JPH041058B2 - - Google Patents

Info

Publication number
JPH041058B2
JPH041058B2 JP2932683A JP2932683A JPH041058B2 JP H041058 B2 JPH041058 B2 JP H041058B2 JP 2932683 A JP2932683 A JP 2932683A JP 2932683 A JP2932683 A JP 2932683A JP H041058 B2 JPH041058 B2 JP H041058B2
Authority
JP
Japan
Prior art keywords
corrosion
cracking
inclusions
resistance
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2932683A
Other languages
Japanese (ja)
Other versions
JPS59157263A (en
Inventor
Toshinori Ozaki
Hiroshi Sakata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2932683A priority Critical patent/JPS59157263A/en
Publication of JPS59157263A publication Critical patent/JPS59157263A/en
Publication of JPH041058B2 publication Critical patent/JPH041058B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明はボイラー又はBWRに用いられる高温
高純度水を取扱うポンプ用のマルテンサイト系ス
テンレス鋼に関する。 〔従来技術〕 従来のマルテンサイト系ステンレス鋼は、非金
属介在物にそつた孔食を起点として環境脆化割れ
を発生する欠点があつた。そして、これらの防止
策としては単に材料強度を下げるべく化学成分、
熱処理に留意することがなされていた。 〔発明の目的〕 本発明は孔食の発生密度の低減、連続的な孔食
進行を防止することで耐環境脆化割れ性に優れた
高温水ポンプ用マルテンサイト系ステンレス鋼を
提供することにある。 〔発明の概要〕 本発明は、重量比で、C:0.03〜0.15%、Si:
0.2〜1.0%、Mn:0.2〜1.0%、Cr:11.5〜13.5%、
Ni:0.01〜4.5%、Mo:0.01〜1.0%、S:0.003
〜0.015%、Cu:0.01〜0.4%、残部Fe及び不可避
的不純物からなるマルテンサイト系ステンレス鋼
であつて、任意断面における硫化物系介在物の平
均的長径を5μm以下、硫化物系介在物間の鍛造
面に平行な平均的距離を100μm以上とし、さら
に最終的な材料硬さを220≦Hv≦250とし、高温
水中で耐孔食性又は耐環境脆化割れ性を向上させ
たものである。 高温水を取扱うポンプ材料としては機械的性
質、耐食性、耐環境脆化割れ性、コスト等の点に
優れた13Crマルテンサイト系ステンレス鋼が広
く用いられている。ここで、上記ポンプ部品は長
期間使用後応力集中部に発生した孔食を起点と
し、環境脆化割れにより折損する。そこで、多数
の上記ポンプ折損部品について詳細に観察した結
果、次の事実を見いだした。 (イ) 孔食は構造的隙間部分又は自由表面の異物
(たとえば錆など)付着個所に発生するが、割
れの起点となる深い孔食は硫化物系介在物にそ
つてのみ進行している。 (ロ) S含有量が0.015〜0.028%で硫化物系介在物
が長ダ円形である時又は硫化物系介在物間の圧
延方向の平均距離が小さい時(連続的に介在物
が存在することを意味する)、深い孔食が発生
し、これが折損原因となつている。 (ハ) (イ)および(ロ)を満足し、かつ、材料硬さがHv
>250のとき折損の発生頻度が高い。 次に、本発明の高温水ポンプ用マルテンサイト
系ステンレス鋼の成分元素の含有量を限定した理
由を説明する。 C:0.03〜0.15% Cは焼入れ性を向上させ、引張り強さや耐力を
向上させるが、0.03%以下では加工に伴う耐摩耗
性に有効な誘起マルテンサイト相の硬化程度が小
さく、その結果が小さい。耐キヤビテーシヨン
性、耐エロージヨン性に優れた鋳鋼が得られな
い。また0.15%を超えると、焼もどしによつて軟
化しにくく、水素脆化割れが生じ易くなると同時
に粒界腐食や粒界腐食割れが生じ易くなつて実用
的でない。従つて、Cの含有量は0.03〜0.15%の
範囲に限定した。 Si:0.2〜1.0% Siは脱酸剤として必要な元素であり、0.2%未
満では鋼の鋳造性が低下する。また添加量があま
り多いと脆化の原因となる。そのため、Siは0.2
〜1.0%の範囲に限定した。 Mn:0.2〜1.0% MnはSiと同様に脱酸剤であり、そして高温割
れを防止する。添加量が多いと脆化の原因とな
る。そのため、Mnは0.2〜1.0%の範囲とした。 Cr:11.5〜13.5% Crは耐食性を向上させるに重要な元素である
が、11.5%未満では耐食性が著しく低下し、実用
的でない。含有量が13.5%を超えると、その鋼の
溶接性、鋳造性など被加工性が悪化し、また高温
で焼もどしをしても軟化せず、衝撃値の低下ある
いは水素脆化割れの危険が増大する。従つて、
Crは11.5〜13.5%の範囲に限定した。 Ni:0.01〜4.5% Niは焼入れ性、耐摩耗性を向上させるに有効
な元素であるが、4.5%を超えると、鋼のAc1点が
実用焼もどし温度あるいはそれ以下まで低下し、
焼戻し条件に重大な障害を与える。またNi当量
が大きくなり過ぎ、耐キヤビテーシヨン、耐エロ
ージヨン性が確保しにくくなる。下限0.01%は製
鋼上でスクラツプの取扱いを考慮すると実用的な
値である。従つて、Niは0.01〜4.5%の範囲とし
た。 Mo:0.03〜1.0% MoはC及びCrと共存して高温強度を向上さ
せ、また高温脆性、焼戻し脆性を抑制するのに効
果がある。添加量が多すぎると、Moはフエライ
ト生成元素であるので、要求する焼もどし組織が
得られない。下限0.03%は製鋼上でスクラツプの
取扱を考慮すると実用的な値である。従つてMo
は0.03〜1.0%の範囲とした。 S:0.003〜0.015% Sは硫化介在物を生成し、耐食性の点から好ま
しくない。しかし製鋼上でスクラツプの使用を考
慮すると実用的には0.003%となる。また含有量
が0.015%を超えると硫化物系介在物が多くなり、
耐食性や耐環境脆化割れ性を悪化させる。従つて
Sは0.003〜0.015%の範囲に限定した。 Cu:0.01〜0.4% Cuは本発明における重要な元素で、Sと結合
して高温水中で化学的に安定なCuSを生成するも
のと考えられる。0.01%では硫化物系介在物の改
質効果が小さく、また0.4%を超えるとその改質
効果が飽和し、しかも溶接割れが生じ易くなる。
従つてCuは0.01〜0.4%の範囲に限定した。 〔発明の実施例〕 実施例 1 市販の13Cr−含Niステンレス鋼よりS含有量
の少ないロツトを選択し、これを母材として50Kg
高周波溶解炉を用いて再溶解し、FeSおよび金属
銅を所定量添加した後、Yブロツク鋳型に注湯
し、試料を作成した。試料の化学成分を第1表に
示す。次に上記鋳型の底部より50×50×250の角
材を切出し、これを熱間鍛造し(10〜25)×(10〜
25)の棒材を作成した後、1050〜1080℃×2hr→
除冷、970〜1000℃→油冷の焼入れ、550〜700℃
→油冷の焼戻しを与えた。その後、段造面に垂直
な部分を試料面として10×10×2tの試料を多数作
製した。次に試料面をエメリー紙#600で研摩後
脱脂し、180℃、高温高純度水中に500hr浸漬し
た。浸漬にあたつては試料面が異材と接触し、隙
間を形成しないよう、試料の板厚部分を1φのス
テンレス棒4点でささえる方法を採つた。次に浸
漬後の試料は表面の錆を除く目的で90℃、10%
NaOH+3%KMnO4混液中に浸漬し、2hr超音
波洗浄した。そして、水洗、
