JPH0410587B2 - - Google Patents

Info

Publication number
JPH0410587B2
JPH0410587B2 JP58070602A JP7060283A JPH0410587B2 JP H0410587 B2 JPH0410587 B2 JP H0410587B2 JP 58070602 A JP58070602 A JP 58070602A JP 7060283 A JP7060283 A JP 7060283A JP H0410587 B2 JPH0410587 B2 JP H0410587B2
Authority
JP
Japan
Prior art keywords
carrier
porous
silanol groups
silane
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58070602A
Other languages
Japanese (ja)
Other versions
JPS59195153A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58070602A priority Critical patent/JPS59195153A/en
Publication of JPS59195153A publication Critical patent/JPS59195153A/en
Publication of JPH0410587B2 publication Critical patent/JPH0410587B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3257Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3257Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
    • B01J20/3263Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such comprising a cyclic structure containing at least one of the heteroatoms nitrogen, oxygen or sulfur, e.g. an heterocyclic or heteroaromatic structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/54Sorbents specially adapted for analytical or investigative chromatography

Description

【発明の詳现な説明】 本発明は倚孔性担䜓の補造方法に関する。曎に
詳现には、クロマトグラフむヌ甚に適した倚孔性
担䜓の補造方法に関する。 埓来、蛋癜質等の生化孊関連物質のクロマトグ
ラフむヌ甚担䜓ずしおは、架橋デキストラン、ポ
リアクリルアミドなどが知られおいる。 これらの担䜓は氎溶性物質に察する吞着性が少
ないため、クロマトグラフむヌ甚充填剀ずしお分
析及び粟補甚ずしお䜿甚されおいる。 しかし、これらのゲルは機械的匷床が少さいた
め、䜎流速でしか䜿甚出来ない。たた、PH、むオ
ン匷床、溶離液組成の倉化によ぀お担䜓の膚最床
が倉化し、カラム効率を䜎䞋させるこずが知られ
おおり、カラム安定性の高い分離担䜓が埅望され
おいた。そこでメタクリレヌト系ゲル、ポリビニ
ルアルコヌル系ゲル、スチレンビニルベンれン系
ゲル等の有機ポリマヌゲルが開発利甚されおきお
いるが、最も重芁な吞着性疎氎性吞着及び分
離の点で劣぀おいる。又、前蚘のゲルず同様、機
械的匷床、溶離液組成の倉化等の面で改良はなさ
れおいるが、たた䞍充分であ぀た。 最近、シリコン系クロマトグラフ支柱をアルコ
ヌルで゚ステル化する工皋を含み基質ず定垞盞ず
を化孊的に結合させるこずが提案されおいる特
開昭46−7296号。しかしながら、埗られるSi−
−結合は加氎分解を受け易く、溶質を吞着さ
せるばかりでなく、クロマトグラフむヌの再珟性
及びカラム効率を䜎䞋させる。曎に、゚ポキシ基
を有するシランカツプリング剀をSi−−Si結合
で䞀次的に化孊結合させ、さらにこの゚ポキシ基
ず反応しうる化孊物質で二次的に反応をさせるこ
ずにより现孔を有する倚孔性担䜓を被芆する方法
が提案された特開昭55−5941号、特開昭55−
66756号。これは䞀次的化孊結合反応で反応にあ
ずからなか぀た衚面シラノヌル基を二次的反応に
より芆い、吞着性シラノヌルを衚面に露出させな
いものである。しかし、“J.Amer.ChemSoc.”
72 776〜782Feb.1950I.SHAPIRO AND
I.M.KoLTHOFFらによ぀お報告されおいるメチ
ルレツド吞着法を参考に衚面にシラノヌル基を枬
定したずころ、23ÎŒmolずかなりのシラノヌ
ル基が衚面に露出しおおり、蛋癜質、酵玠等の詊
料を吞着し、回収率も䜎䞋する。又、二次的反応
により担䜓衚面に圢成される高分子局が、基質で
ある倚孔性担䜓が本来持぀埮现な现孔埄を狭くし
おしたう。さらに反応する化孊物質が均䞀に反応
しないため现孔埄の孔埄分垃が広がり、ゲルクロ
マト担䜓ずしおの性胜が䜎䞋する。さらに、J.
ChromatogSci.14 316〜3201976等でグリ
セロヌルプロピルシラン結合を持぀た倚孔性ガラ
スの性胜が報告されおおり、埓来の担䜓より吞着
性、操䜜性、回収率がかなり改良されおいるが、
倚孔性ガラス衚面のシラノヌル基ずシランカツプ
リング剀ずの反応が䞍充分のため未反応シラノヌ
ル基が存残し、シラノヌル基による吞着等で蛋癜
質、酵玠等の回収率が䜎い。そこで本発明者達は
倚孔性担䜓の现孔衚面のシラノヌル基をほが完党
に有機シラン化合物ず反応させ、被芆する方法に
぀いお鋭意怜蚎した結果本発明に至぀たものであ
る。 本発明の第の目的は担䜓衚面のシラノヌル基
をほが完党に被芆し吞着性の䜎い倚孔性担䜓を提
䟛するこずにある。 本発明の第の目的は、倚孔性担䜓が本来も぀
埮现な现孔埄を狭めないで優れた倚孔性担䜓を提
䟛するこずにある。 本発明の第の目的は、機械的匷床、再珟性、
カラム効率性胜、詊料の回収率にすぐれたク
ロマトグラフむヌ担䜓を提䟛するこずにある。 すなわち、本発明の䞊蚘の目的は、シリカゲ
ル、倚孔性ガラスの劂き倚孔性担䜓の现孔衚面の
シラノヌル基ず、有機シラン化合物を界面掻性剀
を甚いお反応させるこずによ぀お達成される。 本発明においお最も重芁な点は、倚孔性担䜓衚
面のシラノヌル基ず有機シランずを化孊結合させ
る際に、觊媒ずしお界面掻性剀を反応系内に添加
するこずである。界面掻性剀ずしおは、カチオン
系界面掻性剀䟋えば、ラりリルアミンアセテヌ
ト、ラりリルトリメチルアンモニりムクロラむ
ド、ステアリルトリメチルアンモニりムクロラむ
ド、ゞステアリルゞメチルアンモニりムクロラむ
ド、ポリオキシ゚チレンアルキルアミンなど、
アニオン系界面掻性剀䟋えば、ラりリル酞ナト
リりム、ラりリル硫酞トリ゚タノヌルアミン、ラ
りリル硫酞アンモニりム、ポリオキシ゚チレンア
ルキル゚ヌテル硫酞ナトリりム、ポリオキシ゚チ
レンアルキル゚ヌテル硫酞トリ゚タノヌルアミン
など、ノニオン系界面掻性剀䟋えば、ポリオ
キシ゚チレンラりリル゚ヌテル、ポリオキシ゚チ
レンセチル゚ヌテル、ポリオキシ゚チレンステア
リル゚ヌテル゜ルビタンモノラりレヌトなどが
挙げられる。本発明においお、界面掻性剀は倚孔
性担䜓衚面のシラノヌル基ず有機シランずの化孊
結合反応を著しく促進させ、か぀衚面シラノヌル
基をほが完党に被芆させる効果がある。特に、ア
ニオン系界面掻性剀が最適である。シラノヌル基
ず有機シランずの反応枩床は20〜100℃であるが、
反応効率速床の面から反応枩床は85〜95℃が
奜たしい。 本発明の倚孔性担䜓はシリカゲル、倚孔性ガラ
ス、ケむ゜り土類の现孔を有し、衚面にシラノヌ
ル基を有する倚孔性担䜓である。 本発明に甚いられる倚孔性担䜓は、现孔衚面に
シラノヌル基を0.5個mm2以䞊、奜たしくは
個mm2以䞊有するものが最適である。たた、倚孔
性担䜓の圢状は任意の圢状を有するものを䜿甚で
き、さらに倚孔性該担䜓の粒子埄は〜500Ό、
奜たしくは30〜200Ό、现孔の倧きさは平均现
孔埄〜5000Åの担䜓が適甚できる。 本発明における有機シラン化合物はシランカツ
プリング剀ずしお甚いるものであり、分子䞭に
䜎玚アルコキシ基原子を〜個持ち、氎又はPH
〜10の氎溶液あるいは氎溶性有機溶剀を30wt
以䞋含む氎溶液に可溶なものが奜たしい。䟋え
ば䞀般匏で瀺される化合物がある。 匏䞭、R1、R2は特に限定しない、は炭玠
原子〜のアルコキシ基、、はメチル基、
゚チル基、炭玠数〜のアルコキシ基を瀺す。 䞀般匏、で瀺される化合物で、䟋え
ばγ−グリシゞルオキシプロピルトリメトキシシ
ラン、γ−グリシドキシプロピルゞメチル゚トキ
シシラン、γ−グリシドキシプロピルメチルゞ゚
