JPH04108040A - Constant speed running device for vehicle - Google Patents

Constant speed running device for vehicle

Info

Publication number
JPH04108040A
JPH04108040A JP22581190A JP22581190A JPH04108040A JP H04108040 A JPH04108040 A JP H04108040A JP 22581190 A JP22581190 A JP 22581190A JP 22581190 A JP22581190 A JP 22581190A JP H04108040 A JPH04108040 A JP H04108040A
Authority
JP
Japan
Prior art keywords
vehicle speed
actuator
target
deviation
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22581190A
Other languages
Japanese (ja)
Other versions
JP2502797B2 (en
Inventor
Masahiro Takada
雅弘 高田
Akira Ishida
明 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22581190A priority Critical patent/JP2502797B2/en
Publication of JPH04108040A publication Critical patent/JPH04108040A/en
Application granted granted Critical
Publication of JP2502797B2 publication Critical patent/JP2502797B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Controls For Constant Speed Travelling (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To reduce labor for tuning, overshoot and fluctuation of a useless throttle opening, even when dynamic characteristic of a plant and a kind of a vehicle are changed, by controlling an actuator which changes a throttle opening from actual and target speeds of the vehicle and a present position of the actuator. CONSTITUTION:An actual speed of a vehicle is detected by a means 1, and on the other hand, a target speed is set by a means 2. A target control angle signal 31 is output to an actuator 3 from the actual and target speeds of the vehicle by a controller while changing a throttle opening of an engine by the actuator 3. Further, actuator displacement 36 is transmitted to the throttle opening by a throttle mechanical part 5. When a constant speed running command signal 30 is input from a constant speed running device 4, an actual speed signal 35 and a target speed signal 29 are detected by the controller 9 to output the target control angle signal 31 to the actuator 3 so that these actual and target speed signals are in agreement, and speed running control of making a car speed through a car body 7 is realized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(よ 車砥 特に自動車を一定な車速で走行させ
るようにスロットル開度を自動制御する車両用定速走行
装置に関すa 従来の技術 従来 車両の車両用定速走行制御装置のよう番へエンジ
ン、車体等のプラントの動特性が時間と共に変動するよ
うな物に対し そのロノくスト性を確保するために様々
な制御装置が考案されていも自動車などの車両を自動的
に定速走行させるための制御装置としては 例えば車両
の実車速を検出する車速検出手段と、運転者の意志によ
り目標車速を設定し 定速走行装置の動作の開始及び停
止並びに目的車速に対する増減速を入力する目標車速設
定装置と、車両のエンジンのスロットル開度を変化させ
るアクチュエータと、車両の実車速と目標車速とかベ 
アクチュエータに駆動信号を出力するコントローラを具
[L  それらから実車速と、スロットルバルブ開度を
検出し 各々の変化分と実車速と目標車速との偏差を算
出し 予め定められたフィードバックゲインを用いて、
実車速が目標車速となるように制御量を算出し アクチ
ュエータを駆動して、スロットルバルブ開度を調節する
定速走行制御を実現していも 発明が解決しようとする課題 しかしながぺ このようなフィードバック制御を基本と
した従来の定速走行装置において(よ 搭載する車種に
よってエンジンの種類 排気象 減速比 車両室l 空
気抵抗値等が異なるた八 車種毎の制御性能を最適とす
るためにC戴  そのチューニングに多大な時間と費用
が掛かつてしまうという課題があった さらに 従来の定速走行制御に用いられてきたPID制
御や規範モデルが固定された制御手法では 上り坂や下
り坂で制御対象の動特性が変動しりシューム時になめら
かに車速収束しにくく、オーバーシュートが生じたり、
スロットル開度が必要以上に変動し 乗車フィーリング
が悪化するという課題があった 本発明は 上記のような従来の課題に着目しプラントの
動特性が変動する場合や車種が変わってL チューニン
グの手間がかからず、オーバーシュートがなくかへ 無
駄なスロットル開度の変動が少ない車両用定速走行装置
を提供することを目的とすム 課題を解決するための手段 上記目的を達成するため本発明(よ 車両の実車速を検
出する車速検出手段と、目標車速を設定する目標車速設
定手段と、車両のエンジンのスロ、ットル開度を変化さ
せるアクチュエータと、前記アクチュエータの現在位置
を検知するアクチュエータ現在位置検知手段と、車両の
実車速と目標車速とアクチュエータの現在位置から前記
アクチュエータに駆動信号を出力するコントローラを具
備し前記コントローラは目標車速へ達するまでの応答軌
跡を出力する規範モデル演算手段と、実車速と目標車速
と前記規範モデル演算手段の出力と前記アクチュエータ
の現在位置から前記アクチュエータに目標角度を出力す
る制御量演算手段を構成要素とし プラントの動特性変
動の未知部分が微小時間一定であると仮定してこの変動
項を推定しアクチュエータ目標角度をタイムディレィコ
ントロールで与え かつ前記コントローラ内でアクチュ
エータ目標角度を演算する際 制御対象であるエンジン
や車体等の動特性を表わすi  dV/dt=a・V+
b刊(■は実車MUはスロットル開度)における人力の
特性を表す未知の係数すの推定値を、実車速と目標車速
との偏差の絶対値が所定の値より大きくかつ前記偏差の
1階差分の絶対値が所定の値より大きいときには 1よ
り大きい値を乗じて増加させ、偏差の符号が変化した時
あるいは偏差の一階差分の符号が変化した時には 1よ
り小さい値を乗じて減少させることにより、入力の特性
を表す未知の係数すに未知の係数すの推定値を追随させ
ながら制御することを特徴とするものである。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a vehicle constant speed running device that automatically controls the throttle opening so that the vehicle is driven at a constant speed. Regarding constant-speed running control systems for vehicles, various control systems have been devised to ensure the stability of plants such as engines and car bodies whose dynamic characteristics change over time. A control device for automatically driving a vehicle such as a car at a constant speed includes, for example, a vehicle speed detection means that detects the actual speed of the vehicle, and a device that sets a target vehicle speed according to the driver's will and starts the operation of the constant speed driving device. A target vehicle speed setting device inputs acceleration/deceleration relative to the stop and target vehicle speed, an actuator that changes the throttle opening of the vehicle engine, and a base that inputs the actual vehicle speed, target vehicle speed, etc.