[Field of Application of the Invention] The present invention relates to martensitic stainless steel for pumps that handle high-temperature, high-purity water used in boilers or BWRs. [Prior Art] Conventional martensitic stainless steels have had the disadvantage of causing environmental embrittlement cracking caused by pitting corrosion along non-metallic inclusions. As a preventive measure against these problems, chemical components,
Care must be taken in heat treatment. [Objective of the Invention] The present invention provides a martensitic stainless steel for high-temperature water pumps that has excellent environmental embrittlement cracking resistance by reducing the density of pitting corrosion and preventing the continuous progression of pitting corrosion. be. [Summary of the Invention] The present invention provides C: 0.03 to 0.15%, Si:
0.2-1.0%, Mn: 0.2-1.0%, Cr: 11.5-13.5%,
Ni: 0.01~4.5%, Mo: 0.01~1.0%, S: 0.003
A martensitic stainless steel consisting of ~0.015%, Cu: 0.01~0.4%, balance Fe and unavoidable impurities, with an average major axis of sulfide inclusions in any cross section of 5 μm or less, between sulfide inclusions. The average distance parallel to the forged surface is 100 μm or more, and the final material hardness is 220≦Hv≦250, and the pitting corrosion resistance or environmental embrittlement cracking resistance in high-temperature water is improved. 13Cr martensitic stainless steel is widely used as a material for pumps that handle high-temperature water because of its excellent mechanical properties, corrosion resistance, resistance to environmental embrittlement cracking, and cost. Here, after long-term use, the above-mentioned pump parts break due to environmental embrittlement cracking starting from pitting corrosion that occurs in stress concentration areas. Therefore, as a result of detailed observation of a large number of broken parts of the pump, the following facts were discovered. (a) Pitting corrosion occurs at structural gaps or at locations where foreign matter (such as rust) adheres to the free surface, but deep pitting corrosion, which is the starting point of cracks, progresses only along sulfide-based inclusions. (b) When the S content is 0.015 to 0.028% and the sulfide inclusions are oblong, or the average distance in the rolling direction between the sulfide inclusions is small (inclusions exist continuously). ), deep pitting corrosion occurs, which is the cause of breakage. (c) Satisfies (a) and (b), and the material hardness is Hv
>250, breakage occurs more frequently. Next, the reason why the contents of the constituent elements of the martensitic stainless steel for high temperature water pumps of the present invention are limited will be explained. C: 0.03 to 0.15% C improves hardenability, tensile strength and yield strength, but below 0.03%, the degree of hardening of the induced martensitic phase, which is effective for wear resistance during processing, is small and the results are small. . Cast steel with excellent cavitation resistance and erosion resistance cannot be obtained. If it exceeds 0.15%, it is difficult to soften by tempering, hydrogen embrittlement cracking is likely to occur, and intergranular corrosion and intergranular corrosion cracking are also likely to occur, making it impractical. Therefore, the C content was limited to a range of 0.03 to 0.15%. Si: 0.2 to 1.0% Si is a necessary element as a deoxidizing agent, and if it is less than 0.2%, the castability of steel decreases. Also, if the amount added is too large, it may cause embrittlement. Therefore, Si is 0.2