トキシシラン、γ−アミノプロピルトリ゚トキシ
シラン、γ−メルカプトプロピルトリメトキシシ
ラン、−βアミノ゚チル−γ−アミノプロピ
ルメチルゞメトキシシラン、ビニルトリ゚トキシ
シラン、ビス−ヒドロキシ゚チルアミノプ
ロピルトリ゚トキシシラン、などの氎溶性シラン
カツプリング剀氎又は塩酞、氎酞化カリりム、
リン酞塩等で調敎したPH〜10の氎溶液あるい
は、30wt以䞋の氎溶性有機溶剀を含む氎に1wt
以䞊可溶なものが挙げられる。 本発明においお倚孔性担䜓に有機シラン化合物
を反応させる方法は、シラノヌル基を有する倚孔
性担䜓を氎溶媒又は氎−有機溶媒で垌釈した有機
シラン䞭に含浞させ、さらに界面掻性剀をこの溶
液䞭に添加し、所定枩床、所定時間、通垞の還流
を行う。次に、生成したシラン凊理䜓をロ別し、
氎溶媒、メタノヌル溶媒又はアセトン溶媒で数回
掗浄埌、枛圧也燥するものである。 本発明においお、溶媒の存圚䞋で反応を行うの
は倚孔性担䜓のシラノヌル基に有機シランを化孊
結合させるずき衚面凊理の均䞀性に察する安定床
や操䜜性の点から奜たしいからである。溶媒ずし
おは、氎又は塩酞、氎酞化カリりム、リン酞塩等
で調敎したPH〜10の氎溶液、さらには、氎溶性
有機溶媒䟋えば、メタノヌル、゚タノヌル、む
゜プロパノヌル、アセトン、ゞオキサンを
30wt以䞋含む氎溶液等を挙げるこずができる。
奜たしくは塩酞、氎酞化カリりムで調敎したPH
‐の氎溶媒が最適である。 又、倚孔性担䜓に察する有機シランの䜿甚量
は、担䜓䞭に存圚する衚面シラノヌル基量に䟝存
するため、本発明者らは、倚孔性担䜓衚面のシラ
ノヌル基量を枬定する手段ずしお“J.Amer.
ChemSoc”72 776〜782Fed.1950I.
SHAPIRO AND I.M.KOLTHOFFらによ぀お
報告されおいる、メチルレツド吞着法を甚いた。 この枬定法から埗られた衚面シラノヌル基量を
基に有機シランの䜿甚量を決定した。有機シラン
䜿甚量は、倚孔性担䜓の総シラノヌル基量に察
し、〜10倍モルで可胜であるが、衚面を完党に
被芆する目的のために奜たしいのは、〜倍モ
ルである。これより倚すぎるず现孔埄を狭くする
などの欠点が生じる。 即ち、本発明で䜿甚する有機シラン化合物の量
は、反応に䜿甚する倚孔性担䜓の现孔総衚面積
m2で衚瀺に察し7.9〜9.8Όモルm2である。こ
れに察しお、前述した“J.ChromatogSci”14
316〜3201976によれば倚孔性担䜓に察し
22.3Όモルm2であり、特開昭55−5941号及び特
開昭55−66756号によれば14.1Όモルm2である。
特開昭46−7296号でも56.3Όモルm2の有機シラ
ン化合物の量を䜿甚しおいる。このこずから比范
しおも本発明の有利な点が明癜である。 以䞊の様にしお本発明により埗られた担䜓は、
埓来の担䜓に比范しおクロマトグラフむヌ甚担
䜓、特にゲル過甚担䜓ずしおきわめお優れた性
胜を有しおいる。その第䞀の特城は䜎吞着性にあ
る。これは、担䜓衚面シラノヌル基が有機シラン
でほが完党に被芆されおいるため残存シラノヌル
基による溶質蛋癜質、生化孊関連物質などの
吞着が極めお少ないこずによる。第に、衚面に
導入される化孊物質有機シランが少量で十分
であるため倚孔性担䜓の埮现な现孔埄をそこなわ
ず、さらに導入化孊物質のも぀アルキル基、アリ
ヌル基に起因するず掚定される詊料ず担䜓衚面ず
の疎氎性盞互䜜甚疎氎性吞着も極めお少ない
こずによる。 第に、通垞の方法で容易に䜜補できるシリカ
ゲル、ポヌラスガラス等の無機の担䜓は有機ポリ
マヌ系の担䜓に比べ现孔埄の分垃が非垞に狭く、
溶媒が異぀おも膚最床を倉化させない硬質のゲル
を䞎える。埓぀お、分離胜が非垞に高く、高速化
も容易でカラム安定性の良いクロマトグラフむヌ
甚担䜓の補造も可胜である。 それ故、本発明で埗られた担䜓は、きわめお優
れた性胜を有し、前に蚘茉した有機シランシラ
ンカツプリング剀を遞択し反応に甚いるこずに
より芪氎性ゲル過甚担䜓、有機溶媒系ゲル過
甚担䜓、むオン亀換クロマトグラフむヌ甚担䜓、
アフむニテむヌクロマトグラフむヌ甚担䜓、さら
に酵玠固定化甚担䜓等の分離担䜓の基材ずしお利
甚できる。 以䞋、実斜䟋によ぀お本発明を詳现に説明する
が、本発明はこれに限定するものではない。 実斜䟋  䞋蚘物性の倚孔性ガラス20を120℃、時間
也燥埌、還流冷华噚付きの぀口フラスコに取
り、ラりリル硫酞ナトリりム0.49を蒞留氎50ml
で溶解した溶液䞭に含浞させ、15分間宀枩で撹拌
した。 圢状砎砕圢 粒子圢35〜77Ό 比衚面積86m2 平均现孔埄240Å 曎に、γ−グリシゞルオキシプロピルトリメト
キシシラン3.53を蒞留氎64mlで垌釈した溶液を
぀口フラスコに投入し、この溶液のPHをINの
KOH氎溶液でPHを玄7.0に調敎し30分間撹拌し
た。 続いお油济䞊で90℃、時間反応させた。冷华
埌、䞊蚘のシラン凊理倚孔性ガラスを別し、蒞
留氎150mlで回掗浄した。曎にアセトン150mlで
回掗浄し、50℃、20mmHgで時間枛圧也燥す
るこずによりシラン凊理倚孔性ガラス玄21を埗
た。 この担䜓を内埄7.5mm、長さ600mmのステンレス
補カラムに充填し、䞋蚘の条件で氎溶媒系のゲル
浞透クロマトグラフむヌ甚充填剀ずしおの性胜を
調べた。 枬定条件 装眮ALC「GPC204型」商品名りオヌ
タヌズ(æ ª) 怜出噚玫倖線吞収怜出噚280mm 溶離液リン酞緩衝液1/15モル、PH7.01/
モルNaCl含有 流 速mlmin 詊料泚入量0.5溶液、20Ό又は50Ό蛋
癜質、50Όデキストラン たず、各皮デキストランを詊料ずし、シランカ
ツプリング剀ずの反応前未凊理ポヌラスガラ
スず反応埌シラン凊理ポヌラスガラスで担
䜓の现孔埄倉化を比范するためデキストラン溶出
実技による范正曲線を䜜成し第図に瀺した。 范正曲線ずは、倚孔質担䜓をゲルパヌシむ゚む
シペンGPCずしお甚いた堎合、その担䜓の
も぀分画範囲を衚わす怜量線である。 即ち、物質の分子量に察しどの皋床、どの範囲
たでを分離しおクロマトグラフむヌが行なわれる
かを暙準デキストランにより枬定しお衚わす。 比范䟋  実斜䟋に斌お、界面掻性剀ラりリル硫酞ナト
リりムを添加しない以倖は党く同䞀の条件で反応
させお埗られたシラン凊理倚孔性ガラス担䜓を実
斜䟋ず同䞀カラムに充填し同䞀条件で性胜を調
べた。 比范䟋  実斜䟋ず同じ倚孔性ガラスを䜿甚し、同じ有
機シランをトル゚ン100mlで垌釈した溶液䞭に含
浞させた。 生成するメタノヌルを留出させながら還流䞋
時間反応させた。シラン凊理倚孔ガラスを別し
トル゚ン100mlで回掗浄し、アセトン100mlで
回掗浄埌也燥した。次に埗られたシラン凊理倚孔
性ガラスをPHの塩酞氎溶液200mlに含浞し、40
℃、12時間反応させお、ケむ玠原子に結合しおい
るアルコキシ基を陀去するずずもに、゚ポキシ基
を加氎分解開環倉性した。充分に氎掗した埌枛圧
也燥しお埗た担䜓を実斜䟋ず同䞀カラムに充填
し同䞀条件で性胜を調べた。 たた、本実斜䟋におけるシラン凊理担䜓ず、比
范䟋及び比范䟋の担䜓の也燥状態における組
成分析の結果を以䞋に瀺す。 【衚】 さらに、各皮蛋癜質の溶出量溶出䜍眮ず回
収率及びメチルレツド法による担䜓衚面被芆率を
枬定した。その結果を第衚に瀺す。 なお、回収率の枬定は、各詊量溶液の玫倖吞収
log1λ280mmの倀を100ずしお、充填カ
ラムを通過した各詊料の玫倖吞収log1倀詊
料濃床を同䞀に調敎の癟分率で衚わした。この
堎合枬定は回づ぀行ないその平均を求めた。䜆
し、各蛋癜質の倱掻はないものずした。 【衚】 【衚】 実斜䟋 〜 実斜䟋ず同じ倚孔性ガラスを䜿甚し各皮有機
シランず各皮界面掻性剀を甚いお実斜䟋ず同䞀
条件䞋で反応させた埌、埗られた担䜓の特性倀の
枬定結果を第衚に瀺す。 【衚】 【衚】 実斜䟋  圢状砎砕圢 粒子埄10〜20Ό 比衚面積93m2 平均现孔埄240Å 䞊蚘物質の倚孔性ガラスを䜿甚しお実斜䟋ず
同じ有機シランで同䞀条件䞋でシラン凊理した
埌、掗浄、也燥しお埗られた担䜓を湿匏充填し、
同䞀条件で各皮蛋癜質を枬定した。求めた回収率
ず溶出チダヌトを第衚及び第図に瀺す。 【衚】 なお、本発明の方法による倚孔性担䜓の有機シ
ラン凊理に斌お゚ポキシ基含有有機シランを䜿甚
する堎合の゚ポキシ基の開環倉性に぀いおは、也
燥ゲルを塩化氎玠を溶解した也燥DMFを䞀定量
入れ、該ゲルの゚ポキシ基を開環しクロルヒドリ
ン型ずした埌、残留塩化氎玠をナトリりムメチラ
ヌトで逆適定し、該ゲルに存圚する゚ポキシ基量
を定量した。 その結果、第図に瀺すように、本発明の方法
では、反応時間を時間ずするずころで該ゲルの
゚ポキシ基を100開環倉性するこずが出来るこ
ずがわか぀た。 䞀般に゚ポキシ基の開環にあた぀おは比范䟋
のごずくシラン凊理した担䜓を酞性氎溶液で充分
含浞させ、よく氎掗しお゚ポキシ基の開環凊理を
しなければならない。 さらに、゚ポキシ基含有有機シラン以倖の有機
シラン凊理の反応時間は、時間で充分反応が進
行し、クロマトグラフむヌ担䜓ずしおの性胜も満