A controller that outputs a drive signal to the actuator is used to detect the actual vehicle speed and throttle valve opening from them, calculate each change and the deviation between the actual vehicle speed and the target vehicle speed, and use a predetermined feedback gain. ,
Even if constant speed driving control is realized, in which the control amount is calculated and the actuator is driven to adjust the throttle valve opening so that the actual vehicle speed becomes the target vehicle speed, the problem that the invention is trying to solve still remains. In conventional constant-speed driving systems based on feedback control, the engine type, exhaust condition, reduction ratio, vehicle interior, air resistance value, etc. differ depending on the vehicle model in which it is installed. There was a problem in that tuning took a lot of time and money.Furthermore, with the PID control and control methods with a fixed reference model, which have been used for conventional constant speed driving control, it is difficult to control the control target on uphill or downhill. Dynamic characteristics fluctuate, making it difficult for the vehicle speed to converge smoothly during shooing, resulting in overshoot,
The present invention focuses on the conventional problem that the throttle opening varies more than necessary, deteriorating the ride feeling, and eliminates the trouble of tuning when the dynamic characteristics of the plant fluctuate or the car model changes. An object of the present invention is to provide a constant speed traveling device for a vehicle that has less unnecessary throttle opening fluctuations and less overshoot. A vehicle speed detection means for detecting the actual vehicle speed of the vehicle, a target vehicle speed setting means for setting the target vehicle speed, an actuator for changing the throttle and throttle opening of the vehicle's engine, and an actuator for detecting the current position of the actuator. a reference model calculation means comprising a position detection means, a controller for outputting a drive signal to the actuator based on the actual vehicle speed, the target vehicle speed, and the current position of the actuator, and the controller outputs a response trajectory until the target vehicle speed is reached; The control amount calculation means for outputting a target angle to the actuator from the actual vehicle speed, the target vehicle speed, the output of the reference model calculation means, and the current position of the actuator are the constituent elements, and the unknown part of the dynamic characteristic fluctuation of the plant is constant for a minute time. Assuming that, this variation term is estimated and the actuator target angle is given by time delay control.When calculating the actuator target angle in the controller, i dV/dt=a, which represents the dynamic characteristics of the engine, vehicle body, etc. to be controlled, is used.・V+
The estimated value of the unknown coefficient representing the characteristics of human power in issue B (■ indicates the actual vehicle MU is the throttle opening) is estimated when the absolute value of the deviation between the actual vehicle speed and the target vehicle speed is greater than a predetermined value and the first order of the deviation is When the absolute value of the difference is greater than a predetermined value, increase it by multiplying it by a value greater than 1, and when the sign of the deviation changes or the sign of the first-order difference of the deviation changes, multiply it by a value smaller than 1 and decrease it. This is characterized in that the unknown coefficients representing the characteristics of the input are controlled while following the estimated values of the unknown coefficients.