It was limited to a range of ~1.0%. Mn: 0.2-1.0% Mn is a deoxidizing agent like Si and prevents hot cracking. Adding too much will cause embrittlement. Therefore, Mn was set in the range of 0.2 to 1.0%. Cr: 11.5-13.5% Cr is an important element for improving corrosion resistance, but if it is less than 11.5%, the corrosion resistance will be significantly reduced and it is not practical. If the content exceeds 13.5%, the weldability, castability, and other processability of the steel will deteriorate, and it will not soften even when tempered at high temperatures, leading to a decrease in impact value or the risk of hydrogen embrittlement cracking. increase Therefore,
Cr was limited to a range of 11.5 to 13.5%. Ni: 0.01-4.5% Ni is an effective element for improving hardenability and wear resistance, but if it exceeds 4.5%, the Ac 1 point of the steel will drop to the practical tempering temperature or below.
seriously impeding the tempering conditions. Furthermore, the Ni equivalent becomes too large, making it difficult to ensure cavitation resistance and erosion resistance. The lower limit of 0.01% is a practical value considering the handling of scrap in steelmaking. Therefore, Ni was set in the range of 0.01 to 4.5%. Mo: 0.03-1.0% Mo coexists with C and Cr and is effective in improving high-temperature strength and suppressing high-temperature brittleness and tempering brittleness. If the amount added is too large, the required tempered structure cannot be obtained because Mo is a ferrite-forming element. The lower limit of 0.03% is a practical value considering the handling of scrap in steelmaking. Therefore Mo
was set in the range of 0.03 to 1.0%. S: 0.003 to 0.015% S produces sulfurized inclusions and is not preferred from the viewpoint of corrosion resistance. However, considering the use of scrap in steelmaking, the practical value is 0.003%. In addition, when the content exceeds 0.015%, sulfide inclusions increase,
Deteriorates corrosion resistance and environmental embrittlement cracking resistance. Therefore, S was limited to a range of 0.003 to 0.015%. Cu: 0.01-0.4% Cu is an important element in the present invention, and is thought to combine with S to produce CuS, which is chemically stable in high-temperature water. At 0.01%, the modification effect of sulfide-based inclusions is small, and when it exceeds 0.4%, the modification effect is saturated and weld cracking is likely to occur.
Therefore, Cu was limited to a range of 0.01 to 0.4%. [Embodiments of the invention] Example 1 A lot with a lower S content than commercially available 13Cr-Ni stainless steel was selected, and 50 kg of this was used as the base material.
After remelting using a high-frequency melting furnace and adding FeS and metallic copper in predetermined amounts, the molten metal was poured into a Y block mold to create a sample. The chemical composition of the sample is shown in Table 1. Next, cut out a 50 x 50 x 250 square piece from the bottom of the mold and hot forge it (10~25) x (10~
25) After creating the bar material, heat at 1050~1080℃×2hr→
Slow cooling, 970-1000℃→oil-cooled quenching, 550-700℃
→Given oil-cooled tempering. After that, many samples of 10 x 10 x 2 tons were prepared with the part perpendicular to the stepped surface as the sample surface. Next, the sample surface was polished with #600 emery paper, degreased, and immersed in high-temperature high-purity water at 180°C for 500 hours. During immersion, the thickness of the sample was supported by four 1φ stainless steel rods to prevent the sample surface from coming into contact with foreign materials and forming gaps. Next, the sample after immersion was heated to 90℃ and 10% to remove surface rust.
It was immersed in a mixture of NaOH + 3% KMnO 4 and subjected to ultrasonic cleaning for 2 hours. And washing with water,

