
In the above embodiment, the case where a bandpass filter is used is shown, but this is to remove high-frequency noise components at the same time as the trend component.To remove only the trend component, only a high-frequency filter is needed For example, as shown in Figure 3a above, the cutoff period is sufficient.
A Butteras type active filter set to 20 (seconds) may be used.

更に、本発明は波高観測装置に限定される必要
はなく例えば、水平方向加速度センサを用いて波
浪方向及び周期を観測する装置或は波浪観測以外
にも加速度出力を積分して速度成分又は変位成分
を求め所望の計測を行う装置等に広く応用可能な
ること説明を要しないであろう。
Furthermore, the present invention is not limited to a wave height observation device, and is not limited to, for example, a device that observes the direction and period of waves using a horizontal acceleration sensor, or a device other than wave observation that integrates acceleration output to obtain velocity components or displacement components. There is no need to explain that the present invention can be widely applied to devices and the like that perform desired measurements.

(発明の効果) 本発明は以上説明した如く従来加速度成分を積
分して速度成分域は変位成分を得る際必然的に発
生していたトレンド成分を極めて簡単な構成によ
つて除去するものであるから、これら加速度/速
度或は加速度/変位変換装置を用いる各種装置の
データ処理量を減少せしめ無線によるデータ伝送
を容易としかつ装置の大幅な単純化をもたらすう
えで著効を奏する。
(Effects of the Invention) As explained above, the present invention uses an extremely simple configuration to remove the trend component that inevitably occurs when integrating the acceleration component and obtaining the displacement component in the velocity component region. Therefore, it is effective in reducing the data processing amount of various devices using these acceleration/velocity or acceleration/displacement conversion devices, facilitating wireless data transmission, and greatly simplifying the devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る波高観測装置の加速度/
変位変換部の一実施例を示すブロツク図、第2図
a,b及びcは夫々従来の加速度/変位変換部の
ブロツク図、その応答特性及び従来の波高値検出
原理を示す図、第3図a,b及びcは本発明に於
いて用いる波器の一実施例を示す回路図及び特
性図である。 1……加速度センサ、2……直流増幅器、3…
…積分器、4……帯域波器、OP……演算増幅
器、C1乃至C12……コンデンサ、R1乃至R16……
抵抗器、VR1及びVR2……可変抵抗器。
Figure 1 shows the acceleration/wave height observation device according to the present invention.
A block diagram showing one embodiment of the displacement converter; FIGS. 2a, b, and c are block diagrams of a conventional acceleration/displacement converter, respectively, and a diagram showing its response characteristics and conventional peak value detection principle; FIG. Figures a, b, and c are circuit diagrams and characteristic diagrams showing one embodiment of a wave generator used in the present invention. 1... Acceleration sensor, 2... DC amplifier, 3...
...Integrator, 4... Bandwidth wave generator, OP... Operational amplifier, C 1 to C 12 ... Capacitor, R 1 to R 16 ...
Resistors, VR 1 and VR 2 ...variable resistors.

Claims (1)

【特許請求の範囲】 1 液面上に浮遊する浮遊物に加速度センサを搭
載し、該加速度センサの出力を2回積分すること
により前記液面の変位に対応した変位信号を得る
加速度センサを用いた波浪観測装置において、 前記変位信号を入力し、該変位信号に重畳する
トレンド成分を除去する濾波器を設けたことを特
徴とする加速度センサを用いた波浪観測装置。
[Claims] 1. An acceleration sensor is used in which an acceleration sensor is mounted on a floating object floating on a liquid surface, and a displacement signal corresponding to the displacement of the liquid surface is obtained by integrating the output of the acceleration sensor twice. A wave observation device using an acceleration sensor, characterized in that the wave observation device is provided with a filter that inputs the displacement signal and removes a trend component superimposed on the displacement signal.
JP5378685A 1985-03-18 1985-03-18 Wave observing apparatus using acceleration sensor Granted JPS61212716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5378685A JPS61212716A (en) 1985-03-18 1985-03-18 Wave observing apparatus using acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5378685A JPS61212716A (en) 1985-03-18 1985-03-18 Wave observing apparatus using acceleration sensor

