JPH04105659A - Biological titanium alloy and manufacture thereof - Google Patents

Biological titanium alloy and manufacture thereof

Info

Publication number
JPH04105659A
JPH04105659A JP2225520A JP22552090A JPH04105659A JP H04105659 A JPH04105659 A JP H04105659A JP 2225520 A JP2225520 A JP 2225520A JP 22552090 A JP22552090 A JP 22552090A JP H04105659 A JPH04105659 A JP H04105659A
Authority
JP
Japan
Prior art keywords
titanium alloy
heating
alloy
heat treatment
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2225520A
Other languages
Japanese (ja)
Inventor
Shinya Iwamoto
岩本 信也
Noriji Fujiashi
不二葦 教治
Hirofumi Inoue
裕文 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2225520A priority Critical patent/JPH04105659A/en
Publication of JPH04105659A publication Critical patent/JPH04105659A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

PURPOSE:To achieve high usefulness for artificial bones and other biological material by incorporating Si and Y at a ratio of specified weight % singly or in total. CONSTITUTION:When Si and Y contained in a titanium alloy at a ratio of 0.5-10weight% singly or in total, diffusion is caused in Ca and P as main components of a bone. Especially, with the concentration of Si and Y in a surface layer, this diffusion phenomenon becomes remarkable to enhance joining property with the bone. It is desired that after worked into a necessary form, the titanium alloy undergoes a heat treatment to form a concentration layer of Si and Y on the surface layer. One of the heat treatment is heating the alloy at a temperature area to a beta transformation point from 750 deg.C. Another method is heating the surface by a high energy beam such as laser beam or plasma beam. In this case, heating temperature is higher than 750 deg.C. As heating atmosphere of the heat treatment the use of a nitrogen gas allows the formation of TiN on the surface of the alloy thereby achieving a higher wear resistance posing a problem in the use of the titanium alloy as artificial joint.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、人工骨などの生体用材料として使用される
生体親和性に優れたチタン合金とその製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a titanium alloy having excellent biocompatibility and used as a biomaterial such as an artificial bone, and a method for producing the titanium alloy.

(従来の技術) 病気や事故によって失われた骨の補強方法の一つに人工
骨を嵌植(Inplantation)する方法がある
。この人工骨の材料に求められる主要な性質は、■生体
適合性、■耐食性、0強度、および■骨との接合性であ
る。
(Prior Art) One of the methods for reinforcing bones lost due to disease or accidents is the method of implanting artificial bones. The main properties required of this artificial bone material are: (1) biocompatibility, (2) corrosion resistance, zero strength, and (2) bondability with bone.

人工骨材の代表的なものにバイオグラス(Bi。Bioglass (Bi.

glass)、水酸アパタイトセラミックス、A−グラ
スセラミックス等があり、これらは生体活性(Bio−
active)であるが強度に乏しく、荷重のあまりか
からない部分のみに使用されている。大きな荷重のかか
る部分にはCo−Cr合金、ステンレス鋼、チタン合金
等が用いられるが、これらは生体反応性がない(Bio
incrtである)ため、骨セメントを用いて人骨と接
合しなければならない、しかし、骨セメントの使用は、
その重合熱、毒性モノマー、生体親和性の不足などから
多くの問題が指摘されている。
glass), hydroxyapatite ceramics, A-glass ceramics, etc., and these have bioactivity (Bio-
active), but it lacks strength and is used only in areas that are not subject to much load. Co-Cr alloys, stainless steel, titanium alloys, etc. are used for parts subject to large loads, but these have no bioreactivity (Bio
incrt), it must be connected to human bone using bone cement. However, the use of bone cement
Many problems have been pointed out, including its polymerization heat, toxic monomers, and lack of biocompatibility.

(発明が解決しようとする課題) 上記のような現状から、強度の大きい金属材料であって
生体活性(生体親和性)に優れた材料の開発が強く要望
されている。
(Problems to be Solved by the Invention) Under the current situation as described above, there is a strong demand for the development of a metal material with high strength and excellent bioactivity (biocompatibility).