足するものであ぀た。 実斜䟋  圢状砎砕型 粒子埄10±2Ό 比衚面積400m2 平均现孔埄100Å 䞊蚘物性のシリカゲル担䜓20をラりリル硫酞
ナトリりム2.0、γ−グリシゞルオキシプロピ
ルトリメトキシシラン14.5、蒞留氎275mlを甚
い実斜䟋ず同䞀操䜜条件䞋で反応させた埌、埗
られた担䜓の也燥状態における組成分析の結果を
以䞋に瀺す。 【衚】 埗られたシラン凊理担䜓は倚孔性ガラスず実斜
䟋ず同様に良奜な性胜を瀺した。 以䞊、シラン凊理埌の倚孔性担䜓の物性デキ
ストラン范正曲線、組成分析、蛋癜質の回収率、
メチルレツド法による衚面被芆率の結果から、
本発明の方法はクロマトグラフむヌ分離担䜓ずし
お詊料の吞着性がきわめお䜎く、さらに倚孔性担
䜓が本来も぀埮现な现孔埄をそこなわず、担䜓衚
面を必芁最少限の有機シラン凊理剀でほが単分子
局に近い圢で被芆凊理されおいるこずがわかる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a porous carrier. More specifically, the present invention relates to a method for producing a porous carrier suitable for chromatography. Conventionally, crosslinked dextran, polyacrylamide, and the like have been known as carriers for chromatography of biochemical substances such as proteins. Since these carriers have low adsorption to water-soluble substances, they are used as packing materials for chromatography for analysis and purification. However, these gels have low mechanical strength and can only be used at low flow rates. Furthermore, it is known that changes in pH, ionic strength, and eluent composition change the degree of swelling of the carrier, reducing column efficiency, and a separation carrier with high column stability has been desired. Therefore, organic polymer gels such as methacrylate gels, polyvinyl alcohol gels, and styrene vinylbenzene gels have been developed and used, but they are inferior in the most important aspects of adsorption (hydrophobic adsorption) and separation. Also, similar to the gel described above, improvements have been made in terms of mechanical strength, changes in eluent composition, etc., but these have been insufficient. Recently, it has been proposed to chemically bond a substrate and a stationary phase by including a step of esterifying a silicon-based chromatographic support with alcohol (Japanese Patent Application Laid-Open No. 7296/1983). However, the obtained Si−
O-C bonds are susceptible to hydrolysis, which not only adsorbs solutes but also reduces chromatographic reproducibility and column efficiency. Furthermore, by firstly chemically bonding a silane coupling agent having an epoxy group through Si-O-Si bonds, and then secondarily reacting with a chemical substance that can react with this epoxy group, porous particles having pores are formed. A method of coating a sexual carrier was proposed (Japanese Patent Application Laid-open No. 5941/1983,
No. 66756). In this method, the surface silanol groups that have not participated in the reaction in the primary chemical bonding reaction are covered by the secondary reaction, and the adsorbable silanol is not exposed on the surface. However, “J.Amer.Chem, Soc.”
72 776-782Feb., (1950). I. SHAPIRO AND
When we measured silanol groups on the surface using the methylred adsorption method reported by IMKoLTHOFF et al., we found that a considerable amount of silanol groups (23 ÎŒmol/g) were exposed on the surface, and they adsorbed samples such as proteins and enzymes. The recovery rate also decreases. In addition, the polymer layer formed on the surface of the carrier due to the secondary reaction narrows the fine pore diameter originally possessed by the porous carrier that is the substrate. Furthermore, since the reacting chemical substances do not react uniformly, the pore size distribution widens, resulting in a decrease in performance as a gel chromatography carrier. Furthermore, J.
Chromatog, Sci. 14 316-320 (1976) and others have reported the performance of porous glass with glycerolpropylsilane bonds, and although it has considerably improved adsorption, operability, and recovery rate compared to conventional carriers. ,
