JPH0410612B2 - - Google Patents

Info

Publication number
JPH0410612B2
JPH0410612B2 JP20781781A JP20781781A JPH0410612B2 JP H0410612 B2 JPH0410612 B2 JP H0410612B2 JP 20781781 A JP20781781 A JP 20781781A JP 20781781 A JP20781781 A JP 20781781A JP H0410612 B2 JPH0410612 B2 JP H0410612B2
Authority
JP
Japan
Prior art keywords
light
electrodes
shutter
array
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20781781A
Other languages
Japanese (ja)
Other versions
JPS58107514A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP20781781A priority Critical patent/JPS58107514A/en
Publication of JPS58107514A publication Critical patent/JPS58107514A/en
Publication of JPH0410612B2 publication Critical patent/JPH0410612B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/055Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect the active material being a ceramic

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

【発明の詳細な説明】 本発明は透光性セラミツクを用いた電気光学シ
ヤツタ、特に光シヤツタアレイにおいて、アレイ
の方向に並行あるいは垂直な偏光面を持ち、スイ
ツチング速度やコントラストの低下の生じない光
シヤツタアレイに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an electro-optical shutter using translucent ceramic, particularly an optical shutter array, which has a plane of polarization parallel or perpendicular to the direction of the array, and which does not cause a decrease in switching speed or contrast. Regarding.

直交する偏光子間に、2次電気光学効果、いわ
ゆるKerr効果を示す強誘電体を配置し、電圧の
印加によつて光のオン・オフを制御する光シヤツ
タは周知である。
An optical shutter is well known in which a ferroelectric material exhibiting a second-order electro-optic effect, the so-called Kerr effect, is arranged between orthogonal polarizers, and light is turned on and off by applying a voltage.

このような目的に用いられる強誘電体の1例と
してPLZTセラミツクスをあげることが出来る。
その組成は(Pb1−x,Lax)(Zr1−y,Tiy)
O3の化学式で示され、x,y値により1次、2
次の電気光学効果および光学的メモリ作用を持つ
ので、光シヤツタ、デイスプレイ等電気光学分野
への応用が研究されている。
PLZT ceramics is an example of a ferroelectric material used for this purpose.
Its composition is (Pb 1 −x, Lax) (Zr 1 −y, Tiy)
It is represented by the chemical formula of O 3 , and depending on the x and y values, the primary and secondary
Since it has the following electro-optic effect and optical memory function, its application to electro-optic fields such as optical shutters and displays is being studied.

その中で、x=0.086〜0.1、y=0.35のものは、
常温では常誘電性を示すが直流電圧を印加すると
強誘電相が誘起され、Kerr効果を示すようにな
る。しかも記憶機能がないので光シヤツタへの応
用に適しており、スリムルーブ2次電気材料と呼
ばれている。
Among them, those with x=0.086~0.1 and y=0.35 are
It exhibits paraelectricity at room temperature, but when a DC voltage is applied, a ferroelectric phase is induced and it begins to exhibit the Kerr effect. Moreover, since it has no memory function, it is suitable for application to optical shutters, and is called a slim lube secondary electrical material.

このPLZTを用いた光シヤツタの基本的な構造
は、第1図に示すように、互に直交する偏光子
1,2間にPLZT板3を配置し、板面と平行に電
圧を印加するような電極4を設ける。そして電圧
印加方向がPLZT板に入射する光の偏光面と45゜
になるように配置する。
The basic structure of an optical shutter using PLZT is, as shown in Figure 1, in which a PLZT plate 3 is placed between polarizers 1 and 2 that are perpendicular to each other, and a voltage is applied parallel to the plate surface. An electrode 4 is provided. Then, the PLZT plate is arranged so that the direction of voltage application is 45° with respect to the polarization plane of the light incident on the PLZT plate.

電圧を印加しなければ光は偏光子2で遮光され
る。電極4,4′間に電圧を印加すれば、PLZT
板3の常光に対する屈折率npと異常光に対する屈
折率neとに Δn=np−ne=1/2n3RE2 ただし、n:PLZTの屈折率R:定数E:印加
電界の差を生じ、光学的位相差 P=2π/λ・Δn、d ただしd:PLZT板の有効厚を生じ出射光は一
般に楕円偏光となる。このため偏光子2を通過す
る光量は I=Ii sin2P/2 ただし、Ii:PLZT板への入射光量となる。
If no voltage is applied, the light is blocked by the polarizer 2. If voltage is applied between electrodes 4 and 4', PLZT
The refractive index n p of the plate 3 for ordinary light and the refractive index n e for extraordinary light are Δn = n p −n e = 1/2n 3 RE 2 , where n: refractive index of PLZT R: constant E: difference in applied electric field This produces an optical phase difference P=2π/λ·Δn, d where d: the effective thickness of the PLZT plate, and the emitted light generally becomes elliptically polarized light. Therefore, the amount of light passing through the polarizer 2 is I=Ii sin 2 P/2 where Ii is the amount of light incident on the PLZT plate.

P=πとなるような電圧Vλ/2を印加すれば
偏光子2の通過光量Iは最大となる。
If a voltage Vλ/2 such that P=π is applied, the amount of light I passing through the polarizer 2 becomes maximum.

このような光シヤツタを用いて電子写真式プリ
ンタ等の光書き込み用シヤツタアレイを構成する
1例を第2図に示す。すなわち、直交する偏光板
1,2の間に配置されたPLZT板3上には共通電
極4bに対向して多数の信号電極4aが設けら
れ、これらの電極4aのうち電圧を印加された電
極の光シヤツタ部だけが光を通過させる。
FIG. 2 shows an example of constructing an optical writing shutter array for an electrophotographic printer or the like using such an optical shutter. That is, a large number of signal electrodes 4a are provided on the PLZT plate 3 disposed between the orthogonal polarizing plates 1 and 2, facing the common electrode 4b, and among these electrodes 4a, the electrode to which a voltage is applied is Only the light shutter section allows light to pass through.

しかし、この形式の光シヤツタアレイは、各光
点間隔を画像記録に用いうる程度の100〜50μmの
電極間隔にすると、隣接する電極間に生ずる容量
によるスイツチング速度の低下、容量を通じての
電圧もれによるコントラストの低下、さらには偏
光子として光利用効率の高いポラライズド・ビー
ム・スプリツタPBSを利用することが出来ない
という欠点があつた。これはPBSで得られる偏
光は、その偏光面がアレイの方向に平行又は垂直
なものに限られるからである。
However, in this type of optical shutter array, if the distance between each light spot is set to 100 to 50 μm between the electrodes, which can be used for image recording, the switching speed decreases due to the capacitance generated between adjacent electrodes, and the switching speed decreases due to voltage leakage through the capacitance. The drawbacks were a decrease in contrast and the inability to use a polarized beam splitter PBS, which has high light utilization efficiency, as a polarizer. This is because the polarized light obtained with PBS is limited to planes of polarization that are parallel or perpendicular to the direction of the array.

本発明は、電極形状を工夫することにより、光
シヤツタアレイの方向に45゜に傾斜した方向に電
界を印加することにより、上述の欠点を持たない
光シヤツタアレイを得ようとするものである。
The present invention attempts to obtain an optical shutter array that does not have the above-mentioned drawbacks by applying an electric field in a direction inclined at 45 degrees to the direction of the optical shutter array by devising the shape of the electrodes.

第3図は、そのための電極形状の1例を示し、
電極4はアレイの方向に45゜に傾斜した細線形の
ものが等間隔に配置され、隣り合う電極に電圧が
印加されることにより、その電極間の部分5が複
屈折性を示し、入射する直線偏光を楕円偏光に変
え、電圧がVλ/2のとき偏光面を90゜回転させた
直線偏光となる。
FIG. 3 shows an example of the electrode shape for this purpose,
The electrodes 4 are thin linear ones tilted at 45 degrees in the direction of the array, and are arranged at equal intervals, and when a voltage is applied to adjacent electrodes, the portion 5 between the electrodes exhibits birefringence, and the light is incident. Converts linearly polarized light into elliptically polarized light, and when the voltage is Vλ/2, it becomes linearly polarized light with the plane of polarization rotated by 90°.

この形状の電極では、光シヤツタ部の両側辺間
に電界を印加する必要があるため、今端子a,b
間に電圧Vを印加すればシヤツタ部5はオンにな
る。このとき、隣接するシヤツタ部5′をオンに
するには端子cに2Vの電圧を印加するか、端子
bへの電圧を0にし、シヤツタ部5をオフにして
端子cへ電圧Vを印加する必要がある。しかし、
このような光シヤツタアレイを走査する場合は、
順にシヤツタ部をオンにして行けばよいので問題
は生じない。
With this electrode shape, it is necessary to apply an electric field between both sides of the light shutter section, so now terminals a and b
If a voltage V is applied between them, the shutter section 5 is turned on. At this time, to turn on the adjacent shutter section 5', apply a voltage of 2V to terminal c, or set the voltage to terminal b to 0, turn off shutter section 5, and apply voltage V to terminal c. There is a need. but,
When scanning such an optical shutter array,
No problem will occur as you can turn on the shutter in order.

第4図はこのようなPLZT板を用いて光シヤツ
タアレイを構成した例を示し、入射直線偏光の偏
光面はアレイと垂直又は平行となつている。
FIG. 4 shows an example in which an optical shutter array is constructed using such a PLZT plate, and the polarization plane of incident linearly polarized light is perpendicular or parallel to the array.

第5図は同様の効果を有する電極形状の他の例
を示し、電極4aは隣り合うものは互に逆の傾斜
を持ち、同一の端子に接続される。このような構
造の電極の場合は上側の端子列b,d,f,hと
下側の端子列a,c,e,g間に電圧を印加する
ことで、アレイの全シヤツタ部を同時にオンにす
ることが出来る。
FIG. 5 shows another example of an electrode shape having a similar effect, in which adjacent electrodes 4a have opposite slopes and are connected to the same terminal. In the case of electrodes with such a structure, by applying a voltage between the upper terminal rows b, d, f, h and the lower terminal rows a, c, e, g, all shutter sections of the array can be turned on simultaneously. It can be done.

第6図は遮光マスクのパターンを示し、光シヤ
ツタ部5に対応する孔6を有する。PLZT板にこ
のような遮光マスクをかぶせることにより、光シ
ヤツタ部5以外の部分からの光のもれを減少出来
る。
FIG. 6 shows the pattern of the light-shielding mask, which has holes 6 corresponding to the light shutter portions 5. As shown in FIG. By covering the PLZT board with such a light shielding mask, leakage of light from parts other than the optical shutter section 5 can be reduced.

本発明の光シヤツタアレイは、上記のように
Kerr効果を示す強誘電体上の電極形状により、
光シヤツタアレイ方向と45゜の方向に電界を印加
するようにし、各シヤツタ部を小さく、しかも密
に配列しても隣合う信号電極との間にほぼシヤツ
タ部と同程度の間隔をとることが出来るので、電
極相互間に生ずる容量によるスイツチング速度の
低下やコントラストの低下を減少させ、シヤツタ
部を間隔を置かずに密に配列することが可能とな
る。
The optical shutter array of the present invention is as described above.
Due to the shape of the electrode on the ferroelectric material that exhibits the Kerr effect,
By applying an electric field in a direction 45 degrees from the direction of the optical shutter array, even if each shutter section is small and arranged closely, the distance between adjacent signal electrodes can be approximately the same as that of the shutter sections. Therefore, it is possible to reduce the reduction in switching speed and contrast due to the capacitance generated between the electrodes, and it is possible to arrange the shutter portions closely without spacing.