本発明のt!J題は、強度が高く、人骨との接合に骨セ
メントを必要としない材料、およびその製造方法を提供
することにある。
T of the present invention! The object of the present invention is to provide a material that has high strength and does not require bone cement for connection with human bone, and a method for manufacturing the same.

(課題を解決するための手段) 生体材料として使用される金属材料の一つにチタン合金
がある。これは軽量で且つ機械的性質および化学的性質
(耐食性)にも優れているから、生体材料としては極め
て望ましいものである。しかし、チタン合金そのものは
生体活性が乏しい。
(Means for solving the problem) Titanium alloy is one of the metal materials used as biomaterials. This is extremely desirable as a biomaterial because it is lightweight and has excellent mechanical and chemical properties (corrosion resistance). However, titanium alloy itself has poor bioactivity.

本発明はこのチタン合金に生体活性を付与することを目
的としてなされたもので、その要旨は下記のとおりであ
る。
The present invention was made for the purpose of imparting bioactivity to this titanium alloy, and the gist thereof is as follows.

(1)  Si、 Yを単独または合計で0,5〜10
MI%含有することを特徴とする生体用チタン合金。
(1) Si, Y alone or in total from 0.5 to 10
A titanium alloy for biological use characterized by containing MI%.

f2)  Siまたは/およびYを表層部に濃化させた
上記(1)の生体用チタン合金。
f2) The titanium alloy for biological use according to (1) above, in which Si and/or Y are enriched in the surface layer.

(3)  Si、Yを単独または合計で05〜10重量
%含有するチタン合金を750℃からβ変態点までの温
度域で加熱することを特(衣とする上記(2)の生体用
チタン合金の製造方法。
(3) The titanium alloy for biological use according to (2) above, which is specially prepared by heating a titanium alloy containing 05 to 10% by weight of Si and Y alone or in total in a temperature range from 750°C to the β transformation point. manufacturing method.

(41Si、 Yを単独または合計で0.5〜10重蓋
%含有するチタン合金の表面を高エネルギービーム、例
えばレーザービーム、プラズマビームで750℃以上に
加熱することを特徴とする上記(2)の生体用チタン合
金の製造方法。
((2) above, characterized in that the surface of a titanium alloy containing 0.5 to 10% of 41Si and Y alone or in total is heated to 750°C or higher with a high-energy beam, such as a laser beam or a plasma beam. A method for producing titanium alloy for biological use.

上記(1)のチタン合金とは、純T己こSiまたは/お
よびYを添加したもの、或いはTi−6Al−4V合金
、Ti  3Al−2,5V合金、等(7) T i合
金!、mSiマたは/およびYを添加したものである。
The titanium alloy mentioned in (1) above refers to pure Ti alloy with Si or/and Y added, Ti-6Al-4V alloy, Ti3Al-2,5V alloy, etc. (7) Ti alloy! , mSi or/and Y.

即ち、Si、Yが、単独もしくは合計で0.5〜10重
量%含有されていることが必須であるが、Sl、Y以外
の合金成分として、前記A2、■、Zr、 Mo等、通
常のチタン合金に添加される成分が含有されていてもよ
い、これらの合金成分は、材料に要求される機械的性質
、化学的性質(耐食性)等に応して選択し、適当量添加
すればよい。
That is, it is essential that Si and Y are contained individually or in a total of 0.5 to 10% by weight, but as alloy components other than Sl and Y, the above-mentioned A2, ■, Zr, Mo, etc. Components added to the titanium alloy may be included. These alloy components may be selected according to the mechanical properties, chemical properties (corrosion resistance), etc. required for the material, and added in appropriate amounts. .