Since the reaction between the silanol groups on the surface of the porous glass and the silane coupling agent is insufficient, unreacted silanol groups remain, and the recovery rate of proteins, enzymes, etc. is low due to adsorption by the silanol groups. Therefore, the present inventors conducted intensive studies on a method of almost completely reacting the silanol groups on the surface of the pores of a porous carrier with an organic silane compound to coat the carrier, and as a result, the present invention was achieved. The first object of the present invention is to provide a porous carrier that almost completely covers the silanol groups on the carrier surface and has low adsorption properties. A second object of the present invention is to provide an excellent porous carrier without narrowing the fine pore diameter inherent in the porous carrier. The third object of the present invention is to improve mechanical strength, reproducibility,
Our objective is to provide a chromatography carrier with excellent column efficiency (performance) and sample recovery rate. That is, the above object of the present invention is achieved by reacting the silanol groups on the pore surface of a porous carrier such as silica gel or porous glass with an organic silane compound using a surfactant. The most important point in the present invention is to add a surfactant as a catalyst into the reaction system when chemically bonding the silanol groups on the surface of the porous carrier and the organic silane. Examples of surfactants include cationic surfactants (for example, laurylamine acetate, lauryltrimethylammonium chloride, stearyltrimethylammonium chloride, distearyldimethylammonium chloride, polyoxyethylene alkylamine, etc.);
Anionic surfactants (e.g., sodium laurate, triethanolamine lauryl sulfate, ammonium lauryl sulfate, sodium polyoxyethylene alkyl ether sulfate, triethanolamine polyoxyethylene alkyl ether sulfate, etc.), nonionic surfactants (e.g., polyoxyethylene alkyl ether triethanolamine sulfate, etc.), (oxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether sorbitan monolaurate, etc.). In the present invention, the surfactant has the effect of significantly promoting the chemical bonding reaction between the silanol groups on the surface of the porous carrier and the organic silane, and almost completely covering the surface silanol groups. In particular, anionic surfactants are most suitable. The reaction temperature between silanol groups and organic silane is 20 to 100℃,
From the viewpoint of reaction efficiency (speed), the reaction temperature is preferably 85 to 95°C. The porous carrier of the present invention has pores made of silica gel, porous glass, or diatomaceous earth, and has silanol groups on the surface. The porous carrier used in the present invention has 0.5 or more silanol groups/mm 2 , preferably 5 silanol groups on the pore surface.
It is best to have at least 100% of the number of particles/ mm2 . Further, the porous carrier may have any shape, and the particle size of the porous carrier may be 1 to 500 ÎŒm,
Preferably, a carrier having a pore size of 30 to 200 ÎŒm and an average pore size of 5 to 5000 Å is applicable. The organic silane compound in the present invention is used as a silane coupling agent, has 1 to 3 lower alkoxy group atoms in one molecule, and has water or PH
30wt of 3-10 aqueous solution or water-soluble organic solvent
% or less is preferable. For example, there are compounds represented by the general formulas () and (). (In the formula, R 1 and R 2 are not particularly limited, X is an alkoxy group having 1 to 2 carbon atoms, Y and Z are methyl groups,
It represents an ethyl group and an alkoxy group having 1 to 2 carbon atoms. ) Compounds represented by the general formulas () and (), such as γ-glycidyloxypropyltrimethoxysilane, γ-glycidoxypropyldimethylethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and γ-aminopropyltrimethoxysilane. Water-soluble silanes such as ethoxysilane, γ-mercaptopropyltrimethoxysilane, N-β(aminoethyl)-γ-aminopropylmethyldimethoxysilane, vinyltriethoxysilane, bis(2-hydroxyethyl)aminopropyltriethoxysilane, etc. Coupling agents (water or hydrochloric acid, potassium hydroxide,
