JPH0410914B2 - - Google Patents

Info

Publication number
JPH0410914B2
JPH0410914B2 JP59117842A JP11784284A JPH0410914B2 JP H0410914 B2 JPH0410914 B2 JP H0410914B2 JP 59117842 A JP59117842 A JP 59117842A JP 11784284 A JP11784284 A JP 11784284A JP H0410914 B2 JPH0410914 B2 JP H0410914B2
Authority
JP
Japan
Prior art keywords
film
weight
parts
oxide
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59117842A
Other languages
Japanese (ja)
Other versions
JPS60262863A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11784284A priority Critical patent/JPS60262863A/en
Publication of JPS60262863A publication Critical patent/JPS60262863A/en
Publication of JPH0410914B2 publication Critical patent/JPH0410914B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】 本発明は、被膜形成性組成物に関し、さらに詳
しくはアルキル(もしくはアリル)シリケート及
び鉛酸化物を主要成分とする耐熱性の優れた被膜
形成性組成物に関する。 一般に有機樹脂を結合剤成分として用いた塗料
の耐熱性は約400℃以上の温度で著しく低下する
ので、それ以上の耐熱性が要求される用途には従
来から主に無機質系塗料が用いられている。しか
しながら、従来の無機質系塗料は、形成される被
膜がポーラスなため被塗物素材が金属面、例えば
鉄素地の場合には素地表面が酸化され易く被膜の
剥離を生じる場合がある。またこの剥離現象は鉄
の熱膨張係数より被膜の熱膨張係数が小さいこと
にもその一因があるものと考えられる。 そこで、本発明者は、先に約400℃以上の高温
においても金属素材との密着性に優れ、剥離を生
じない耐熱性の塗料組成物を提案した(例えば、
特開昭53−140332号、特開昭53−117027号、特開
昭53−121824号など)。これらの先行技術は、形
成した被膜を高温において積極的にガラス化さ
せ、約800℃以上の温度においても劣化しないで
且つ美粧効果を維持する被膜を形成するものであ
る。 前記した塗料組成物は、金属素材、特に鉄素材
に適用する場合には優れた塗膜性能を示すもので
あるが、被塗物がセラミツク等の、金属素材に比
較して熱膨張係数が小さい無機質素材に適用する
場合、該塗料組成物はほうろうフリツトを必須成
分として使用しているため、その被膜の熱膨張係
数が金属、中でも鉄素材のそれに近似して大きい
ため、被膜がワレたり、剥離するという欠点があ
つた。この欠点を避けるには被塗物に適した熱膨
張係数を有する被膜を形成する塗料組成物を調製
しなければならず、ほうろうフリツトの使用に制
限を受けたり塗料の調合面でかなりの予備検討を
要するという不具合があつた。さらに、ほうろう
フリツトの使用はコスト的に高価になるという問
題点があつた。 そこで、本発明者らは、常温で被膜を形成する
能力を有し、且つ約400℃以上の高温において被
膜が溶融してガラス化することが可能で、さらに
被膜の熱膨張係数がセラミツク材料に近い被膜を
形成することのできる塗料組成物をほうろうフリ
ツトを使用しないで得ることについて鉛意研究を
重ねた結果、アルキル(もしくはアリル)シリケ
ートを結合剤成分とし、これに鉛の酸化物を特定
量加えてなる組成物が上記性能を満足することを
見い出し本発明を完成するに至つた。 かくして、本発明に従えば、 (A) アルキル(もしくはアリル)シリケート3〜
70重量%及び (B) 酸化鉛(PbO)及び/又は鉛丹(Pb3O4)30
〜97重量%からなる混合物を必須成分として含
有することを特徴とする被膜形成性組成物が提
供される。 本発明の被膜形成性組成物は、厚塗り性にすぐ
れ、ハケ塗り、スプレー塗り、バーコーター塗装
などの手段によつて容易に塗装でき、形成した被
膜は常温で乾燥する。その被膜は、常温でも密着
性にすぐれ容易にはがれない。また600℃以上の
温度域で被膜はガラス質へ変化し絶縁体を形成し
例えばセラミツク基板上に塗装した場合その上で
ガラス質の絶縁被膜となる。 前記した被膜のガラス化への過程をさらに詳し
く説明すると、 本発明の被膜形成性組成物は、まず300〜450℃
以下では、アルキルシリケートと鉛酸化物からな
る被膜を形成し、それ以上の温度になると、例え
ば約600℃以上でアルキルシリケート化合物中の
SiO2成分と鉛酸化物とがよう融してシリケート
ー鉛ガラスへと変化してゆくものと考えられる。 本発明において用いられるアルキル(もしくは
アリル)シリケートAとしては、下記一般式 (Rは炭素数1〜8のアルキル基またはアリル
(AllylもしくはAryl)基を、nは0もしくは11以
下の整数を表わす)により示されるテトラアルキ
ル(もしくはテトラアリル)オルトシリケートま
たはその低縮合物である。具体的には、たとえば
メチルオルトシリケート、エチルオルトシリケー
ト、n−プロピルオルトシリケート、n−ブチル
オルトシリケート、n−オクチルオルトシリケー
ト、フエニルオルトシリケート、ベンジルオルト
シリケート、およびフエネチルオルトシリケー
ト、アリル(Allyl)オルトシリケート、メタク
リルオルトシリケートなど、さらにそれらのオル
トシリケート類の脱水縮合によつて生成する低縮
合物を挙げることができる。 さらに、本発明において好適に用いることので