(作用) 金属材料に生体活性を与えるということは、人骨と接合
したときに拡散相が形成させるようにするということで
ある。即ち、骨の主要゛成分であるCaまたはPが金属
材料に拡散浸透するようにすればよいのであるが、Ca
、 PはTiには全く固溶しない、ところが、本発明者
はチタン合金にSi、 Yの適当量を含有させておけば
、Ca、 Pの拡散がおこることを[認した。特に、S
t、 Yを表層部に濃化させておけば、この拡散現象が
顕著になり、骨との接合性が著しく高まる。
(Function) Providing biological activity to a metal material means that a diffusion phase is formed when it is bonded to human bone. In other words, it is sufficient to allow Ca or P, which is the main component of bone, to diffuse and permeate into the metal material.
However, the present inventors have recognized that if appropriate amounts of Si and Y are contained in a titanium alloy, diffusion of Ca and P will occur. In particular, S
If t and Y are concentrated in the surface layer, this diffusion phenomenon will become noticeable, and the bonding property with bone will be significantly improved.

SiもしくはYlまたはこれらの合計の含有量が0.5
重量%未満では上記の拡散現象が明確にならない、また
、その含有量が10重量%を超えるとチタン合金本来の
機械的、化学的性質が積なわれて生体用材料として不適
当になる。
Si or Yl or their total content is 0.5
If the content is less than 10% by weight, the above-mentioned diffusion phenomenon will not become clear, and if the content exceeds 10% by weight, the inherent mechanical and chemical properties of the titanium alloy will be accumulated, making it unsuitable as a biological material.

本発明のチタン合金は、必要な形状に加工した後、熱処
理して表層部にSi、 Yの濃化層を形成させるのが望
ましい、その熱処理の一つの方法は、750℃からβ変
態点までの温度域で0.5〜4時間加熱することである
。750℃より低温、あるいは0.5時間より短時間の
加熱では濃化層の形成が不十分であり、一方あまりに高
温で、或いは過度に長時間加熱するとチタン合金の機械
的性質が劣化する。
After processing the titanium alloy of the present invention into the required shape, it is desirable to heat-treat it to form a concentrated layer of Si and Y on the surface layer. One method for this heat treatment is to process the titanium alloy from 750°C to the β-transformation point. It is to heat in the temperature range of 0.5 to 4 hours. Heating at a temperature lower than 750° C. or for a shorter time than 0.5 hours will result in insufficient formation of a concentrated layer, while heating at too high a temperature or for an excessively long time will deteriorate the mechanical properties of the titanium alloy.

もう一つの方法は、レーザービーム、プラズマビーム等
の高エネルギービームで表面を加熱する方法である。こ
の場合の加熱温度は750℃以上とする。
Another method is to heat the surface with a high energy beam such as a laser beam or plasma beam. The heating temperature in this case is 750°C or higher.

上記の熱処理の加熱雰囲気として窒素ガスを使用すれば
、合金の表面にTiNが形成されて、チタン合金を人工
関節などに使用する場合に問題になる耐摩耗性をも向上
させることができる。
If nitrogen gas is used as the heating atmosphere for the above heat treatment, TiN is formed on the surface of the alloy, and the wear resistance, which is a problem when using titanium alloys for artificial joints, can also be improved.

(実施例1) 純チタンに5重量%のYを含有させたチタン合金に窒素
ガス中800℃で30分および1時間の熱処理を施した
。二〇熱処理前後の試料表面についてRBS解析(1,
5MeV、’1(e)を行った。−その結果を第1図に
示す。
(Example 1) A titanium alloy containing 5% by weight of Y in pure titanium was heat-treated at 800° C. for 30 minutes and 1 hour in nitrogen gas. 20 RBS analysis of the sample surface before and after heat treatment (1,
5MeV, '1(e) was performed. -The results are shown in Figure 1.

第1図から明らかなように、800℃で30分、および
1時間熱処理した試料の表層部にはYが濃化している。
As is clear from FIG. 1, Y is concentrated in the surface layer of the sample heat-treated at 800° C. for 30 minutes and 1 hour.

また、薄膜X線回折の結果、表面にはTiNの形成が認
められた。
Further, as a result of thin film X-ray diffraction, formation of TiN was observed on the surface.