Add 1wt to an aqueous solution with a pH of 3 to 10 adjusted with phosphate, etc., or water containing 30wt% or less of a water-soluble organic solvent.
% or more). In the present invention, the method of reacting a porous carrier with an organic silane compound involves impregnating a porous carrier having silanol groups in an organic silane diluted with a water solvent or a water-organic solvent, and then adding a surfactant to this solution. and normal reflux is carried out at a predetermined temperature and for a predetermined time. Next, the generated silanized product is separated,
After washing several times with a water solvent, methanol solvent, or acetone solvent, it is dried under reduced pressure. In the present invention, it is preferable to carry out the reaction in the presence of a solvent from the viewpoint of stability and operability with respect to uniformity of surface treatment when chemically bonding the organic silane to the silanol groups of the porous carrier. Examples of solvents include water or an aqueous solution with a pH of 3 to 10 adjusted with hydrochloric acid, potassium hydroxide, phosphate, etc., and water-soluble organic solvents (e.g., methanol, ethanol, isopropanol, acetone, dioxane).
Examples include aqueous solutions containing 30 wt% or less.
PH adjusted preferably with hydrochloric acid, potassium hydroxide
6-8 water solvent is optimal. In addition, since the amount of organic silane used for a porous carrier depends on the amount of surface silanol groups present in the carrier, the present inventors used "J.Amer. .
Chem, Soc” 72 776-782Fed., (1950).I.
The methyl red adsorption method reported by SHAPIRO AND IMKOLTHOFF et al. was used. The amount of organic silane to be used was determined based on the amount of surface silanol groups obtained from this measurement method. The amount of organic silane used can be 1 to 10 times the total amount of silanol groups in the porous carrier, but is preferably 4 to 5 times the amount to completely cover the surface. If the amount is too large, disadvantages such as narrowing of the pore size will occur. That is, the amount of the organosilane compound used in the present invention is 7.9 to 9.8 ÎŒmol/m 2 based on the total pore surface area (expressed in m 2 ) of the porous carrier used in the reaction. In contrast, the aforementioned “J.Chromatog, Sci” 14
316-320 (1976) for porous supports.
According to JP-A No. 55-5941 and JP-A-55-66756, it is 14.1 ÎŒmol/m 2 .
JP-A-46-7296 also uses an amount of organosilane compound of 56.3 ÎŒmol/m 2 . From this comparison, the advantages of the present invention are clear. The carrier obtained according to the present invention as described above is
Compared to conventional carriers, it has extremely superior performance as a carrier for chromatography, especially as a carrier for gel filtration. Its first feature is low adsorption. This is because the silanol groups on the surface of the carrier are almost completely covered with organic silane, so that the adsorption of solutes (proteins, biochemical related substances, etc.) by the remaining silanol groups is extremely small. Second, since a small amount of the chemical substance (organosilane) introduced to the surface is sufficient, it does not damage the fine pore size of the porous carrier, and it is also assumed that this is due to the alkyl group and aryl group of the introduced chemical substance. This is because there is very little hydrophobic interaction (hydrophobic adsorption) between the sample and the carrier surface. Third, inorganic carriers such as silica gel and porous glass, which can be easily produced by conventional methods, have a much narrower pore size distribution than organic polymer carriers.