【表】 乾燥後、光学顕微鏡を用い試料面に発生した孔食
数および孔食深さを測定した。その結果を図に示
す。図より、本試験材の範囲内でS含有量が増す
と孔食数および最大孔食深さは増大する傾向が見
られる。特に、S≧0.015%ではその傾向が顕著
である。一方、銅を添加した場合は孔食数は明確
な変化が見られないものの、最大孔食深さは減少
傾向となる。特に、Cu:0.01〜0.4%の範囲でそ
の傾向が顕著である。 以上は前述したように孔食の発生が硫化物系介
在物と深い関係にあることを示している。また、
Cuを添加し、焼戻すことで硫化物系介在物の一
部が高温水中で化学的に安定なCuSとなる為と思
われる。 次に上記試料の内B−2およびB−3を17×17
および10×10の棒材に熱間鍛造し、その後は上記
試料と同一熱処理、同一試料、および同一試験を
行つたものの最大孔食深さは17×17鍛造材の場
合、明確な差が見られなかつたのに対し、10×10
鍛造材では、B−2およびB−3に対し、それぞ
れ2.5倍および5.8倍と激しく増大した。ここで、
No.A−1〜A−4、B−1〜B−3、D−1〜D
−3の試料は共に硫化物系介在物の平均長径が
5μm以下で球状、硫化物系介在物間の鍛造面に
平行な平均距離が100μm以上であつた。一方、
17×17鍛造材では平均長径が5μm、上記の介在
物間距離は100μmであつた。またB−2および
B−3の10×10鍛造材は平均長径が5〜15μm、
硫化物系介在物間の鍛造面に平行な平均距離が50
〜80μmであつた。 以上より、最大孔食深さに対し、硫化物系介在
物の鋼中における分布状態が重要な作用因子であ
ることが理解される。 実施例 2 第1表に示した試料より平行部が3×35×2tの
引張り試験片を切出し、低歪速度引張り型応力腐
食割れ試験を行なつた。実験は180℃高温高純度
水中において48hr保持後歪速度1.5×10-7mm/
mm・sで試験した。そして、破断面を走査型電顕
で観察し応力腐食割れの有無を決定した。ここ
で、各試料の熱処理は焼戻し温度を種種に変化さ
せ、硬さレベルをHv=220〜300とした。その結
果を第2表に示す。図より材料硬さの高い材料は
一般に応力腐食割れで割れているが、S含有量が
低いか又は銅が共存すると割れ限界硬さが若干上
昇している。ここで、本試験片の応力腐食割れ
は、いずれも微細な孔食を起点として生じている
ことから、第2表の特性は図に示した孔食進行挙
動が反影されたものと判断され、耐応力腐食割れ
性の改善にS含有量およびCu添加の有効性が理
解される。 また、上述の応力腐食割れ試験状況と高温水ポ
ンプにおける応力付与状況を対比すると、後者で
は材料が環境に曝される時間が格段に長い反面、
付与応力は十分小さい。この事実は孔食の発生お
よび進行過程が材料の破壊過程に重要な役割りを
はたすはずであり、図に示す特性に対し孔食の役
割りは一層拡大して表われるはずである。このよ
うに考えると、冒頭で述べた高温水ポンプ部材の
[Table] After drying, the number of pitting corrosion and pitting depth that occurred on the sample surface were measured using an optical microscope. The results are shown in the figure. From the figure, it can be seen that as the S content increases within the range of this test material, the number of pitting corrosion and the maximum pitting depth tend to increase. This tendency is particularly noticeable when S≧0.015%. On the other hand, when copper is added, although no clear change is observed in the number of pitting corrosion, the maximum pitting depth tends to decrease. In particular, this tendency is remarkable in the range of Cu: 0.01 to 0.4%. The above shows that the occurrence of pitting corrosion is closely related to sulfide inclusions, as described above. Also,
This is thought to be because by adding Cu and tempering, some of the sulfide inclusions become chemically stable CuS in high-temperature water. Next, of the above samples, B-2 and B-3 were 17×17
A clear difference in the maximum pitting depth was observed for the 17×17 forged material, which was hot-forged into a 10×10 bar and then subjected to the same heat treatment, same sample, and same test as the above sample. 10×10
In the case of forged materials, it increased significantly by 2.5 times and 5.8 times compared to B-2 and B-3, respectively. here,
No.A-1~A-4, B-1~B-3, D-1~D
In both samples -3, the average major axis of the sulfide inclusions was
The average distance parallel to the forging surface between spherical and sulfide inclusions was 5 μm or less and was 100 μm or more. on the other hand,
In the 17×17 forged material, the average major axis was 5 μm, and the distance between inclusions was 100 μm. In addition, the 10 × 10 forged materials of B-2 and B-3 have an average major axis of 5 to 15 μm,
The average distance parallel to the forging surface between sulfide inclusions is 50
It was ~80 μm. From the above, it is understood that the distribution state of sulfide-based inclusions in steel is an important factor in the maximum pitting corrosion depth. Example 2 A tensile test piece with a parallel portion of 3 x 35 x 2 tons was cut out from the sample shown in Table 1 and subjected to a low strain rate tensile stress corrosion cracking test. The experiment was conducted in high-temperature, high-purity water at 180°C for 48 hours at a strain rate of 1.5×10 -7 mm/
Tested in mm·s. The fracture surface was then observed using a scanning electron microscope to determine the presence or absence of stress corrosion cracking. Here, in the heat treatment of each sample, the tempering temperature was varied and the hardness level was set to Hv=220 to 300. The results are shown in Table 2. As shown in the figure, materials with high material hardness generally crack due to stress corrosion cracking, but when the S content is low or copper coexists, the critical hardness for cracking increases slightly. Since the stress corrosion cracking of this test piece all originates from minute pitting corrosion, it can be concluded that the characteristics in Table 2 are a reflection of the pitting corrosion progression behavior shown in the figure. , the effectiveness of S content and Cu addition in improving stress corrosion cracking resistance is understood. Furthermore, if we compare the stress corrosion cracking test conditions described above with the stress application conditions in high-temperature water pumps, in the latter case the material is exposed to the environment for a much longer time, but on the other hand,
The applied stress is sufficiently small. This fact indicates that the occurrence and progression of pitting corrosion should play an important role in the material's destruction process, and the role of pitting corrosion should be even more pronounced in the characteristics shown in the figure. Considering this, the high temperature water pump components mentioned at the beginning