きるアルキル(もしくはアリル)シリケートAと
して、前記のテトラアルキル(もしくはテトラア
リル)オルトシリケートと、下記一般式 (R及びnは前記の意味を表わし、R′は炭素数
1〜12のアルキル基又はアリルを表わす) で示される有機珪素化合物(例えば、メチルトリ
メトキシシラン、メチルトリエトキシシラン、フ
エニルトリメトキシシラン、フエニルトリエトキ
シシラン及びそれらの低縮合物など)との混合物
を酸触媒の存在下で加水分解した後、アルカリ物
質を用いてPHを7以上として縮合せしめて得られ
る分子末端にシラノール基を有さない縮合度20以
上、分子量約3000以上の有機珪素高縮合物が挙げ
られる。この高縮合物は単独で使用してもよい
し、前記一般式〔〕のアルキルシリケートと混
合して使用してもよい。この高縮合物において前
記一般式〔〕および〔〕両成分の配合割合
は、重量を基準にして下記の割合で配合するのが
適当である。 一般式〔〕化合物:5〜95重量% 好ましくは20〜80重量% 一般式〔〕化合物:5〜95重量% 好ましくは20〜80重量% 上記配合において、〔〕化合物の量が5重量
%未満の場合、すなわち〔〕化合物が95重量%
を超える場合には、この縮合物を用いて形成され
る無機質被膜の常温での硬化性が劣る。 また、〔〕化合物の量が5重量%未満の場合、
すなわち〔〕化合物の量が95重量%を超える場
合、この縮合物を用いて厚塗り塗装すると被膜が
剥離しやすくなる。 本発明において、該有機珪素高縮合物をA成分
として用いた場合、得られる被膜形成性組成物は
厚塗り(乾燥膜厚約100μ迄)が可能で、空気中
の成分によつて容易に硬化し、形成される被膜は
すぐれた耐熱性を有する。 本発明において、B成分として酸化鉛(PbO)
と鉛丹(Pb3O4)が用いられるが、なかでも鉛丹
が塗料組成物としたときの貯蔵安定性及び被膜を
形成したときの美観に優れている点で好適であ
る。 本発明の被膜形成性組成物における必須成分で
あるアルキル(もしくはアリル)シリケートAと
酸化鉛及び/又は鉛丹Bの配合割合は固形分重量
で、 (A):3〜70重量%、好ましくは5〜50重量% (B):30〜97重量%、好ましくは50〜95重量% の範囲で配合するのが適当である。 前記の配合において、(A)成分が70重量%を超え
る場合、すなわち(B)成分が30重量%未満の場合被
膜にワレが生じたり、ガラス化温度が高くなるた
め連続したガラス質膜を形成し難い。他方、3%
未満の場合、すなわち(B)成分が97重量%を超える
場合被膜は常温で乾燥させた場合にはがれ易く、
被膜の形成が困難である。 本発明において、前記した(A)及び(B)成分の他
に、必要に応じて無機顔料、ガラス用原料、無機
質添加剤などを配合することができる。 無機顔料としては、たとえば着色剤としてチタ
ン白、ベンガラ、アルミナ、カーボンブラツク、
シアニンブルー、亜鉛華等が使用でき、体質顔料
としてはタルク、タンカル、クレー、マイカ、バ
リタ、長石等が使用できる。 また、ガラス用原料としては、耐火性原料(ケ
イ石、ケイ砂、長石など)、溶融性原料(ソーダ
灰、チリ硝石、カリ硝石、炭酸リチウム、炭酸カ
リウム、炭酸カルシウム、炭酸バリウム、炭酸マ
グネシウム、水酸化カルシウム、亜鉛華など)、
弱乳白原料(ホタル石、氷晶石、フツ化ナトリウ
ム、フツ化アルミニウム、ケイフツ化ナトリウム
など)、強乳白原料(酸化スズ、酸化アンチモン、
金属アンチモン、アンチモン酸ナトリウム、酸化
チタン、酸化ジルコニウム、ケイ酸ジルコニウ
ム、亜ヒ酸、酸化セリウムなど)、着色原料(イ
オウ華、酸化コバルト、酸化クロム、酸化ニツケ
ル、二酸化マンガン、酸化銅、酸化鉄、重クロム
酸カリウム、硫酸カドミウム、金属セレン、クロ
ム酸鉛など)、密着剤(酸化コバルト、酸化ニツ
ケル、二酸化マンガンなど)の原料が使用でき
る。 また、無機質添加剤としては、顔料の沈降を抑
制するために、マイカ、粘土、ベントナイト、エ
ロジル、等を使用するとよい。 さらに、塗膜のワレを防止する目的でアスベス
ト、ガラス繊維、ガラスパウダー、ガラスフレー
クも併用できる。 前記した無機顔料、ガラス用原料、無機質添加
剤などの添加割合は合計量で該被膜形成性組成物
中において固形分として50重量%まで含有させる
ことが可能であるが、好ましくは20重量%以下で
ある。 本発明の被膜形成性組成物は、ハケ塗り、スプ
レー塗りなどの手段によつてガラス板、セラミツ
ク、金属などの材料に塗布されるが、本組成物が
特に好適に用いられる被塗物は、アルミナ、マグ
ネシア、ジルコニア、チタニア、チタン酸バリウ
ムなどの酸化物系セラミツク材や窒化物、炭化
物、ホウ化物などの非酸化物系セラミツク材であ
る。 本発明の被膜形成性組成物によつて形成される
被膜は、常温で乾燥し、密着性にすぐれ、硬く、
800℃以上の高温に耐えることができる。このよ
うな特徴は通常の無機質塗料には見られないもの
である。このようにすぐれた被膜が得られる理由
は、該組成物中の成分が高温でガラス質被膜を形
成することと相俟つて該被膜の熱膨張係数が被塗
物のそれに近似したものとなつているからであ
る。 以下、実施例および比較例をもつて本発明をさ
らに詳細に説明する。 なお、部および%は特に断らない限り、重量部
および重量%を示す。 実施例 1 つぎの組成からなる各種の無機質塗料組成配合
をそれぞれペイントコンデイシヨナーで約2時間
分散させて塗料組成物を調製した。 エチルシリケート66%加水分解溶液※1 50部 鉛 丹 70部 ※1 エチルシリケート(日本コルコート化学社製、
重合度4〜6、SiO2分40%)100部、イソプロピ
ルアルコール90部およびIN−塩酸10部からなる
混合物を室温で24時間維持し加水分解させた。得
られたエチルシリケートの加水分解率は66%で不
揮発分は20%であつた。 実施例 2 下記配合組成でもつて実施例1と同様にして塗
料組成物を調製した。 エチルシリケートの50%加水分解溶液※225部 ほたる石 2部 ケイ石粉 10部 鉛 丹 70部 ※2 エチルオルトシリケート(日本コルコート化学