To provide a hard gel whose degree of swelling does not change even if different solvents are used. Therefore, it is possible to produce a carrier for chromatography that has very high separation ability, can be easily increased in speed, and has good column stability. Therefore, the carrier obtained in the present invention has extremely excellent performance, and by selecting the organic silane (silane coupling agent) described above and using it in the reaction, it can be used as a hydrophilic gelling carrier or an organic solvent-based carrier. Carrier for gel filtration, carrier for ion exchange chromatography,
It can be used as a base material for affinity chromatography carriers and separation carriers such as enzyme immobilization carriers. EXAMPLES Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto. Example 1 After drying 20 g of porous glass with the following physical properties at 120°C for 4 hours, it was placed in a three-necked flask equipped with a reflux condenser, and 0.49 g of sodium lauryl sulfate was added to 50 ml of distilled water.
and stirred at room temperature for 15 minutes. Shape: Crushed Particle shape: 35-77 ÎŒm Specific surface area: 86 m 2 /g Average pore diameter: 240 Å Furthermore, a solution of 3.53 g of γ-glycidyloxypropyltrimethoxysilane diluted with 64 ml of distilled water was poured into a three-necked flask. , the PH of this solution is
The pH was adjusted to about 7.0 with a KOH aqueous solution and stirred for 30 minutes. Subsequently, the mixture was reacted on an oil bath at 90°C for 6 hours. After cooling, the silane-treated porous glass was separated and washed five times with 150 ml of distilled water. The glass was further washed twice with 150 ml of acetone and dried under reduced pressure at 50° C. and 20 mmHg for 8 hours to obtain about 21 g of silane-treated porous glass. This carrier was packed into a stainless steel column with an inner diameter of 7.5 mm and a length of 600 mm, and its performance as a packing material for gel permeation chromatography in an aqueous solvent system was investigated under the following conditions. Measurement conditions Equipment: ALC/"GPC204 type" (product name: Waters Co., Ltd.) Detector: Ultraviolet absorption detector (280 mm) Eluent: Phosphate buffer (1/15 mol, PH7.0) (1/
(Contains 10 mol NaCl) Flow rate: 1 ml/min Sample injection amount: 0.5% solution, 20 Ό or 50 Ό (protein), 50 Ό (dextran) In order to compare the change in the pore diameter of the carrier after the reaction (silanized porous glass) and after the reaction (silanized porous glass), a calibration curve was created using a practical dextran elution technique and is shown in FIG. A calibration curve is a calibration curve that represents the fractionation range of a porous carrier when the carrier is used as a gel perfusion (GPC). That is, the degree and range of molecular weight of a substance that can be separated and chromatographically measured using standard dextran is expressed. Comparative Example 1 A silane-treated porous glass carrier obtained by reacting under exactly the same conditions as in Example 1 except that the surfactant sodium lauryl sulfate was not added was packed into the same column as in Example 1, and the reaction was carried out under the same conditions. We investigated the performance. Comparative Example 2 The same porous glass as in Example 1 was used and impregnated with the same organic silane in a solution diluted with 100 ml of toluene. 8 under reflux while distilling off the methanol produced.
Allowed time to react. Separate the silane-treated porous glass, wash it three times with 100 ml of toluene, and wash it twice with 100 ml of acetone.
After washing twice, it was dried. Next, the obtained silane-treated porous glass was impregnated with 200 ml of aqueous hydrochloric acid solution of PH3, and