作用 本発明は上述の構成によって、 リジューム時等の応答
特性を規範モデルで与えることにより、車速を検出して
、実車速を目標車速に追従させるようにアクチュエータ
への制御量が算出されも また 坂道等での車体の動特
性の変化に対してL微小時間の変動は 無視し得るほど
小さいという概念を導入したタイム・デイレイ・コント
ロールの制御則により制御量を与えも その際 その制
御量として制御対象の人力特性の推定値を用いも制御対
象の入力特性は坂道等での同特性の変動でも変動する力
(制御周期毎に 制御対象の人力特性の推定値を、実車
速と目標車速との偏差の絶対値が所定の値よりも大きく
かへ 前記偏差の1階差分が所定の値より大きいときに
ζifより大きい値を乗じて増加させ、偏差の符号が変
化した時あるいは偏差の一階差分の符号が変化し且つ所
定の値以上に変化した時に(′L 1より小さい値を乗
じて減少させることにより、制御対象の入力特性に推定
値を追随させ、つねに安定て 収束性の食代 定速走行
制御を行なうことが出来もまた 車種が変わり、プラン
トのゲイン東 時定数が変化した場合に於いても数個の
入力パラメータを調整するだけで、精度の良い定速走行
制御が実現で叡 複雑なチューニングを行うことなく各
車種に搭載可能となa 実施例 以下、本発明の実施例について説明すもはじめに 車両
用定速走行装置のシステム構成及び制御系の構成につい
て述べも 第1図は本発明の一実施例の構成を概念的に
示した構成図であも 車両の実車速を検出する車速検出
手段1と、目標車速を設定しこの定速走行装置の動作の
開始及び停止並びに目的車速を増減速を入力する目標車
速設定手段2と、車両のエンジンのスロットル開度を変
化させるアクチュエータ3と、車両の実車速と目標車速
とか仮 アクチュエータ3に目的制御角度信号31を出
力するコントローラ9と、アクチュエータ変位36をス
ロットル開度に伝達するスロットルメカ部5を備えてい
も 定速走行開始信号を出力する定速走行指令装置4よ
り定速走行指令信号30が入力されると、コントローラ
9は車速検出手段1により実車速信号35と目標車速設
定手段2により設定された目標車速29を検出し 目標
車速29と実車速35が一致するようにアクチュエータ
3に目標制御角度31を出力し車体7を通して車速が一
定となる定速走行制御を実現すも 第2図は上記一実施例の制御ブロック図であん制御対象
であるプラント13はアクチュエータ3とスロットルメ
カ部5とエンジン6、車体7からなり、目標開度入力U
によりアクチュエータ3が動作し スロットルメカ部5
を介してスロットルバルブ開度を調節し 車体7を通し
実車速Vを出力すム 目標軌道車速生成部16は目標車
速Rを入力とし 希望する車速の過渡応答である目標軌
道車速Vtnを出力すも この目標軌道車速Vmと実車
速Vとの偏差eが零となるようにタイム・デイレイ・コ
ントローラ9によりアクチュエータ3へ目標制御角1度
Uが算出されも その目標制御角度Uは微小時間前の前
記アクチュエータの目標制御角度Uとの差分の形式で出
力すも 以上の操作により、実車速力(目標車速に希望の応答特
性で追従する速度制御を行なうことが出来4 次へ 実
システムの同定によるモデルの構築およびタイム・デイ
レイ・コントロールの制御則について説明すa ま哄 
自動車モデルの構築のたべ システム同定を行なう。本
実施例において(瓜 周波数応答法により同定を行なう
。制御対象はプラント13 (アクチュエータ3とスロ
ットルメカ部5+エンジン6十車体7)とし この伝達
関数をG (S)、アクチュエータ目標角度久方をU(
S)、出力の車速をV (S)として表わす。U (s
)はコントローラの出力であり、このG (S)を前記
周波数応答法により決定すa 一般に伝達関数は次式で
表現できも 同定実験により(1)式の次数nと係数at 、 as
 、 、 、 、 an’ b’ l H+ l b*
を求めも 実験の結果 前記制御対象の伝達関数を以下
のように1次遅れ系に近似すもタイム・デイレイ・コン
トロール(以下TDCと称す)の制御系(表 未知の動
特性を持つシステムに対して有効なコントローラを与え
も これについてj4  Youcef−Toumi、
に、 and Ito、O,”On 1Jodel R
eference Control  Using T
ime Delay for Non1inear S
ystems with Unknown Dynam
ics’M、 r、T、Report LMP/RBT
 86−06.June、1986.や特願平2−82
414号に詳しく述べているのでここでは省略すも1人
力 1出力に限定して、(2)式の同定結果に基づき、
タイム・デイレイコントロール適応制御則を求めも まf、  (2)式を時間領域であられすと、V(t)
  = −a −V(t)+ b −U(t)    
・・・・・(3)となム また 目標軌跡車速をVmと
し 次式の様に偏差eを表す。
Effect of the Invention With the above-described configuration, the present invention detects the vehicle speed by giving the response characteristics at the time of resume etc. using a reference model, and calculates the control amount to the actuator so that the actual vehicle speed follows the target vehicle speed. When a controlled variable is given using the control law of time delay control, which introduces the concept that the L minute time fluctuation is negligibly small with respect to changes in the dynamic characteristics of the vehicle body, etc., the controlled variable is the controlled object. Even if the estimated value of the human power characteristic is used, the input characteristic of the controlled object is a force that fluctuates even when the same characteristic changes on a slope etc. When the absolute value of the deviation is larger than a predetermined value, the first difference of the deviation is increased by a value larger than ζif, and when the sign of the deviation changes or the first difference of the deviation is When the sign changes and exceeds a predetermined value ('L) By multiplying by a value smaller than 1 and decreasing the estimated value, the estimated value follows the input characteristics of the controlled object and is always stable and convergent. Even if the vehicle type changes and the plant gain time constant changes, accurate constant speed driving control can be achieved by simply adjusting a few input parameters. It can be installed in various vehicle models without any special tuning.ExampleThe following is a description of an example of the invention. This is a configuration diagram