社製、SiO2分28%)248部、イソプロピルアルコ
ール250部およびIN−塩酸18部からなる混合物を
室温で24時間維持し加水分解させた。得られたエ
チルオルトシリケートの加水分解率は50%、不揮
発分は16%であつた。 実施例 3 下記配合組成でもつて、実施例1と同様にして
塗料組成物を調製した。 有機珪素高縮合物溶液※3 40部 硝酸カリウム 2部 鉛 丹 100部 長 石 10部 ※3 反応容器に、テトラエトキシシラン62g、メチ
ルトリエトキシシラン125g及びエチルアルコー
ル187gを加え、内容物を撹拌しながら加熱して
80℃になつたのち0.2N−塩酸30gを添加し80℃
で10時間反応させた。ついで、この反応生成物に
トリエチルアミン30gを添加してPHを7以上に上
げて80℃で2時間縮合反応を行ない、その後ベン
ゼンを添加し不揮発分が36%になるまで脱溶剤を
行なつた。 実施例 4 下記配合組成でもつて、実施例1と同様にして
塗料組成物を調製した。 有機珪素高縮合物溶液※4 40部 長 石 10部 鉛 丹 70部 ※4 反応容器に、テトラブトキシシラン132g、フ
エニルトリブトキシシラン138g及びブチルアル
コール270gを加え、内容物を撹拌しながら加熱
して100℃になつたのち5%ギ酸水溶液66gを添
加し100℃で1時間反応させた。ついで、この反
応生成物にN−メチルモルホリン30gを添加して
PHを7以上に上げて90℃で2時間縮合反応を行な
い、その後トルエン100gを添加し不揮発分が40
%になるまで脱溶剤を行なつた。 比較例 1 下記配合組成で、実施例1と同様にして塗料組
成物を調製した。 実施例1で用いたエチルシリケート 10部 チタン白 20部 アルミナ 10部 比較例 2 耐熱性塗料“テルモ300”(関西ペイント社製)
を試験に供した。 上記実施例および比較例で得られた塗料を酸化
物系セラミツク板にハケで塗装し、室温で乾燥さ
せたものを試験に供した。その試験結果を後記表
1に示す。 〔試験項目〕 硬 度:塗膜を室温で1週間乾燥させた後、エン
ピツ硬度を測定した。 密着性:塗膜を5日間室温乾燥させた後、ナイフ
でクロスカツトを行ないセロテープでは
がしてそれに付着するかどうかをみた。 耐熱性:400℃と800℃の電気炉に1時間入れた
後、室温に放置し塗膜のワレ、ハガレを
観察した。 ◎:ワレもハガレも全くない状態を示す 〇:ごく僅かワレが見受けられるが実用
上問題のない状態を示す 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a film-forming composition, and more particularly to a film-forming composition having excellent heat resistance and containing an alkyl (or allyl) silicate and lead oxide as main components. Generally, the heat resistance of paints that use organic resin as a binder component decreases significantly at temperatures above 400°C, so inorganic paints have traditionally been used for applications that require higher heat resistance. There is. However, since the film formed with conventional inorganic paints is porous, when the material to be coated is a metal surface, for example, an iron base, the base surface is easily oxidized and the film may peel off. It is also believed that this peeling phenomenon is partly due to the fact that the coefficient of thermal expansion of the coating is smaller than that of iron. Therefore, the present inventor previously proposed a heat-resistant coating composition that has excellent adhesion to metal materials and does not peel off even at high temperatures of about 400°C or higher (for example,
JP-A-53-140332, JP-A-53-117027, JP-A-53-121824, etc.). These prior art techniques actively vitrify the formed film at high temperatures to form a film that does not deteriorate and maintains its cosmetic effect even at temperatures of approximately 800° C. or higher. The above-mentioned coating composition exhibits excellent coating film performance when applied to metal materials, especially iron materials, but when the coating material is ceramic or the like, the coefficient of thermal