C. for 12 hours to remove the alkoxy group bonded to the silicon atom and to hydrolyze and ring-open the epoxy group. The carrier obtained by thorough washing with water and drying under reduced pressure was packed into the same column as in Example 1, and its performance was examined under the same conditions. Further, the results of compositional analysis in the dry state of the silanized carrier in this example and the carriers in Comparative Examples 1 and 2 are shown below. [Table] Furthermore, the elution amount (elution position) and recovery rate of various proteins and the carrier surface coverage by the methyl red method were measured. The results are shown in Table 1. The recovery rate is measured by measuring the ultraviolet absorption of each sample solution.
The value of log1/T (λ280 mm) was taken as 100%, and it was expressed as a percentage of the ultraviolet absorption log1/T value (sample concentration was adjusted to be the same) of each sample that passed through the packed column. In this case, the measurements were performed three times and the average was determined. However, it was assumed that each protein was not inactivated. [Table] [Table] Examples 2 to 6 Using the same porous glass as in Example 1, the carriers obtained were reacted under the same conditions as in Example 1 using various organic silanes and various surfactants. The measurement results of the characteristic values are shown in Table 2. [Table] [Table] Example 7 Shape: crushed particle size: 10 to 20 ÎŒm Specific surface area: 93 m 2 /g Average pore size: 240 Å The same organic silane as in Example 1 using porous glass of the above material. After silane treatment under the following conditions, the carrier obtained by washing and drying is wet-filled,
Various proteins were measured under the same conditions. The determined recovery rate and elution chart are shown in Table 3 and Figure 2. [Table] For ring-opening modification of epoxy groups when using an epoxy group-containing organosilane in the organosilane treatment of a porous carrier according to the method of the present invention, dry gel is mixed with dry DMF in which hydrogen chloride is dissolved. A certain amount of the gel was added to open the epoxy groups of the gel to form a chlorohydrin type, and residual hydrogen chloride was back determined using sodium methylate to quantify the amount of epoxy groups present in the gel. As a result, as shown in FIG. 3, it was found that in the method of the present invention, 100% of the epoxy groups in the gel could be ring-opened and modified with a reaction time of 6 hours. In general, when opening the epoxy group, Comparative Example 2
The silane-treated carrier must be sufficiently impregnated with an acidic aqueous solution and thoroughly washed with water to open the epoxy group. Furthermore, the reaction time for treatment with organic silanes other than epoxy group-containing organic silanes was one hour, and the reaction proceeded sufficiently, and the performance as a chromatography carrier was also satisfactory. Example 8 Shape: Crushed Particle size: 10±2ÎŒm Specific surface area: 400m 2 /g Average pore size: 100Å 20g of silica gel carrier with the above physical properties was mixed with 2.0g of sodium lauryl sulfate, 14.5g of γ-glycidyloxypropyltrimethoxysilane, and distilled. After reacting with 275 ml of water under the same operating conditions as in Example 1, the results of compositional analysis of the obtained carrier in a dry state are shown below. [Table] The obtained silane-treated carrier showed good performance similar to that of porous glass and Example 1. The physical properties of the porous carrier after silane treatment (dextran calibration curve, composition analysis, protein recovery rate,
From the results of the surface coverage (based on the methylred method),
The method of the present invention has extremely low sample adsorption as a chromatography separation carrier, and furthermore, it does not damage the fine pore diameter inherent in the porous carrier, and the carrier surface is treated with almost monomolecules using the minimum necessary organic silane treatment agent. It can be seen that the coating treatment is applied in a form similar to that of a layer.