conceptually showing the configuration of an embodiment of the invention.It includes a vehicle speed detection means 1 that detects the actual vehicle speed of a vehicle, a target vehicle speed that is set, a start and stop of the operation of this constant speed traveling device, and a target vehicle speed. a target vehicle speed setting means 2 for inputting increases and decelerations; an actuator 3 for changing the throttle opening of the vehicle's engine; and a controller 9 for outputting a target control angle signal 31 to the actuator 3, such as the actual vehicle speed and target vehicle speed. , the controller 9 is equipped with a throttle mechanism section 5 that transmits the actuator displacement 36 to the throttle opening degree. The detection means 1 detects the actual vehicle speed signal 35 and the target vehicle speed 29 set by the target vehicle speed setting means 2, outputs the target control angle 31 to the actuator 3 so that the target vehicle speed 29 and the actual vehicle speed 35 match, and adjusts the vehicle speed through the vehicle body 7. Figure 2 is a control block diagram of the above-mentioned embodiment, and the plant 13 that is the object of the control consists of the actuator 3, the throttle mechanism 5, the engine 6, and the vehicle body 7. Opening input U
The actuator 3 operates and the throttle mechanism section 5
The throttle valve opening degree is adjusted through the vehicle body 7, and the actual vehicle speed V is outputted through the vehicle body 7.The target track vehicle speed generator 16 receives the target vehicle speed R as an input and outputs the target track vehicle speed Vtn, which is a transient response of the desired vehicle speed. Even though the time-delay controller 9 calculates a target control angle U of 1 degree for the actuator 3 so that the deviation e between the target track vehicle speed Vm and the actual vehicle speed V becomes zero, the target control angle U is the same as the one a minute time ago. The output sum is output in the form of the difference between the target control angle U of the actuator. Through the above operations, it is possible to perform speed control that follows the actual vehicle speed (target vehicle speed) with the desired response characteristics. Explaining the control law of construction and time delay control.
Let's build a car model and perform system identification. In this example, identification is performed using the frequency response method.The controlled object is a plant 13 (actuator 3, throttle mechanism 5, engine 6, and vehicle body 7), and this transfer function is G (S), and the actuator target angle distance is U. (
S), and the output vehicle speed is expressed as V (S). U (s
) is the output of the controller, and this G (S) is determined by the frequency response method described above.A Generally, the transfer function can be expressed by the following equation, but through identification experiments, the order n and coefficients at, as of equation (1) are determined.
, , , , an'b' l H+ l b*
As a result of the experiment, the transfer function of the controlled object is approximated as a first-order delay system as shown below. j4 Youcef-Toumi,
, and Ito, O,”On 1Jodel R
efference Control Using T
ime Delay for Non1inear S
systems with Unknown Dynam
ics'M, r, T, Report LMP/RBT
86-06. June, 1986. Ya special application Hei 2-82
Since it is described in detail in No. 414, I will omit it here, but based on the identification result of equation (2), limiting it to one person and one output,
Determine the time delay control adaptive control law f, and when formula (2) is expressed in the time domain, V(t)
= −a −V(t)+ b −U(t)
...(3) Also, assuming that the target trajectory vehicle speed is Vm, the deviation e is expressed as in the following formula.