expansion is smaller than that of metal materials. When applied to inorganic materials, since the coating composition uses enamel frit as an essential component, the coefficient of thermal expansion of the coating is close to that of metals, especially iron materials, so the coating may crack or peel. There was a drawback of doing so. In order to avoid this drawback, it is necessary to prepare a coating composition that forms a film with a coefficient of thermal expansion suitable for the object to be coated, which limits the use of enamel frits and requires considerable preliminary consideration in the formulation of the coating material. There was a problem that required . Furthermore, there is a problem in that the use of enamel frit is expensive. Therefore, the present inventors discovered that the film has the ability to form a film at room temperature, can be melted and vitrified at high temperatures of approximately 400°C or higher, and that the coefficient of thermal expansion of the film is similar to that of ceramic materials. As a result of repeated research on the possibility of obtaining a coating composition capable of forming a similar film without the use of enamel frit, it was found that alkyl (or allyl) silicate was used as a binder component, and a specific amount of lead oxide was added to this as a binder component. The present invention was completed by discovering that a composition in addition to the above-mentioned composition satisfies the above-mentioned performance. Thus, according to the invention, (A) alkyl (or allyl) silicate 3-
70% by weight and (B) lead oxide (PbO) and/or red lead (Pb 3 O 4 )30
There is provided a film-forming composition characterized in that it contains as an essential component a mixture consisting of ~97% by weight. The film-forming composition of the present invention has excellent thick coating properties and can be easily coated by means such as brush coating, spray coating, and bar coater coating, and the formed film dries at room temperature. The film has excellent adhesion even at room temperature and does not peel off easily. Furthermore, in a temperature range of 600°C or higher, the film changes to a glassy state and forms an insulator. For example, when coated on a ceramic substrate, a glassy insulating film is formed thereon. To explain in more detail the process of vitrifying the film described above, the film-forming composition of the present invention is first heated at 300 to 450°C.
Below, a film consisting of alkyl silicate and lead oxide is formed, and at higher temperatures, for example, at about 600°C or higher, the film in the alkyl silicate compound is formed.