上北熱処理後の試料を、−例として水酸アパタイト7g
を懸濁させたリンゲルi’fI (Na”147、K’
4、Ca”4.5、IJ−155,5、sEq/ E 
) 53m lに浸漬し37℃で保持した。4週間保持
したのち試料を溶液から取り出し、アセトン中で超音波
洗浄し、SIN’Is分析を行った。その結果を第2図
に示す。
The sample after Kamikita heat treatment is - as an example, 7 g of hydroxyapatite.
Ringer's i'fI (Na"147, K'
4, Ca”4.5, IJ-155,5, sEq/E
) and kept at 37°C. After holding for 4 weeks, the samples were removed from the solution, ultrasonically cleaned in acetone, and subjected to SIN'Is analysis. The results are shown in FIG.

第2図から試料のチタン合金表面にはリンゲル液のCa
およびPが拡散していることが明らかである。これは、
チタン合金中のYがCaおよびPと化合物をつくるため
と推定される。
Figure 2 shows that the surface of the titanium alloy sample contains Ca in Ringer's solution.
It is clear that and P are diffused. this is,
It is presumed that this is because Y in the titanium alloy forms a compound with Ca and P.

なお第2図の横軸はスパッタリング時間であり、1分の
スパッタリング時間は1000人の深さに相当する。
The horizontal axis in FIG. 2 is the sputtering time, and one minute of sputtering time corresponds to a depth of 1000 people.

(実施例2) 第1表に示す各種のチタン合金に実施例1と同じ熱処理
(ただし、加熱時間は30分)を施し、実施例1と同し
リンゲル液への浸漬保持(672時間)を行った。その
試料についてCaとPの拡散状態を実施例1の方法で調
べた。また、表面のレーザービームによる加熱(加熱温
度2950″C1加熱深さ300μ暖、出力2.8 K
W、窒素ガス雰囲気)も試みた(Nα11)。
(Example 2) Various titanium alloys shown in Table 1 were subjected to the same heat treatment as in Example 1 (however, the heating time was 30 minutes), and immersed in Ringer's solution (672 hours) as in Example 1. Ta. The state of diffusion of Ca and P in the sample was investigated using the method of Example 1. In addition, the surface was heated by a laser beam (heating temperature 2950"C1 heating depth 300μ warm, output 2.8K)
W, nitrogen gas atmosphere) was also tried (Nα11).

それらの結果を第1表中に併記する。なお、第1表の拡
散の有無の欄で「有り」は、リンゲル液浸漬前の試料に
対して、浸漬後の試料の表面から1000人の位置のC
aがSIMS分析の2次イオン強度で50倍以上になっ
ているものである。「なし」は、50倍未満のものであ
る。
The results are also listed in Table 1. In Table 1, in the presence/absence of diffusion column, "Present" means that the sample was immersed in Ringer's solution before it was immersed in C, at a position 1,000 people from the surface of the sample.
a is 50 times or more higher than the secondary ion intensity in SIMS analysis. "None" means less than 50 times.

(以下、余白) 第  1 表 (発明の効果) 本発明のチタン合金は、チタン合金本来の優れた機械的
、化学的性質と前記のような生体活性をもつことにより
、人工骨その他の生体材料としてきわめて有用なもので
ある。
(The following is a blank space) Table 1 (Effects of the Invention) The titanium alloy of the present invention has the excellent mechanical and chemical properties inherent to titanium alloys and the above-mentioned bioactivity, so it can be used as an artificial bone and other biomaterials. It is extremely useful.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、T1−5重量%Y合金の窒素ガス中熱処理前
後の試料のRB S (Ratherford Bac
kscatter:ng 5pectra)解析結果で
ある。 第2図は、上記熱処理後の試料をリンゲル液に4週間浸
漬した後のSI?IS分析結果である。 注、 *はレーザービーム加熱 第1表に示すとおり、Siまたは/およびYを0.5〜
10重量%含有するチタン合金には全てCaおよびPの
拡散が認められ、生体(骨)との親和性が大きいことが
明らかである。
Figure 1 shows the RBS (Ratherford Bac
kscatter:ng5pectra) analysis results. FIG. 2 shows the SI? after the heat-treated sample was immersed in Ringer's solution for 4 weeks. These are the IS analysis results. Note: * indicates laser beam heating, as shown in Table 1, Si or/and Y is 0.5~
Diffusion of Ca and P was observed in all titanium alloys containing 10% by weight, and it is clear that they have a high affinity with living organisms (bones).