e = V m(t) −V (t)        
”・・・(4)すると、定速走行制御に関するタイム・
デイレイ・コントロールの制御則が次式の様に求まムL
KV)−1Xt−r)+kr−’(−V(t−r)+V
a(t)+に1−e)        ”=(5)但L
  Klは偏差eの同特性を決定する定改τは微小な時
間遅れで、コントローラの制御周期とすも (5)式のbrは(2)式における入力特性すの推定値
であり、brがbに近づくように偏差eと偏差eの1階
差分Δeによって条件判別Lbr増減部でbrを増減さ
せム brを増減させるアルゴリズムを第3図に示す。
e = V m (t) - V (t)
”...(4) Then, the time and
The control law of the delay control can be found as follows.
KV)-1Xt-r)+kr-'(-V(t-r)+V
a(t)+1-e) ”=(5) However, L
Kl is the constant revision that determines the characteristic of the deviation e, and τ is a minute time delay, and is the control period of the controller. br in equation (5) is the estimated value of the input characteristic in equation (2), and br is the estimated value of the input characteristic in equation (2). FIG. 3 shows an algorithm for increasing/decreasing br in the condition determination Lbr increase/decrease section according to the deviation e and the first-order difference Δe of the deviation e so as to approach the value b.

第4図11  br/bの値が2.5. 1.(k  
C15の時のリジューム時の車速とスロットル開度の波
形であム第4図より、br/bが1より大きいほどオー
バーシュートが大きくなり、br/bが1より小さすぎ
ると、車速へ およびスロットル開度の動作が不安定な
傾向が出現Lbr=bの時が制御性能が良好であム 次に第3図のbrを増減させるアルゴリズムの動作につ
いて説明す4  br/bが1より大きいと偏差が増大
するので偏差が所定値(第3図ではC1)より大きくか
つその偏差の1階差分が所定値(第3図ではC2)より
大きい力\ また1よ 偏差が所定値(第3図では一ε
1)より小さくかつその偏差の1階差分が所定値(第3
図では一ε2)より小さい時にはbrに1より小さい係
数(C2)を乗じて、brを減少させbrを未知のbに
近づけも−X  br/bが1より小さいと、側基 ま
たは偏差の1階差分かの符号が頻繁に変化するた数 偏
差または偏差の1階差分の符号が変化する時にはbrに
1より大きい係数(C1)を乗じて、brを増加させb
rを未知のbに近づけも 第5図にある車種の同定実験結果に基づき、 bの値が
最大値の時と最小値の時について、本実施例の応答波形
とbrの経時変化を示す。bの変化によらずオーバーシ
ュートがなく安定なスロットル波形が得られ4 な耘b
rの初期値はbの最大値としていも 第5図かられかるように brをを増減させて、未知の
bに近づけることにより、走行負荷や勾配変化などの外
部要因により制御対象のbが変化しても常にオーバーシ
ュートがなく、がっ車速の偏差が小さく、スロットル開
度の動作が安定な定速走行装置が実現できも なhbr
の増減は制御周期毎に層るものではなく制御周期の整数
倍の時間毎に更新しても良(を 発明の効果 以上のように 本発明は定速走行装置が実車速を検出し
て、実車速を目標車速に追従させるようにアクチュエー
タへの制御量が算出する課程において、偏差と偏差の1
階差分の条件判別により入力特性すの推定値brをを増
減させて、brを未知のbに近づけ、車速の収束時のオ
ーバーシュートがなくかつスロットル開度の変動量も少
なくて済むという効果を有す4  brがbに近づくよ
うに変化するたべ プラントの動特性が変化する場合に
於いても常に良好な応答波形を得ることが出来るととも
に 異なる車種にこのシステムを移行する場合、チュー
ニングの時間と、コストを低減できるという効果を有し
 容易に異車種共通性を実現できム
FIG. 4 11 The value of br/b is 2.5. 1. (k
From Figure 4, which shows the waveforms of the vehicle speed and throttle opening when resuming at C15, the larger br/b is than 1, the larger the overshoot becomes, and when br/b is too small than 1, the change in vehicle speed and throttle opening increases. A tendency for the operation of the opening degree to be unstable appears.When Lbr=b, the control performance is good.Next, we will explain the operation of the algorithm for increasing/decreasing br in Figure 3.4 If br/b is greater than 1, the deviation will occur. increases, so the deviation is larger than the predetermined value (C1 in Fig. 3) and the first-order difference of that deviation is larger than the predetermined value (C2 in Fig. 3). One ε
1) is smaller and the first-order difference of the deviation is a predetermined value (third