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明によれば高温水ポンプの環境脆化割れ防
止に有効なマルテンサイト系ステンレス鋼を提供
することができる。その結果、信頼性の向上に大
きく寄与しえるばかりか、高級鋼(たとえばイン
コネル合金、超高級ステンレス鋼)を用いなくて
良いためコストの上昇が防止しえる。
According to the present invention, it is possible to provide a martensitic stainless steel that is effective in preventing environmental embrittlement cracking in high-temperature water pumps. As a result, not only can this greatly contribute to improved reliability, but also an increase in cost can be prevented since it is not necessary to use high-grade steel (eg, Inconel alloy, ultra-high-grade stainless steel).

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明のマルテンサイト系ステンレス鋼
の応力腐食割れ試験結果を示す図である。
The drawing is a diagram showing the stress corrosion cracking test results of the martensitic stainless steel of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 重量比で、C:0.03〜0.15%、Si:0.2〜1.0
%、Mn:0.2〜1.0%、Cr:11.5〜13.5%、Ni:
0.01〜4.5%、Mo:0.01〜1.0%、S:0.003〜
0.015%、Cu:0.01〜0.4%、残部Fe及び不可避的
不純物からなり、任意断面における硫化物系介在
物の平均的長径を5μm以下、硫化物系介在物間
の鍛造面に平行な平均的距離を100μm以上とし
て、さらに最終的な材料硬さを220≦Hv≦250と
したことを特徴とする高温水ポンプ用マルテンサ
イト系ステンレス鋼。
1 Weight ratio: C: 0.03-0.15%, Si: 0.2-1.0
%, Mn: 0.2-1.0%, Cr: 11.5-13.5%, Ni:
0.01~4.5%, Mo: 0.01~1.0%, S: 0.003~
0.015%, Cu: 0.01-0.4%, balance Fe and unavoidable impurities, the average major axis of sulfide inclusions in any cross section is 5 μm or less, the average distance between sulfide inclusions parallel to the forging surface Martensitic stainless steel for high-temperature water pumps, characterized by having a hardness of 100 μm or more, and a final material hardness of 220≦Hv≦250.
JP2932683A 1983-02-25 1983-02-25 Martensitic stainless steel for high-temperature water pump Granted JPS59157263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2932683A JPS59157263A (en) 1983-02-25 1983-02-25 Martensitic stainless steel for high-temperature water pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2932683A JPS59157263A (en) 1983-02-25 1983-02-25 Martensitic stainless steel for high-temperature water pump