It is thought that the SiO 2 component and lead oxide melt and change into silicate-lead glass. The alkyl (or allyl) silicate A used in the present invention has the following general formula: (R represents an alkyl group or an allyl group having 1 to 8 carbon atoms, and n represents an integer of 0 or 11 or less) or a lower condensate thereof. . Specifically, for example, methyl orthosilicate, ethyl orthosilicate, n-propylorthosilicate, n-butyl orthosilicate, n-octylorthosilicate, phenyl orthosilicate, benzyl orthosilicate, phenethyl orthosilicate, allyl ( Examples include allyl) orthosilicate, methacryl orthosilicate, and low condensates produced by dehydration condensation of these orthosilicates. Furthermore, as the alkyl (or allyl) silicate A that can be suitably used in the present invention, the above-mentioned tetraalkyl (or tetraallyl) orthosilicate and the following general formula (R and n represent the above-mentioned meanings, R' represents an alkyl group having 1 to 12 carbon atoms or allyl) (for example, methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane silane, phenyltriethoxysilane, their low condensates, etc.) in the presence of an acid catalyst, and then condensed using an alkaline substance to raise the pH to 7 or more. Examples include organosilicon high condensates having a degree of condensation of 20 or more and a molecular weight of about 3000 or more. This high condensate may be used alone or in combination with the alkyl silicate of the general formula []. In this high condensate, it is appropriate that the components of the general formula [] and [] be blended in the following proportions based on weight. Compound of general formula []: 5 to 95% by weight, preferably 20 to 80% by weight Compound of general formula []: 5 to 95% by weight, preferably 20 to 80% by weight In the above formulation, the amount of compound [] is less than 5% by weight i.e. 95% by weight of [] compound
If it exceeds , the curability of the inorganic coating formed using this condensate at room temperature will be poor. In addition, if the amount of the [] compound is less than 5% by weight,
That is, when the amount of the [] compound exceeds 95% by weight, the film tends to peel off when thick coating is applied using this condensate. In the present invention, when the organosilicon high condensate is used as component A, the resulting film-forming composition can be applied thickly (up to a dry film thickness of about 100μ) and is easily cured by components in the air. However, the film formed has excellent heat resistance. In the present invention, lead oxide (PbO) is used as the B component.