In the figure, when br/b is smaller than 1, br is multiplied by a coefficient (C2) smaller than 1 to reduce br and bring br closer to the unknown b. When the sign of the difference or the first difference of the deviation changes frequently, multiply br by a coefficient (C1) larger than 1 to increase br.
Based on the results of a vehicle type identification experiment shown in FIG. 5, when r approaches an unknown b, the response waveform of this example and the time-dependent change in br are shown for when the value of b is the maximum value and when the value is the minimum value. A stable throttle waveform with no overshoot can be obtained regardless of the change in b.
Even if the initial value of r is the maximum value of b, as shown in Figure 5, by increasing or decreasing br to bring it closer to the unknown b, b of the controlled object will change due to external factors such as running load or changes in slope. However, it is possible to realize a constant speed running system that always has no overshoot, small deviation in vehicle speed, and stable throttle opening operation.
The increase/decrease may be updated at intervals of integral multiples of the control cycle, rather than at intervals of each control cycle. In the process of calculating the control amount for the actuator so that the actual vehicle speed follows the target vehicle speed, the deviation and the deviation 1
By determining the condition of the floor difference, the estimated value br of the input characteristic S is increased or decreased, bringing br closer to the unknown b, and the effect is that there is no overshoot when the vehicle speed converges and the amount of variation in the throttle opening is small. 4. Even when the dynamic characteristics of the plant change, it is possible to always obtain a good response waveform, and when transferring this system to a different vehicle model, the tuning time and This has the effect of reducing costs and makes it easy to realize commonality between different vehicle models.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の車両用定速走行装置の一実施例の構成
@ 第2図は同装置における制御プロッ時と最小値の時
について、本実施例の応答波形とbrの経時変化を示す
図であも 1・・車速検出半成 2・・目標車速設定装!f、3・
・アクチュエー久 4・・定速走行指令装置 5・・ス
ロットルメカ服 6・・エンジン、7・・車俟代理人の
氏名 弁理士 小鍜治 明 はか2名第 図 (ρ)by−bの龜欠儂の哨うリジェーム着形<h ト
Y−トの最ノコ\七1の吟のりシ二−ム項形爵間t *lIl’lt 吟V、t fr間t リレニーム閾口11’!j!’1
Figure 1 shows the configuration of an embodiment of a constant speed traveling device for a vehicle according to the present invention. Figure 2 shows the response waveform of this embodiment and the change in br over time at the time of control plotting and the time of the minimum value in the same device. In the diagram, 1. Half-finished vehicle speed detection. 2. Target vehicle speed setting device! f, 3・
・Actuator Kyu 4. Constant speed running command device 5. Throttle mechanical suit 6. Engine, 7. Name of Kurama's agent Patent attorney Akira Okaji Haka 2 person Figure (ρ) by-b's head Rejame Kimono where the missing <h ToY-to's most noko \71 no Ginori Shinji-me no Katama t *lIl'lt Gin V, t fr t Rerenime Threshold 11'! j! '1

Claims (1)

【特許請求の範囲】[Claims] (1)車両の実車速を検出する車速検出手段と、目標車
速を設定する目標車速設定手段と、車両のエンジンのス
ロットル開度を変化させるアクチュエータと、前記アク
チュエータの現在位置を検知するアクチュエータ現在位
置検知手段と、車両の実車速と目標車速と前記アクチュ
エータの現在位置から前記アクチュエータに駆動信号を
出力するコントローラを具備し、前記コントローラは目
標車速へ達するまでの応答軌跡を出力する規範モデル演
算手段と、実車速と目標車速と前記規範モデル演算手段
の出力と前記アクチュエータの現在位置から前記アクチ
ュエータに目標角度を出力する制御量演算手段を構成要
素とし、プラントの動特性変動の未知部分が微小時間一
定であると仮定して、この変動項を推定し、アクチュエ
ータ目標角度をタイムディレイコントロールで与え、か
つ前記コントローラ内でアクチュエータ目標角度を演算
する際、制御対象であるエンジンや車体等の動特性を表
わす式、dV/dt=−a・V+b・U(Vは実車速U
はスロットル開度)における入力の特性を表す未知の係
数bの推定値を、実車速と目標車速との偏差の絶対値が
所定の値より大きくかつ前記偏差の1階差分の絶対値が
所定の値より大きいときには、1より大きい値を乗じて
増加させ、偏差の符号が変化した時あるいは偏差の一階
差分の符号が変化した時には、1より小さい値を乗じて
減少させることを特徴とする車両用定速走行装置。
(1) A vehicle speed detection means for detecting the actual vehicle speed of the vehicle, a target vehicle speed setting means for setting the target vehicle speed, an actuator for changing the throttle opening of the vehicle's engine, and an actuator current position for detecting the current position of the actuator. a controller for outputting a drive signal to the actuator from an actual vehicle speed, a target vehicle speed, and a current position of the actuator; the controller includes a reference model calculation means for outputting a response trajectory until reaching the target vehicle speed , the actual vehicle speed, the target vehicle speed, the output of the reference model calculation means, and the control amount calculation means for outputting the target angle to the actuator from the current position of the actuator are the components, and the unknown part of the dynamic characteristic fluctuation of the plant is constant for a minute time. Assuming that Formula, dV/dt=-a・V+b・U (V is actual vehicle speed U
is the estimated value of the unknown coefficient b representing the characteristics of the input at the throttle opening) when the absolute value of the deviation between the actual vehicle speed and the target vehicle speed is greater than a predetermined value and the absolute value of the first-order difference of the deviation is a predetermined value. A vehicle characterized in that when the deviation is larger than the value, the vehicle is multiplied by a value larger than 1 to increase the value, and when the sign of the deviation changes or the sign of the first difference of the deviation is changed, the vehicle is multiplied by a value smaller than 1 to decrease the deviation. constant speed traveling device.
JP22581190A 1990-08-27 1990-08-27 Constant speed traveling equipment for vehicles Expired - Lifetime JP2502797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22581190A JP2502797B2 (en) 1990-08-27 1990-08-27 Constant speed traveling equipment for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22581190A JP2502797B2 (en) 1990-08-27 1990-08-27 Constant speed traveling equipment for vehicles