【図面の簡単な説明】[Brief explanation of drawings]

第図はデキストラン溶出実技による范正曲線
であり、未凊理倚孔性ガラス及びシラン凊理倚
孔性ガラスを瀺す。第図は、本発明の倚孔性
担䜓による各皮蛋癜質の溶出チダヌトである。第
図は也燥ゲルの゚ポキシ基を開環倉性し、゚ポ
キシ基量の倉化を瀺すグラフである。
FIG. 1 is a calibration curve from a dextran elution experiment, showing untreated porous glass 1 and silane-treated porous glass 2. FIG. 2 is a chart of elution of various proteins using the porous carrier of the present invention. FIG. 3 is a graph showing the change in the amount of epoxy groups when the epoxy groups of the dried gel are subjected to ring-opening modification.

Claims (1)

【特蚱請求の範囲】[Claims]  倚孔性担䜓のシラノヌル基ず有機シラン化合
物を界面掻性剀の存圚䞋で反応させるこずを特城
ずする、倚孔性担䜓の補造方法。
1. A method for producing a porous carrier, which comprises reacting a silanol group of the porous carrier with an organic silane compound in the presence of a surfactant.
JP58070602A 1983-04-21 1983-04-21 Production of porous carrier Granted JPS59195153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58070602A JPS59195153A (en) 1983-04-21 1983-04-21 Production of porous carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58070602A JPS59195153A (en) 1983-04-21 1983-04-21 Production of porous carrier

Publications (2)

Publication Number Publication Date
JPS59195153A JPS59195153A (en) 1984-11-06
JPH0410587B2 true JPH0410587B2 (en) 1992-02-25

Family

ID=13436277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58070602A Granted JPS59195153A (en) 1983-04-21 1983-04-21 Production of porous carrier

Country Status (1)

Country Link
JP (1) JPS59195153A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204844A (en) * 1986-03-06 1987-09-09 Ise Kagaku Kogyo Kk Preparation of carrier for chromatograph and packing material for chromatography
JPH087203B2 (en) * 1990-06-15 1996-01-29 株匏䌚瀟日立補䜜所 Catecholamine analysis method and analyzer
KR20030072652A (en) * 2002-03-06 2003-09-19 읎혞재 Bonding method to induce functional group for ion exchange
JP4678864B2 (en) * 2005-04-04 2011-04-27 トペタ玡織株匏䌚瀟 GAS ADSORBENT, ITS MANUFACTURING METHOD, AND GAS ADSORPTION FILTER
JP5217437B2 (en) * 2005-09-27 2013-06-19 䜏友ベヌクラむト株匏䌚瀟 Medical particles and method for producing the same

Also Published As

Publication number Publication date
JPS59195153A (en) 1984-11-06

Similar Documents

Publication Publication Date Title
EP0873189B1 (en) Adsorption medium and method of preparing same
US4517241A (en) Chromatographic support material
US4847159A (en) Substrates coated with organo-silanes that are sterically-protected
EP0269447B1 (en) Structures surface modified with bidentate silanes
US3983299A (en) Bonded carbohydrate stationary phases for chromatography
CA1320718C (en) Chromatographic material
Alpert Cation-exchange high-performance liquid chromatography of proteins on poly (aspartic acid)—silica
US4835058A (en) Packing material and process for its production
CA1316523C (en) Liquid chromatography dual zone packing materials and method for making and using same
US20020099104A1 (en) Anion exchanger, process for producing same, and its use
US4379931A (en) Metal extraction from solution and novel compounds used therefor
JP3653798B2 (en) New modified silica gel
JPWO2006001300A1 (en) High durability liquid chromatography packing
EP0425104B1 (en) Column packing material
FR2598634A1 (en) PROCESS FOR PRODUCING REVERSE-PHASE MATERIAL AND MATERIAL OBTAINED
CN111013557A (en) Hydrophobic chromatography medium and preparation method and application thereof
JPH0410587B2 (en)
US7534352B2 (en) Reversed endcapping and bonding of chromatographic stationary phases using hydrosilanes
EP0161058B1 (en) Dual surface materials
US5948531A (en) Propylene-bridged bidentate silanes
JPS6233550B2 (en)
JP3219296B2 (en) Column packing and method for producing the same
US20090078633A1 (en) Chromatographic stationary phases
JPS6233549B2 (en)
Chu New approach for the preparation of a hydride-modified substrate as an intermediate in the synthesis of surface-bonded materials