and red lead (Pb 3 O 4 ) are used, among which red lead is preferred because it has excellent storage stability when used as a paint composition and has excellent appearance when a film is formed. The blending ratio of alkyl (or allyl) silicate A and lead oxide and/or red lead B, which are essential components in the film-forming composition of the present invention, is (A): 3 to 70% by weight, preferably 5 to 50% by weight (B): Suitably blended in a range of 30 to 97% by weight, preferably 50 to 95% by weight. In the above formulation, if component (A) exceeds 70% by weight, that is, component (B) is less than 30% by weight, cracks may occur in the film or the vitrification temperature will become high, resulting in the formation of a continuous glassy film. It's difficult. On the other hand, 3%
If the amount of component (B) exceeds 97% by weight, the coating will peel off easily when dried at room temperature.
It is difficult to form a film. In the present invention, in addition to the above-described components (A) and (B), inorganic pigments, raw materials for glass, inorganic additives, etc. may be blended as necessary. Examples of inorganic pigments include titanium white, red iron, alumina, carbon black, and coloring agents.
Cyanine blue, zinc white, etc. can be used, and as extender pigments, talc, tankal, clay, mica, baryta, feldspar, etc. can be used. In addition, raw materials for glass include refractory raw materials (silica stone, silica sand, feldspar, etc.), meltable raw materials (soda ash, chile saltpetre, potassium saltpeter, lithium carbonate, potassium carbonate, calcium carbonate, barium carbonate, magnesium carbonate, water calcium oxide, zinc oxide, etc.),
Weak milk white raw materials (fluorite, cryolite, sodium fluoride, aluminum fluoride, sodium silicate, etc.), strong milk white raw materials (tin oxide, antimony oxide,
antimony metal, sodium antimonate, titanium oxide, zirconium oxide, zirconium silicate, arsenite, cerium oxide, etc.), coloring materials (sulfur flower, cobalt oxide, chromium oxide, nickel oxide, manganese dioxide, copper oxide, iron oxide, Potassium dichromate, cadmium sulfate, metallic selenium, lead chromate, etc.) and adhesives (cobalt oxide, nickel oxide, manganese dioxide, etc.) can be used. Further, as the inorganic additive, mica, clay, bentonite, Erosil, etc. may be used in order to suppress sedimentation of the pigment. Furthermore, asbestos, glass fiber, glass powder, and glass flakes can also be used in combination to prevent cracking of the paint film. The total amount of the above-mentioned inorganic pigments, raw materials for glass, inorganic additives, etc. can be contained up to 50% by weight as a solid content in the film-forming composition, but preferably 20% by weight or less. It is. The film-forming composition of the present invention is applied to materials such as glass plates, ceramics, and metals by means such as brush coating and spray coating. These include oxide ceramic materials such as alumina, magnesia, zirconia, titania, and barium titanate, and non-oxide ceramic materials such as nitrides, carbides, and borides. The film formed by the film-forming composition of the present invention dries at room temperature, has excellent adhesion, is hard,