Publications (2)

Publication Number Publication Date
JPS61212716A JPS61212716A (en) 1986-09-20
JPH0410973B2 true JPH0410973B2 (en) 1992-02-27

Family

ID=12952498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5378685A Granted JPS61212716A (en) 1985-03-18 1985-03-18 Wave observing apparatus using acceleration sensor

Country Status (1)

Country Link
JP (1) JPS61212716A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8814338B2 (en) 2010-08-11 2014-08-26 Seiko Epson Corporation Ink jet recording method, ink set, and recorded matter
US9308761B2 (en) 2010-08-11 2016-04-12 Seiko Epson Corporation Ink jet printing method, ink set, and printed matter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177749A (en) * 2004-12-22 2006-07-06 Ritsumeikan Movement trace calculating method and apparatus of periodic moving body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113787A (en) * 1976-03-19 1977-09-24 Yokogawa Hokushin Electric Corp Wave height meter of acceleration detection type
JPS52113788A (en) * 1976-03-19 1977-09-24 Yokogawa Hokushin Electric Corp Wave height meter of acceleration detection type

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52113787A (en) * 1976-03-19 1977-09-24 Yokogawa Hokushin Electric Corp Wave height meter of acceleration detection type
JPS52113788A (en) * 1976-03-19 1977-09-24 Yokogawa Hokushin Electric Corp Wave height meter of acceleration detection type

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8814338B2 (en) 2010-08-11 2014-08-26 Seiko Epson Corporation Ink jet recording method, ink set, and recorded matter
US9308761B2 (en) 2010-08-11 2016-04-12 Seiko Epson Corporation Ink jet printing method, ink set, and printed matter

Also Published As

Publication number Publication date
JPS61212716A (en) 1986-09-20

Similar Documents

Publication Publication Date Title
US4565087A (en) Method and apparatus for recognition of knocking in an internal combustion engine
CN104677483B (en) A kind of digitized magneto-electric low-frequency shock transducer system
CN202710172U (en) Measuring device for low-frequency, small-amplitude vibration signal
JPH0410973B2 (en)
US5109858A (en) Pulse doppler measuring apparatus
CA1137205A (en) Body motion compensation filter
CN104729669B (en) A kind of digitized piezoelectric type low-frequency acceleration sensor system
JP2009031032A (en) Processing method and configuration method for configuring seismometer from plurality of acceleration sensors
ATE44623T1 (en) DEVICE FOR DETERMINING THE VELOCITY IN A FLOWING MEDIUM BY MEANS OF THE ACOUSTIC DOPPLER EFFECT.
JPS5912145B2 (en) Radar and similar equipment
US4223556A (en) Body motion compensation filter
JPH10141953A (en) Pressure type wave height meter
RU200198U1 (en) Device for correcting the frequency response of the sensor
CN116858421B (en) Low-frequency pressure measurement method and ocean low-frequency pressure measurement assembly
CN216209456U (en) Frequency measuring device
CN211696770U (en) Dam safety monitoring device
RU1800284C (en) Device for checking vibrations
Ren et al. Automatic displacement detection of target spray system based on micro inertial sensor
EP0351384A2 (en) An instrument for the measurement of the cavitation or ebullition rate in a liquid
SU1410941A1 (en) Apparatus for measuring blood arterial pressure
SU896550A1 (en) Ultrasonic flaw detector
RU43316U1 (en) DEVICE FOR DETERMINING DIESEL ENGINE PARAMETERS
CN113030514A (en) MEMS accelerometer capable of inhibiting acoustic wave interference and inhibition method thereof
SU609990A1 (en) Pressure sensor
JPS57146121A (en) Discriminating device for knocking of internal combustion engine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees