JPH0410595B2 - - Google Patents
Info
- Publication number
- JPH0410595B2 JPH0410595B2 JP58090633A JP9063383A JPH0410595B2 JP H0410595 B2 JPH0410595 B2 JP H0410595B2 JP 58090633 A JP58090633 A JP 58090633A JP 9063383 A JP9063383 A JP 9063383A JP H0410595 B2 JPH0410595 B2 JP H0410595B2
- Authority
- JP
- Japan
- Prior art keywords
- control rod
- control
- withdrawal
- signal
- axial position
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000002265 prevention Effects 0.000 claims description 36
- 238000012806 monitoring device Methods 0.000 claims description 19
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims description 12
- 239000000446 fuel Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 12
- 238000010586 diagram Methods 0.000 description 12
- 238000000605 extraction Methods 0.000 description 9
- 238000009835 boiling Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 230000000694 effects Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Description
[発明の技術分野]
本発明は、沸騰水型原子炉の制御棒制御システ
ムに関する。 [発明の技術的背景とその問題点] 沸騰水型原子炉には、出力運転時の制御棒引抜
によつて生じる出力上昇を監視するために、制御
棒引抜監視装置が設けられている。この装置は、
出力を上昇させるために、ある制御棒が選択され
ると、その選択された引抜制御棒のまわりに配置
されている複数個の固定型炉内中性子検出器(以
後これをLPRMと呼ぶ)を選択する。さらにこ
の選択されたLPRMからの信号の平均値をとり、
その値が引抜前の平均値よりも所定の値だけ上回
つた時、制御棒の引抜を阻止する制御棒引抜阻止
信号を送出し、制御棒引抜を阻止することによ
り、出力の上昇を所定のレベル以下に押える機能
を備えている。 第1図は従来の装置におけるLPRMの配置例
を示した図である。この図から明らかなように、
上記のように選択された引抜制御棒1(同図中1
Aは完全に引抜かれた制御棒のスクラム時の状態
を示す。)のまわりには円2と三角3で標示した
LPRMすなわち固定型炉内中性子検出器が16個
格子状に配置されている。(炉心の周辺部を除い
て、この様に配置されている。)このLPRMは、
2つの系たとえばA系、B系に分かれており、そ
れぞれの系には8個のLPRMが割当てられてい
る。そして、A系、B系は第2図a,bの特性図
にそれぞれ示されるように、異なつた信号強度−
制御棒引抜位置特性を有している。なお第2図の
縦軸はLPRMの信号強度を示し、横軸は制御棒
引抜位置(選択された引抜制御棒の引抜き距離で
0点は全挿入位置を示し右に移動するにつれて引
抜き距離が増加する)を示す。すべてのLPRM
が正常で、A系、B系ともに作動している場合の
特性は第2図a,bの実線A1,B1で示されて
いるように両系の応答は、後述する点線A2,B
2の場合に比較して早い。この実線A1,B1の
特性曲線と、あらかじめ設定されている引抜阻止
レベル線L(二点鎖線で示す)との交差点から垂
線を下すと制御棒引抜阻止位置a1,b1が得ら
れる。したがつてA系、B系のうち早く上述した
交差点に達した方の系から、前述した制御棒引抜
阻止信号が送出される。 ところで、制御棒引抜にともなうLPRMの出
力にはバラツキがある。このバラツキの中には、
制御棒引抜阻止という点から見ると好ましくない
ものも含まれている。たとえば故障等により、そ
の平均値より極端に大きな出力とか逆に小さな出
力は、制御棒を誤つて引抜き操作する原因にな
る。そこで、制御棒引抜阻止の観点から好ましく
ないLPRMをバイパスすなわち機能を停止させ、
好ましいLPRMからの出力信号のみにもとづい
て制御棒引抜阻止信号を出力するようにしてい
る。そのため、ある場合には、A系、B系の一方
を全面的にバイパスすることがある。第1表に記
述されているA系バイパスあるいはB系バイパス
はこれを意味する。
ムに関する。 [発明の技術的背景とその問題点] 沸騰水型原子炉には、出力運転時の制御棒引抜
によつて生じる出力上昇を監視するために、制御
棒引抜監視装置が設けられている。この装置は、
出力を上昇させるために、ある制御棒が選択され
ると、その選択された引抜制御棒のまわりに配置
されている複数個の固定型炉内中性子検出器(以
後これをLPRMと呼ぶ)を選択する。さらにこ
の選択されたLPRMからの信号の平均値をとり、
その値が引抜前の平均値よりも所定の値だけ上回
つた時、制御棒の引抜を阻止する制御棒引抜阻止
信号を送出し、制御棒引抜を阻止することによ
り、出力の上昇を所定のレベル以下に押える機能
を備えている。 第1図は従来の装置におけるLPRMの配置例
を示した図である。この図から明らかなように、
上記のように選択された引抜制御棒1(同図中1
Aは完全に引抜かれた制御棒のスクラム時の状態
を示す。)のまわりには円2と三角3で標示した
LPRMすなわち固定型炉内中性子検出器が16個
格子状に配置されている。(炉心の周辺部を除い
て、この様に配置されている。)このLPRMは、
2つの系たとえばA系、B系に分かれており、そ
れぞれの系には8個のLPRMが割当てられてい
る。そして、A系、B系は第2図a,bの特性図
にそれぞれ示されるように、異なつた信号強度−
制御棒引抜位置特性を有している。なお第2図の
縦軸はLPRMの信号強度を示し、横軸は制御棒
引抜位置(選択された引抜制御棒の引抜き距離で
0点は全挿入位置を示し右に移動するにつれて引
抜き距離が増加する)を示す。すべてのLPRM
が正常で、A系、B系ともに作動している場合の
特性は第2図a,bの実線A1,B1で示されて
いるように両系の応答は、後述する点線A2,B
2の場合に比較して早い。この実線A1,B1の
特性曲線と、あらかじめ設定されている引抜阻止
レベル線L(二点鎖線で示す)との交差点から垂
線を下すと制御棒引抜阻止位置a1,b1が得ら
れる。したがつてA系、B系のうち早く上述した
交差点に達した方の系から、前述した制御棒引抜
阻止信号が送出される。 ところで、制御棒引抜にともなうLPRMの出
力にはバラツキがある。このバラツキの中には、
制御棒引抜阻止という点から見ると好ましくない
ものも含まれている。たとえば故障等により、そ
の平均値より極端に大きな出力とか逆に小さな出
力は、制御棒を誤つて引抜き操作する原因にな
る。そこで、制御棒引抜阻止の観点から好ましく
ないLPRMをバイパスすなわち機能を停止させ、
好ましいLPRMからの出力信号のみにもとづい
て制御棒引抜阻止信号を出力するようにしてい
る。そのため、ある場合には、A系、B系の一方
を全面的にバイパスすることがある。第1表に記
述されているA系バイパスあるいはB系バイパス
はこれを意味する。
【表】
系がバイパスされた場合は、正常の場合、すな
わちバイパスが行なわれていない場合に比べて、
系の応答は一般に悪くなる。また、系内の
LPRMのうち、第1図において、引抜制御棒1
に近い、良い応答を示すLPRM2あるいは3が
バイパスされている場合も応答が悪くなる。この
場合を最悪バイパスと言う。第1表には、様々な
場合の引抜阻止位置が示されているが、この表に
おいて、min(a1,b1)あるいはmin(a2,b2)は
a1,b1のうち小さい方の値、あるいはa2,b2のう
ち小さい方の値をとることを意味する。 第2図a,bの点線A2,B2で示された特性
曲線は、各系の最悪バイパス時の特性を示してい
る。第2図からもわかるように、最悪バイパス時
には制御棒引抜位置がA系の場合はa2、B系の場
合にはb2に移動し、正常時に比べてかなり悪い応
答状態となる。 このように、従来の装置では各系ならびに特定
のLPRMがバイパスされた場合、応答が悪くな
り、その改善が望まれていた。また、高い安全性
が要求される原子炉において、以上のようなバイ
パスによる応答性の劣化は安全性の余裕をせばめ
る点で好ましくない。 また、同時に複数の制御棒を操作する運転の場
合、検出対象となるLPRMの個数は増加する。
例えば同時に4本の制御棒を操作する場合、16×
4=64個のLPRMの検出が制御棒引抜監視のた
めの必要となり、監視装置の構成が複雑となる。 [発明の目的] 本発明は、従来の制御棒引抜監視装置の短所で
ある以下の(イ)(ロ)を改善することを目的とする。 (イ) 各系ならびに特定のLPRMがバイパスされ
た場合、 応答が悪化し、出力上昇量が増加する。 (ロ) 複数の制御棒を同時に操作(引抜)する場
合、炉心状態の変化の検出回路が複雑化する。
よつて監視系が複雑化する。 すなわち、制御棒引抜阻止位置(許容引抜長
さ)の設定に、炉心状態(局所的な出力)変化の
検出を使用しないことにより、安定でかつ確実な
引抜阻止機能を確保する事にある。 [発明の概要] 本発明は原子炉の炉心と、この炉心内に引抜挿
入される制御棒と、この制御棒の制御棒駆動機構
と、この制御棒駆動機構を制御する制御棒制御装
置と、上記制御棒の制御棒軸方向位置検出装置
と、この制御棒軸方向位置検出装置と上記制御棒
制御装置からの信号を受け制御棒引抜阻止位置信
号を上記制御棒制御装置に入力する制御棒引抜監
視装置と、この制御棒引抜監視装置に引抜制御棒
に隣接する燃料集合体の軸方向出力分布を入力す
るプロセス計算機とを具備する制御棒制御システ
ムにおいては、制御棒引抜監視装置は、制御棒軸
方向位置検出装置からの制御棒軸方向位置信号と
制御棒制御装置からの制御棒選択信号とが入力さ
れる対象制御棒選択回路と、プロセス計算機から
の引抜制御棒に隣接する燃料集合体の軸方向出力
分布信号を用いて許容引抜長特性を作成する特性
変換回路と、この特性変換回路からの許容引抜長
特性と上記対象制御棒選択回路からの引抜制御棒
軸方向位置信号を用いて決定される制御棒引抜阻
止位置信号を制御棒制御装置に出力する制御棒引
抜阻止位置設定回路とからなることを特徴とする
制御棒制御システムにある。 [発明の実施例] 以下図面を参照しながら、本発明の一実施例を
説明する。 第3図に本発明にかかる制御棒引抜監視装置4
を用いた沸騰水型原子炉の制御棒駆動系が示され
ている。 第3図に示す炉心5の内部には、第1図に示さ
れたような引抜制御棒1が多数本格納されてい
る。同図では、引抜かれない制御棒は省略し、示
されていない。上記引抜制御棒1は炉心5の下方
に設けられた制御棒駆動機構6によつて引抜・挿
入がなされる。この制御棒駆動機構6は制御棒制
御装置7によつて制御される。この制御棒制御装
置7は制御棒操作信号S1と制御棒引抜阻止位置
信号S2とを入力し、制御棒駆動信号S3と制御
棒選択信号S4,S4Aとを出力する。制御棒駆
動信号S3は上記制御棒駆動機構6に送られ、制
御棒選択信号S4は制御棒引抜監視装置4に、制
御棒選択信号S4Aはプロセス計算機11に送出
される。この制御棒引抜監視装置4は制御棒軸方
向位置検出装置10から送出される制御棒軸方向
位置信号S5とプロセス計算機11より送出され
る選択制御棒に隣接する燃料集合体12の軸方向
出力分布信号S6と制御棒制御装置からの制御棒
選択信号S4とを入力し、前記制御棒引抜阻止位
置信号S2を制御棒制御装置7に出力する。 プロセス計算機11は制御棒制御装置7より送
出される制御棒選択信号S4Aを入力し、選択制
御棒に隣接する燃料集合体12の軸方向出力分布
信号S6を出力する。 第3図に示される本発明にかかる制御棒引抜監
視装置4の構成を詳細に図示したものが第4図で
ある。 この第4図において、対象制御棒選択回路8は
制御棒選択信号S4に応じて引抜制御棒1を選択
し、選択された引抜制御棒軸方向位置信号S5A
を制御棒引抜阻止位置設定回路9に送出する。 また特性変換回路13はプロセス計算機11よ
り送出される選択引抜制御棒1に隣接する燃料集
合体12の軸方向出力分布信号S6を用いて、許
容引抜長特性を作成し、この許容引抜長特性信号
S7を制御棒引抜阻止位置設定回路9に送出す
る。 この制御棒引抜阻止位置設定回路9では、前記
許容引抜長特性(すなわち、制御棒初期軸方向位
置PIと許容引抜長△Lの関係)信号S7と、引抜
制御棒初期軸方向位置信号S5Aを用いて許容引
抜長△Lを求める。引抜制御棒初期軸方向位置信
号S5Aとこの許容引抜長△Lから、引抜阻止位
置が設定され、これが、引抜阻止位置信号S2と
して、制御棒制御装置7に送出される。 特性変換回路13には、第5図に示す基本許容
引抜長さ特性50および第6図に示す基本軸方向
出力分布60が内蔵してあり、これらを用いて、
引抜制御棒1に隣接する燃料集合体12の軸方向
出力分布を引抜制御棒1の許容引抜長の特性に変
換する。 変換方法の実施例を第7図,第8図を用いて説
明する。ある軸方向位置における基本許容引抜長
を△LB,基本軸方向相対出力をPAB,引抜制御棒
隣接燃料の軸方向相対出力をPACとすると、その
位置での引抜制御棒の許容引抜長△LCは △LC=△LB×PAB/PAC で設定する。その他の軸方向位置でも同様にして
許容引抜長を求め、引抜制御棒の許容引抜長特性
を作成する。 引抜阻止位置は上述の許容引抜長特性(制御棒
初期軸方向位置PIと許容引抜長△Lの関係)から
求められた許容引抜長を、初期軸方向位置から差
し引いた値として設定される。すなわち、制御棒
初期軸方向位置をPI、このPIに対応する許容引抜
長を△Lとすると、引抜阻止位置PBは PB=PI−△L になるように設定される。 以上のように構成された本発明の制御棒制御シ
ステムは、出力運転時に引抜制御棒1が選択さ
れ、制御棒制御装置7に制御棒操作信号S1が入
力されると、制御棒引抜監視装置4の対象制御棒
選択回路8に制御棒選択信号S4が、またプロセ
ス計算機11に制御棒選択信号S4Aが送られ
る。対象制御棒選択回路8ではこの制御棒選択信
号S4にもとづき、必要な引抜制御棒1を選択
し、その引抜制御棒1の初期軸方向位置信号S5
を制御棒引抜阻止位置設定回路9に送る。 一方、プロセス計算機11では、制御棒選択信
号S4Aにもとづき、その引抜制御棒1に隣接す
る燃料12の軸方向出力分布信号S6を制御棒引
抜監視装置4の特性変換回路13に送る。特性変
換回路13では、軸方向出力分布信号S6にもと
づき、引抜制御棒1の許容引抜長特性を作成しそ
の信号S7を制御棒引抜阻止位置設定回路9に送
る。 この制御棒引抜阻止位置設定回路9では、初期
軸方向位置信号S5にもとづき、その初期軸方向
位置PIに対応する許容引抜長△Lを設定し、初期
軸方向位置と、許容引抜長から制御棒の引抜阻止
位置PBを設定する。この位置を制御棒引抜阻止
位置信号S2として、制御棒制御装置7へ送出す
る。 制御棒制御装置7では、制御棒操作信号S1が
制御棒引抜阻止位置信号S2により入力された引
抜阻止位置を超えた引抜を指示した場合には引抜
阻止位置信号S2の阻止位置で制御棒の引抜を阻
止する制御が行なわれる。 第9図に本発明の装置を用いた場合の出力上昇
特性を従来の装置の場合と比較して示す。同図
中、PIは引抜制御棒の初期軸方向位置を示し、P1
は本発明の装置を用いた場合、または従来の装置
で全LPRMが正常の場合の引抜阻止位置を示し、
その時の出力上昇量が△P1である。またP2は従
来の装置においてある系ならびに特定のLPRM
がバイパスされた場合の引抜阻止位置を示し、そ
の時の出力上昇量が△P2である。 従つて、本発明の装置を用いた場合の出力上昇
量は、検出器のバイパス状態に関係なく、従来装
置の全LPRMが正常の場合と同様、確実に十分
低い量に抑えられる。 本発明の特徴の一つである初期軸方向位置によ
つて許容引抜長を変化させる事の効果について以
下に説明する。 沸騰水型原子炉の炉心において、軸方向の出力
分布は、炉心の上部および下部で小さく、炉心の
中央部で大きくなつている。このため、制御棒を
同一長さだけ引抜いた時、縦軸に出力上昇量△
P,横軸に引抜制御棒の制御棒初期軸方向位置を
定め第10図に示すように、出力の大きい炉心中
央部で、その局所的な出力上昇量は大きく、これ
に対して出力の小さい炉心上下部では、その出力
上昇量は小さい特性となる。従つて、本発明のシ
ステムを用いた場合、第5図に示すように炉心中
央部で許容引抜長さを小さく、炉心上下部で許容
引抜長さを大きくなるように引抜制御棒の制御棒
引抜が阻止されるため、第11図に示すように制
御棒初期軸方向位置によらず、一定の出力上昇量
に抑えることが出来る。 また本発明の制御棒制御システムの採用によ
り、複数本の制御棒を同時に引抜する場合、出力
運転中に制御棒誤引抜が行なわれても、炉心の検
出系を使用しないため、常にある位置で、簡単に
制御棒引抜阻止がかかり、過度の出力上昇を未然
に防止できる。 [発明の効果] 以上詳述したように、本発明の制御棒制御シス
テムは、プロセス計算機の軸方向出力分布に基づ
く初期制御棒位置と許容引抜長さの関係を用い
て、制御棒引抜阻止を行なうので、LPRMのバ
イパス状態、引抜制御棒の本数および初期制御棒
位置に依らずに、出力運転時に制御棒引抜が行な
われても、常に確実な制御棒引抜阻止により、局
所的な出力上昇量を適切な一定量に制限する事が
でき、燃料の熱的余裕を保つことができ、沸騰水
型原子炉の信頼性、安全性を高めることができ
る。
わちバイパスが行なわれていない場合に比べて、
系の応答は一般に悪くなる。また、系内の
LPRMのうち、第1図において、引抜制御棒1
に近い、良い応答を示すLPRM2あるいは3が
バイパスされている場合も応答が悪くなる。この
場合を最悪バイパスと言う。第1表には、様々な
場合の引抜阻止位置が示されているが、この表に
おいて、min(a1,b1)あるいはmin(a2,b2)は
a1,b1のうち小さい方の値、あるいはa2,b2のう
ち小さい方の値をとることを意味する。 第2図a,bの点線A2,B2で示された特性
曲線は、各系の最悪バイパス時の特性を示してい
る。第2図からもわかるように、最悪バイパス時
には制御棒引抜位置がA系の場合はa2、B系の場
合にはb2に移動し、正常時に比べてかなり悪い応
答状態となる。 このように、従来の装置では各系ならびに特定
のLPRMがバイパスされた場合、応答が悪くな
り、その改善が望まれていた。また、高い安全性
が要求される原子炉において、以上のようなバイ
パスによる応答性の劣化は安全性の余裕をせばめ
る点で好ましくない。 また、同時に複数の制御棒を操作する運転の場
合、検出対象となるLPRMの個数は増加する。
例えば同時に4本の制御棒を操作する場合、16×
4=64個のLPRMの検出が制御棒引抜監視のた
めの必要となり、監視装置の構成が複雑となる。 [発明の目的] 本発明は、従来の制御棒引抜監視装置の短所で
ある以下の(イ)(ロ)を改善することを目的とする。 (イ) 各系ならびに特定のLPRMがバイパスされ
た場合、 応答が悪化し、出力上昇量が増加する。 (ロ) 複数の制御棒を同時に操作(引抜)する場
合、炉心状態の変化の検出回路が複雑化する。
よつて監視系が複雑化する。 すなわち、制御棒引抜阻止位置(許容引抜長
さ)の設定に、炉心状態(局所的な出力)変化の
検出を使用しないことにより、安定でかつ確実な
引抜阻止機能を確保する事にある。 [発明の概要] 本発明は原子炉の炉心と、この炉心内に引抜挿
入される制御棒と、この制御棒の制御棒駆動機構
と、この制御棒駆動機構を制御する制御棒制御装
置と、上記制御棒の制御棒軸方向位置検出装置
と、この制御棒軸方向位置検出装置と上記制御棒
制御装置からの信号を受け制御棒引抜阻止位置信
号を上記制御棒制御装置に入力する制御棒引抜監
視装置と、この制御棒引抜監視装置に引抜制御棒
に隣接する燃料集合体の軸方向出力分布を入力す
るプロセス計算機とを具備する制御棒制御システ
ムにおいては、制御棒引抜監視装置は、制御棒軸
方向位置検出装置からの制御棒軸方向位置信号と
制御棒制御装置からの制御棒選択信号とが入力さ
れる対象制御棒選択回路と、プロセス計算機から
の引抜制御棒に隣接する燃料集合体の軸方向出力
分布信号を用いて許容引抜長特性を作成する特性
変換回路と、この特性変換回路からの許容引抜長
特性と上記対象制御棒選択回路からの引抜制御棒
軸方向位置信号を用いて決定される制御棒引抜阻
止位置信号を制御棒制御装置に出力する制御棒引
抜阻止位置設定回路とからなることを特徴とする
制御棒制御システムにある。 [発明の実施例] 以下図面を参照しながら、本発明の一実施例を
説明する。 第3図に本発明にかかる制御棒引抜監視装置4
を用いた沸騰水型原子炉の制御棒駆動系が示され
ている。 第3図に示す炉心5の内部には、第1図に示さ
れたような引抜制御棒1が多数本格納されてい
る。同図では、引抜かれない制御棒は省略し、示
されていない。上記引抜制御棒1は炉心5の下方
に設けられた制御棒駆動機構6によつて引抜・挿
入がなされる。この制御棒駆動機構6は制御棒制
御装置7によつて制御される。この制御棒制御装
置7は制御棒操作信号S1と制御棒引抜阻止位置
信号S2とを入力し、制御棒駆動信号S3と制御
棒選択信号S4,S4Aとを出力する。制御棒駆
動信号S3は上記制御棒駆動機構6に送られ、制
御棒選択信号S4は制御棒引抜監視装置4に、制
御棒選択信号S4Aはプロセス計算機11に送出
される。この制御棒引抜監視装置4は制御棒軸方
向位置検出装置10から送出される制御棒軸方向
位置信号S5とプロセス計算機11より送出され
る選択制御棒に隣接する燃料集合体12の軸方向
出力分布信号S6と制御棒制御装置からの制御棒
選択信号S4とを入力し、前記制御棒引抜阻止位
置信号S2を制御棒制御装置7に出力する。 プロセス計算機11は制御棒制御装置7より送
出される制御棒選択信号S4Aを入力し、選択制
御棒に隣接する燃料集合体12の軸方向出力分布
信号S6を出力する。 第3図に示される本発明にかかる制御棒引抜監
視装置4の構成を詳細に図示したものが第4図で
ある。 この第4図において、対象制御棒選択回路8は
制御棒選択信号S4に応じて引抜制御棒1を選択
し、選択された引抜制御棒軸方向位置信号S5A
を制御棒引抜阻止位置設定回路9に送出する。 また特性変換回路13はプロセス計算機11よ
り送出される選択引抜制御棒1に隣接する燃料集
合体12の軸方向出力分布信号S6を用いて、許
容引抜長特性を作成し、この許容引抜長特性信号
S7を制御棒引抜阻止位置設定回路9に送出す
る。 この制御棒引抜阻止位置設定回路9では、前記
許容引抜長特性(すなわち、制御棒初期軸方向位
置PIと許容引抜長△Lの関係)信号S7と、引抜
制御棒初期軸方向位置信号S5Aを用いて許容引
抜長△Lを求める。引抜制御棒初期軸方向位置信
号S5Aとこの許容引抜長△Lから、引抜阻止位
置が設定され、これが、引抜阻止位置信号S2と
して、制御棒制御装置7に送出される。 特性変換回路13には、第5図に示す基本許容
引抜長さ特性50および第6図に示す基本軸方向
出力分布60が内蔵してあり、これらを用いて、
引抜制御棒1に隣接する燃料集合体12の軸方向
出力分布を引抜制御棒1の許容引抜長の特性に変
換する。 変換方法の実施例を第7図,第8図を用いて説
明する。ある軸方向位置における基本許容引抜長
を△LB,基本軸方向相対出力をPAB,引抜制御棒
隣接燃料の軸方向相対出力をPACとすると、その
位置での引抜制御棒の許容引抜長△LCは △LC=△LB×PAB/PAC で設定する。その他の軸方向位置でも同様にして
許容引抜長を求め、引抜制御棒の許容引抜長特性
を作成する。 引抜阻止位置は上述の許容引抜長特性(制御棒
初期軸方向位置PIと許容引抜長△Lの関係)から
求められた許容引抜長を、初期軸方向位置から差
し引いた値として設定される。すなわち、制御棒
初期軸方向位置をPI、このPIに対応する許容引抜
長を△Lとすると、引抜阻止位置PBは PB=PI−△L になるように設定される。 以上のように構成された本発明の制御棒制御シ
ステムは、出力運転時に引抜制御棒1が選択さ
れ、制御棒制御装置7に制御棒操作信号S1が入
力されると、制御棒引抜監視装置4の対象制御棒
選択回路8に制御棒選択信号S4が、またプロセ
ス計算機11に制御棒選択信号S4Aが送られ
る。対象制御棒選択回路8ではこの制御棒選択信
号S4にもとづき、必要な引抜制御棒1を選択
し、その引抜制御棒1の初期軸方向位置信号S5
を制御棒引抜阻止位置設定回路9に送る。 一方、プロセス計算機11では、制御棒選択信
号S4Aにもとづき、その引抜制御棒1に隣接す
る燃料12の軸方向出力分布信号S6を制御棒引
抜監視装置4の特性変換回路13に送る。特性変
換回路13では、軸方向出力分布信号S6にもと
づき、引抜制御棒1の許容引抜長特性を作成しそ
の信号S7を制御棒引抜阻止位置設定回路9に送
る。 この制御棒引抜阻止位置設定回路9では、初期
軸方向位置信号S5にもとづき、その初期軸方向
位置PIに対応する許容引抜長△Lを設定し、初期
軸方向位置と、許容引抜長から制御棒の引抜阻止
位置PBを設定する。この位置を制御棒引抜阻止
位置信号S2として、制御棒制御装置7へ送出す
る。 制御棒制御装置7では、制御棒操作信号S1が
制御棒引抜阻止位置信号S2により入力された引
抜阻止位置を超えた引抜を指示した場合には引抜
阻止位置信号S2の阻止位置で制御棒の引抜を阻
止する制御が行なわれる。 第9図に本発明の装置を用いた場合の出力上昇
特性を従来の装置の場合と比較して示す。同図
中、PIは引抜制御棒の初期軸方向位置を示し、P1
は本発明の装置を用いた場合、または従来の装置
で全LPRMが正常の場合の引抜阻止位置を示し、
その時の出力上昇量が△P1である。またP2は従
来の装置においてある系ならびに特定のLPRM
がバイパスされた場合の引抜阻止位置を示し、そ
の時の出力上昇量が△P2である。 従つて、本発明の装置を用いた場合の出力上昇
量は、検出器のバイパス状態に関係なく、従来装
置の全LPRMが正常の場合と同様、確実に十分
低い量に抑えられる。 本発明の特徴の一つである初期軸方向位置によ
つて許容引抜長を変化させる事の効果について以
下に説明する。 沸騰水型原子炉の炉心において、軸方向の出力
分布は、炉心の上部および下部で小さく、炉心の
中央部で大きくなつている。このため、制御棒を
同一長さだけ引抜いた時、縦軸に出力上昇量△
P,横軸に引抜制御棒の制御棒初期軸方向位置を
定め第10図に示すように、出力の大きい炉心中
央部で、その局所的な出力上昇量は大きく、これ
に対して出力の小さい炉心上下部では、その出力
上昇量は小さい特性となる。従つて、本発明のシ
ステムを用いた場合、第5図に示すように炉心中
央部で許容引抜長さを小さく、炉心上下部で許容
引抜長さを大きくなるように引抜制御棒の制御棒
引抜が阻止されるため、第11図に示すように制
御棒初期軸方向位置によらず、一定の出力上昇量
に抑えることが出来る。 また本発明の制御棒制御システムの採用によ
り、複数本の制御棒を同時に引抜する場合、出力
運転中に制御棒誤引抜が行なわれても、炉心の検
出系を使用しないため、常にある位置で、簡単に
制御棒引抜阻止がかかり、過度の出力上昇を未然
に防止できる。 [発明の効果] 以上詳述したように、本発明の制御棒制御シス
テムは、プロセス計算機の軸方向出力分布に基づ
く初期制御棒位置と許容引抜長さの関係を用い
て、制御棒引抜阻止を行なうので、LPRMのバ
イパス状態、引抜制御棒の本数および初期制御棒
位置に依らずに、出力運転時に制御棒引抜が行な
われても、常に確実な制御棒引抜阻止により、局
所的な出力上昇量を適切な一定量に制限する事が
でき、燃料の熱的余裕を保つことができ、沸騰水
型原子炉の信頼性、安全性を高めることができ
る。
第1図は引抜制御棒と固定型炉内中性子検出器
の配置図、第2図は従来装置の信号強度−制御棒
引抜位置特性図、第3図は本発明にかかる沸騰水
型原子炉の制御棒駆動系を示す図、第4図は本発
明にかかる制御棒引抜監視装置の構成を示すブロ
ツク図、第5図は本発明にかかる制御棒引抜監視
装置内に組み込まれている基本許容引抜長特性
図、第6図は本発明にかかる制御棒引抜監視装置
内に組み込まれている基本軸方向出力分布図、第
7図第8図は本発明にかかり軸方向出力分布から
許容引抜長への変換手法を示す図、第9図は本発
明の装置を用いた場合の出力上昇量−制御棒軸方
向位置特性図、第10図は同一長さだけ制御棒を
引抜いた場合の出力上昇量−制御棒初期位置特性
図、第11図は本発明の装置を用いた場合の出力
上昇量−制御棒初期位置特性図である。 1…引抜制御棒、4…制御棒引抜監視装置、5
…炉心、6…制御棒駆動機構、7…制御棒制御装
置、8…対象制御棒選択回路、9…制御棒引抜阻
止位置設定回路、10…制御棒軸方向位置検出装
置、11…プロセス計算機、12…引抜制御棒隣
接燃料集合体、13…特性変換回路、S1…制御
棒操作信号、S2…制御棒引抜阻止位置信号、S
3…制御棒駆動信号、S4…制御棒選択信号、S
4A…制御棒選択信号、S5…制御棒軸方向位置
信号、S5A…引抜制御棒軸方向位置信号、S6
…軸方向出力分布信号、S7…許容引抜長特性信
号。
の配置図、第2図は従来装置の信号強度−制御棒
引抜位置特性図、第3図は本発明にかかる沸騰水
型原子炉の制御棒駆動系を示す図、第4図は本発
明にかかる制御棒引抜監視装置の構成を示すブロ
ツク図、第5図は本発明にかかる制御棒引抜監視
装置内に組み込まれている基本許容引抜長特性
図、第6図は本発明にかかる制御棒引抜監視装置
内に組み込まれている基本軸方向出力分布図、第
7図第8図は本発明にかかり軸方向出力分布から
許容引抜長への変換手法を示す図、第9図は本発
明の装置を用いた場合の出力上昇量−制御棒軸方
向位置特性図、第10図は同一長さだけ制御棒を
引抜いた場合の出力上昇量−制御棒初期位置特性
図、第11図は本発明の装置を用いた場合の出力
上昇量−制御棒初期位置特性図である。 1…引抜制御棒、4…制御棒引抜監視装置、5
…炉心、6…制御棒駆動機構、7…制御棒制御装
置、8…対象制御棒選択回路、9…制御棒引抜阻
止位置設定回路、10…制御棒軸方向位置検出装
置、11…プロセス計算機、12…引抜制御棒隣
接燃料集合体、13…特性変換回路、S1…制御
棒操作信号、S2…制御棒引抜阻止位置信号、S
3…制御棒駆動信号、S4…制御棒選択信号、S
4A…制御棒選択信号、S5…制御棒軸方向位置
信号、S5A…引抜制御棒軸方向位置信号、S6
…軸方向出力分布信号、S7…許容引抜長特性信
号。
Claims (1)
- 【特許請求の範囲】 1 原子炉の炉心と、この炉心内に引抜挿入され
る制御棒と、この制御棒の制御棒駆動機構と、こ
の制御棒駆動機構を制御する制御棒制御装置と、
上記制御棒の制御棒軸方向位置検出装置と、この
制御棒軸方向位置検出装置と上記制御棒制御装置
からの信号を受け制御棒引抜阻止位置信号を上記
制御棒制御装置に入力する制御棒引抜監視装置
と、この制御棒引抜監視装置に引抜制御棒に隣接
する燃料集合体の軸方向出力分布を入力するプロ
セス計算機とを具備する制御棒制御システムにお
いて、制御棒引抜監視装置は、制御棒軸方向位置
検出装置からの制御棒軸方向位置信号と制御棒制
御装置からの制御棒選択信号とが入力される対象
制御棒選択回路と、プロセス計算機からの引抜制
御棒に隣接する燃料集合体の軸方向出力分布信号
を用いて許容引抜長特性を作成する特性変換回路
と、この特性変換回路からの許容引抜長特性と上