Publications (2)

Publication Number Publication Date
JPS59157263A JPS59157263A (en) 1984-09-06
JPH041058B2 true JPH041058B2 (en) 1992-01-09

Family

ID=12273102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2932683A Granted JPS59157263A (en) 1983-02-25 1983-02-25 Martensitic stainless steel for high-temperature water pump

Country Status (1)

Country Link
JP (1) JPS59157263A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110846552A (en) * 2019-08-21 2020-02-28 河南中原特钢装备制造有限公司 Forging method of martensitic stainless steel main shaft

Also Published As

Publication number Publication date
JPS59157263A (en) 1984-09-06

Similar Documents

Publication Publication Date Title
KR0153877B1 (en) Duplex stainless steel with high corrosion resistance
US6576068B2 (en) Method of producing stainless steels having improved corrosion resistance
JP3543708B2 (en) Oil well steel with excellent resistance to sulfide stress corrosion cracking and method for producing oil well steel pipe using the same
KR100304817B1 (en) High toughness spring steel
JP5167616B2 (en) Metal bolts with excellent delayed fracture resistance
JP5685198B2 (en) Ferritic-austenitic stainless steel
US11352683B2 (en) Production of HIC-resistant pressure vessel grade plates using a low-carbon composition
AU2002256261A1 (en) Method of producing stainless steels having improved corrosion resistance
JPWO2006109664A1 (en) Ferritic heat resistant steel
JPWO2005075694A1 (en) Steel for line pipe excellent in HIC resistance and line pipe manufactured using the steel
JP4556952B2 (en) Martensitic stainless steel pipe for oil well
Laitinen et al. Chloride-induced stress corrosion cracking of powder metallurgy duplex stainless steels
KR100540851B1 (en) Material for the manufacture of parts and tools for use at elevated temperature, method for producing the material
JPS60427B2 (en) Free-cutting steel with excellent cold forging properties
Ray et al. Microstructure and properties of thermomechanically strengthened reinforcement bars: a comparative assessment of plain-carbon and low-alloy steel grades
JP2658210B2 (en) Heat treatment method of martensitic stainless steel
JP2008156678A (en) High-strength bolt excellent in delayed fracture resistance and corrosion resistance
CN115386808A (en) Corrosion-resistant oil casing pipe and preparation method and application thereof
JPH041058B2 (en)
CN111411264B (en) Ni-based alloy and Ni-based alloy sheet
KR970009523B1 (en) High strength & high corrosion resistance of martensite stainless steel
JP3574903B2 (en) High alloy austenitic stainless steel with excellent hot workability
RU2363877C2 (en) Pipe made of martensite stainless steel for oil wells
JPH08269566A (en) Production of high strength and high toughness uoe steel pipe excellent in sr characteristic
JP2001059136A (en) STEEL FOR Cr-CONTAINING OIL WELL PIPE EXCELLENT IN HYDROGEN SULFIDE CORROSION RESISTANCE AND CARBON DIOXIDE GAS CORROSION RESISTANCE