Can withstand high temperatures of over 800℃. Such characteristics are not found in ordinary inorganic paints. The reason why such an excellent film can be obtained is that the components in the composition form a glassy film at high temperatures, and the coefficient of thermal expansion of the film is close to that of the material to be coated. Because there is. The present invention will be explained in more detail below using Examples and Comparative Examples. Note that parts and % indicate parts by weight and % by weight unless otherwise specified. Example 1 Paint compositions were prepared by dispersing various inorganic paint compositions having the following compositions using a paint conditioner for about 2 hours. Ethyl silicate 66% hydrolyzed solution *1 50 parts Red lead 70 parts *1 Ethyl silicate (manufactured by Nippon Colcoat Chemical Co., Ltd.,
A mixture consisting of 100 parts of SiO 2 min (40%), 90 parts of isopropyl alcohol and 10 parts of IN-hydrochloric acid with a degree of polymerization of 4 to 6 was maintained at room temperature for 24 hours for hydrolysis. The hydrolysis rate of the obtained ethyl silicate was 66%, and the nonvolatile content was 20%. Example 2 A coating composition was prepared in the same manner as in Example 1 with the following formulation. 50% hydrolyzed solution of ethyl silicate *225 parts Fluorite 2 parts Silica powder 10 parts Red lead 70 parts *2 Ethyl orthosilicate (manufactured by Nippon Colcoat Chemical Co., Ltd., SiO 2 min 28%) 248 parts, isopropyl alcohol 250 parts and IN - A mixture consisting of 18 parts of hydrochloric acid was maintained at room temperature for 24 hours for hydrolysis. The hydrolysis rate of the obtained ethyl orthosilicate was 50%, and the nonvolatile content was 16%. Example 3 A coating composition was prepared in the same manner as in Example 1 with the following formulation. Organosilicon high condensate solution *3 40 parts Potassium nitrate 2 parts Red lead 100 parts Long stone 10 parts *3 Add 62 g of tetraethoxysilane, 125 g of methyltriethoxysilane, and 187 g of ethyl alcohol to a reaction vessel, and stir the contents. heat it up
After the temperature reached 80℃, add 30g of 0.2N hydrochloric acid and heat to 80℃.
The mixture was allowed to react for 10 hours. Next, 30 g of triethylamine was added to this reaction product to raise the pH to 7 or above, and a condensation reaction was carried out at 80° C. for 2 hours. After that, benzene was added and the solvent was removed until the nonvolatile content became 36%. Example 4 A coating composition was prepared in the same manner as in Example 1 with the following formulation. Organosilicon high condensate solution *4 40 parts Nagarite 10 parts Red lead 70 parts *4 Add 132 g of tetrabutoxysilane, 138 g of phenyltributoxysilane, and 270 g of butyl alcohol to a reaction vessel, and heat the contents while stirring. After the temperature reached 100°C, 66 g of 5% formic acid aqueous solution was added and the mixture was reacted at 100°C for 1 hour. Then, 30 g of N-methylmorpholine was added to this reaction product.
Raise the pH to 7 or higher and conduct the condensation reaction at 90℃ for 2 hours, then add 100g of toluene to reduce the nonvolatile content to 40%.
%. Comparative Example 1 A coating composition was prepared in the same manner as in Example 1 using the following formulation. Ethyl silicate used in Example 1 10 parts Titanium white 20 parts Alumina 10 parts Comparative example 2 Heat-resistant paint "Terumo 300" (manufactured by Kansai Paint Co., Ltd.)