その上、偏光子として例えば多層薄膜によるポ
ラライズドビームスプリツタPBS等は、透過光、
反射光の偏光面はシヤツタアレイ方向に平行又は
垂直のものしか得られないので、従来の光シヤツ
タアレイには利用出来なかつたが、本発明の強誘
電体を用いることによつて始めて利用可能となつ
た。PBS7を偏光子として用いた光シヤツタア
レイの構造を第7図に示す。
In addition, as a polarizer, for example, a polarized beam splitter PBS using a multilayer thin film can
Since the plane of polarization of the reflected light can only be parallel or perpendicular to the direction of the shutter array, it could not be used in conventional optical shutter arrays, but it became possible for the first time by using the ferroelectric material of the present invention. . Figure 7 shows the structure of an optical shutter array using PBS7 as a polarizer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光シヤツタの原理説明図、第2図は従
来の光シヤツタアレイの構造概念図、第3図は本
発明の光シヤツタアレイの電極形状の1実施例の
説明図、第4図は同じくシヤツタアレイの構造概
念図、第5図は電極形状の他の実施例の説明図、
第6図は遮光マスクの平面図、第7図はPBSを
用いたシヤツタアレイの構造概念図。 1,2……偏光子、3……PLZT板、4……電
極、5……光シヤツタ部、7……PBS素子。
Fig. 1 is an explanatory diagram of the principle of an optical shutter, Fig. 2 is a conceptual diagram of the structure of a conventional optical shutter array, Fig. 3 is an explanatory diagram of one embodiment of the electrode shape of an optical shutter array of the present invention, and Fig. 4 is also a diagram of the shutter array. Fig. 5 is an explanatory diagram of another embodiment of the electrode shape.
Figure 6 is a plan view of a light shielding mask, and Figure 7 is a conceptual diagram of the structure of a shutter array using PBS. 1, 2...Polarizer, 3...PLZT plate, 4...Electrode, 5...Light shutter section, 7...PBS element.

Claims (1)

【特許請求の範囲】[Claims] 1 互に直交する偏光子間に配置され、信号電圧
を印加する電極を有する二次電気光学効果を示す
強誘電体において、上記電極が光シヤツタアレイ
方向に対し傾斜して配置され、アレイ方向と傾斜
した電界が印加されることを特徴とする光シヤツ
タアレイ。
1. In a ferroelectric material exhibiting a secondary electro-optic effect having electrodes arranged between mutually orthogonal polarizers and applying a signal voltage, the electrodes are arranged at an angle with respect to the optical shutter array direction, and the electrodes are arranged at an angle with respect to the array direction. 1. An optical shutter array characterized in that an electric field of 100% is applied to the shutter array.
JP20781781A 1981-12-22 1981-12-22 Optical shutter array Granted JPS58107514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20781781A JPS58107514A (en) 1981-12-22 1981-12-22 Optical shutter array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20781781A JPS58107514A (en) 1981-12-22 1981-12-22 Optical shutter array

Publications (2)

Publication Number Publication Date
JPS58107514A JPS58107514A (en) 1983-06-27
JPH0410612B2 true JPH0410612B2 (en) 1992-02-25

Family

ID=16545992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20781781A Granted JPS58107514A (en) 1981-12-22 1981-12-22 Optical shutter array

Country Status (1)

Country Link
JP (1) JPS58107514A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026927A (en) * 1983-07-25 1985-02-09 Matsushita Electric Ind Co Ltd Optical control element
US4765721A (en) * 1987-09-23 1988-08-23 Eastman Kodak Company Stress-tolerant light valve array construction

Also Published As

Publication number Publication date
JPS58107514A (en) 1983-06-27

Similar Documents

Publication Publication Date Title
US3838906A (en) Optical switch
US5317446A (en) Electrooptic device for scanning using domain reversed regions
US5093874A (en) Integrated electro-optical scanner with photoconductive substrate
EP0670510B1 (en) Liquid crystal spatial light phase modulator
JP3820461B2 (en) Liquid crystal display
GB1180529A (en) Ferroelectric Ceramic Optical Retardation Devices
US5052771A (en) Integrated electro-optical scanner
JPH09146128A (en) Electrooptic element
US4993811A (en) Ridge array light valve device
US3449038A (en) Electro-optical switching devices
JPH0410612B2 (en)
US3781086A (en) Domain switching element and method of producing the same
EP0182622B1 (en) Light shutter array element
US3835459A (en) BIREFRINGENCE READ Bi{11 Ti{11 O{11 {11 DISPLAY AND MEMORY DEVICE
US4585311A (en) Liquid crystal device having interdigitated electrodes
JPH0410611B2 (en)
US3807830A (en) Birefringence read {11 {11 {11 {11 display and memory device
JPH11174462A (en) Liquid crystal display element
JPS58107516A (en) Optical switching array
US4722597A (en) Electrooptic shutter array element
JPS58107515A (en) Optical switching array
JPS60143315A (en) Liquid-crystal optical switch array
US4053207A (en) Electro-optic devices
JPS58130321A (en) Optical switching array element
JPH0525096B2 (en)