Publications (2)

Publication Number Publication Date
JPH04108040A true JPH04108040A (en) 1992-04-09
JP2502797B2 JP2502797B2 (en) 1996-05-29

Family

ID=16835168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22581190A Expired - Lifetime JP2502797B2 (en) 1990-08-27 1990-08-27 Constant speed traveling equipment for vehicles

Country Status (1)

Country Link
JP (1) JP2502797B2 (en)

Also Published As

Publication number Publication date
JP2502797B2 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
JPH0727232Y2 (en) Vehicle constant-speed traveling device
KR940002216B1 (en) Electronic throttle valve opening control apparatus
JPH08303285A (en) Device and method for controlling valve for automobile
JPH0523394Y2 (en)
JP3993659B2 (en) Method and apparatus for controlling setting elements of internal combustion engine
US4248321A (en) Device for regulating the traveling speed of a motor vehicle
JP3981174B2 (en) Method and apparatus for controlling or limiting vehicle speed
JPH04108040A (en) Constant speed running device for vehicle
JP2827591B2 (en) Constant speed cruise control device for vehicles
JPH10272963A (en) Preceding vehicle follow-up control device
JP3004072B2 (en) Control device for actuator with friction of automobile
JP4065342B2 (en) Method and apparatus for controlling vehicle speed
JPH0324575B2 (en)
JP4092456B2 (en) Braking control device
JPH11148416A (en) Control method and device of vehicle driving variable
JPH0960547A (en) Throttle control device for internal combustion engine
JP2871169B2 (en) Constant speed traveling equipment for vehicles
JPH05294171A (en) Constant speed running device for vehicle
JPH0577656A (en) Constant speed running control device for vehicle
SU1558725A1 (en) Device for automatic control of locomotive speed
JPH03217338A (en) Constant speed running gear for vehicle
JP3136804B2 (en) Constant speed traveling control device
JPH08295155A (en) Constant running device for vehicle
JPH0596972A (en) Constant speed running control device for vehicle
JPS642819Y2 (en)