was subjected to the test. The paints obtained in the above Examples and Comparative Examples were applied with a brush onto an oxide-based ceramic plate, dried at room temperature, and then used for testing. The test results are shown in Table 1 below. [Test Items] Hardness: After drying the coating film at room temperature for one week, pencil hardness was measured. Adhesion: After the coating was allowed to dry at room temperature for 5 days, a cross cut was made with a knife and then peeled off with cellophane tape to see if it would adhere to it. Heat resistance: After being placed in an electric furnace at 400°C and 800°C for 1 hour, it was left at room temperature and the coating film was observed for cracking or peeling. ◎: Indicates that there is no cracking or peeling 〇: Indicates that there is very little cracking, but there is no problem in practical use [Table]

Claims (1)

【特許請求の範囲】 1 (A) アルキル(もしくはアリル)シリケート
3〜70重量%及び (B) 酸化鉛(PbO)及び/又は鉛丹(Pb3O4)30
〜97重量%からなる混合物を必須成分として含
有することを特徴とする被膜形成性組成物。
[Scope of Claims] 1 (A) 3 to 70% by weight of alkyl (or allyl) silicate and (B) lead oxide (PbO) and/or red lead (Pb 3 O 4 ) 30
A film-forming composition comprising as an essential component a mixture consisting of ~97% by weight.
JP11784284A 1984-06-08 1984-06-08 Film-forming composition Granted JPS60262863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11784284A JPS60262863A (en) 1984-06-08 1984-06-08 Film-forming composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11784284A JPS60262863A (en) 1984-06-08 1984-06-08 Film-forming composition

Publications (2)

Publication Number Publication Date
JPS60262863A JPS60262863A (en) 1985-12-26
JPH0410914B2 true JPH0410914B2 (en) 1992-02-26

Family

ID=14721613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11784284A Granted JPS60262863A (en) 1984-06-08 1984-06-08 Film-forming composition

Country Status (1)

Country Link
JP (1) JPS60262863A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5434332A (en) * 1977-08-23 1979-03-13 Kansai Paint Co Ltd Inorganic paint composition
JPS5439439A (en) * 1977-09-02 1979-03-26 Kansai Paint Co Ltd Coating composition
JPS5441937A (en) * 1977-09-08 1979-04-03 Kansai Paint Co Ltd Film-forming composition
JPS5730867A (en) * 1980-07-30 1982-02-19 Ricoh Co Ltd Fixing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5434332A (en) * 1977-08-23 1979-03-13 Kansai Paint Co Ltd Inorganic paint composition
JPS5439439A (en) * 1977-09-02 1979-03-26 Kansai Paint Co Ltd Coating composition
JPS5441937A (en) * 1977-09-08 1979-04-03 Kansai Paint Co Ltd Film-forming composition
JPS5730867A (en) * 1980-07-30 1982-02-19 Ricoh Co Ltd Fixing method

Also Published As

Publication number Publication date
JPS60262863A (en) 1985-12-26

Similar Documents

Publication Publication Date Title
US5688561A (en) Coating method
CZ306696A3 (en) Silicate compound
US3389002A (en) Heat and corrosion resistant coating composition
JPS6055549B2 (en) Film-forming composition
JP2717167B2 (en) Coating composition
JPH0410915B2 (en)
JPH0410914B2 (en)
JPH0369384B2 (en)
JPS6114185B2 (en)
JPS60262864A (en) Film-forming paint composition
JPH085662B2 (en) Water resistant inorganic binder
JP3761747B2 (en) Paint structure
JP2657649B2 (en) Infrared absorber
JP2519052B2 (en) Heat resistant anticorrosion paint
JPH0371472B2 (en)
JP2000273395A (en) Inorganic coating agent and coated article
JPH0680150B2 (en) Coating composition for refractory coating
JPH01297471A (en) Heat-resistant inorganic composition
JP2635168B2 (en) Metallic pigment for powder coating and enamel product using the same
JPS6114184B2 (en)
JPS6114182B2 (en)
JPH01163276A (en) Composition for forming hard coating film
JPS6114183B2 (en)
JP2589360B2 (en) Base material for marble surface coating and coated marble
JPS62256873A (en) Film-forming composition