記対象制御棒選択回路からの引抜制御棒軸方向位
置信号を用いて決定される制御棒引抜阻止位置信
号を制御棒制御装置に出力する制御棒引抜阻止位
置設定回路とからなることを特徴とする制御棒制
御システム。 2 特性変換回路の許容引抜長特性は、特性変換
回路に内蔵された基本許容引抜長特性と基本軸方
向出力分布を用いて設定することを特徴とする特
許請求の範囲第1項の制御棒制御システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58090633A JPS59216091A (ja) | 1983-05-25 | 1983-05-25 | 制御棒制御システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58090633A JPS59216091A (ja) | 1983-05-25 | 1983-05-25 | 制御棒制御システム |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59216091A JPS59216091A (ja) | 1984-12-06 |
JPH0410595B2 true JPH0410595B2 (ja) | 1992-02-25 |
Family
ID=14003889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58090633A Granted JPS59216091A (ja) | 1983-05-25 | 1983-05-25 | 制御棒制御システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59216091A (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114188051B (zh) * | 2021-12-03 | 2024-02-20 | 中国原子能科学研究院 | 监测安全棒的位置的方法及装置 |
-
1983
- 1983-05-25 JP JP58090633A patent/JPS59216091A/ja active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59216091A (ja) | 1984-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0640143B2 (ja) | 原子力発電プラントの制御方法及び装置 | |
JPH0410595B2 (ja) | ||
JPH0152715B2 (ja) | ||
JP5291888B2 (ja) | 制御棒引抜監視方法及び制御棒引抜監視システム | |
JP2005061951A (ja) | 制御棒引抜監視装置 | |
JPH043516B2 (ja) | ||
US4282061A (en) | System for preventing erroneous operation of control rods | |
JPS5933866B2 (ja) | 制御棒引抜監視装置 | |
WO2018131106A1 (ja) | 制御棒動作監視システム及び制御棒動作監視方法 | |
JPH053558B2 (ja) | ||
JP2006010705A (ja) | 制御棒引抜き監視装置及び制御棒制御装置 | |
JPS58182589A (ja) | 制御棒引抜監視装置 | |
JPS6093997A (ja) | 制御棒引抜監視装置 | |
JPS63256892A (ja) | 再循環流量制御装置 | |
JP3757648B2 (ja) | 制御棒引抜き監視装置及び制御棒制御装置 | |
JP2522521B2 (ja) | 制御棒引抜監視装置 | |
JPS62229098A (ja) | 制御棒引抜監視装置 | |
JP2005003402A (ja) | 制御棒引抜監視装置および制御棒操作システムならびに制御棒引抜阻止方法 | |
JPS59230194A (ja) | 制御棒引抜監視装置 | |
JPH07253495A (ja) | デジタル式制御棒引抜監視システム | |
JPS5931033B2 (ja) | 制御棒引抜き監視装置 | |
JPH0152718B2 (ja) | ||
JPS58106498A (ja) | 制御棒引抜監視装置 | |
JPH0198995A (ja) | 制御棒引抜監視方法、及び同監視装置 | |
JPH04148896A (ja) | 原子炉監視装置 |