Claims (5)

【特許請求の範囲】[Claims] (1)Si、Yを単独または合計で0.5〜10重量%
含有することを特徴とする生体用チタン合金。
(1) 0.5 to 10% by weight of Si and Y alone or in total
A titanium alloy for biological use characterized by containing.
(2)Siまたは/およびYを表層部に濃化させた請求
項(1)の生体用チタン合金。
(2) The titanium alloy for biological use according to claim (1), wherein Si and/or Y are concentrated in the surface layer.
(3)Si、Yを単独または合計で0.5〜10重量%
含有するチタン合金を750℃からβ変態点までの温度
域で加熱することを特徴とする請求項(2)の生体用チ
タン合金の製造方法。
(3) 0.5 to 10% by weight of Si and Y alone or in total
The method for producing a titanium alloy for biological use according to claim 2, characterized in that the titanium alloy contained therein is heated in a temperature range from 750° C. to a β transformation point.
(4)Si、Yを単独または合計で0.5〜10重量%
含有するチタン合金の表面を高エネルギービームにより
750℃以上の温度域に加熱することを特徴とする請求
項(2)の生体用チタン合金の製造方法。
(4) 0.5 to 10% by weight of Si and Y alone or in total
The method for producing a titanium alloy for biological use according to claim 2, characterized in that the surface of the titanium alloy containing the titanium alloy is heated to a temperature range of 750° C. or higher using a high-energy beam.
(5)加熱を窒素ガス雰囲気中で行う請求項(3)また
は(4)の生体用チタン合金の製造方法。
(5) The method for producing a titanium alloy for biological use according to claim (3) or (4), wherein the heating is performed in a nitrogen gas atmosphere.
JP2225520A 1990-08-27 1990-08-27 Biological titanium alloy and manufacture thereof Pending JPH04105659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2225520A JPH04105659A (en) 1990-08-27 1990-08-27 Biological titanium alloy and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2225520A JPH04105659A (en) 1990-08-27 1990-08-27 Biological titanium alloy and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04105659A true JPH04105659A (en) 1992-04-07

Family

ID=16830598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2225520A Pending JPH04105659A (en) 1990-08-27 1990-08-27 Biological titanium alloy and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04105659A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0820737A2 (en) * 1996-07-25 1998-01-28 Injex Corporation Artificial dental implant
EP0853938A1 (en) * 1997-01-20 1998-07-22 Injex Corporation Prosthetic restoration and manufacturing method thereof
JP2002129265A (en) * 2000-10-23 2002-05-09 National Institute Of Advanced Industrial & Technology Ti ALLOY FOR HUMAN BODY
EP1726669A1 (en) * 2005-05-23 2006-11-29 Deutsche Titan Gmbh Titanium alloy
WO2007114218A1 (en) * 2006-03-30 2007-10-11 Kabushiki Kaisha Kobe Seiko Sho Titanium alloy and engine exhaust pipes
JP2008506838A (en) * 2004-07-13 2008-03-06 エルケム アクシエセルスカプ High strength, oxidation resistance, wear resistance titanium-silicon substrate alloy
JP2009097064A (en) * 2007-10-19 2009-05-07 Piolax Medical Device:Kk Ti-BASE ALLOY

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0820737A2 (en) * 1996-07-25 1998-01-28 Injex Corporation Artificial dental implant
EP0820737A3 (en) * 1996-07-25 1998-05-13 Injex Corporation Artificial dental implant
US5967782A (en) * 1996-07-25 1999-10-19 Injex Coporation Artificial dental implant
EP0853938A1 (en) * 1997-01-20 1998-07-22 Injex Corporation Prosthetic restoration and manufacturing method thereof
US5984683A (en) * 1997-01-20 1999-11-16 Injex Corporation Prosthetic restoration and manufacturing method thereof
JP2002129265A (en) * 2000-10-23 2002-05-09 National Institute Of Advanced Industrial & Technology Ti ALLOY FOR HUMAN BODY
JP4617451B2 (en) * 2000-10-23 2011-01-26 独立行政法人産業技術総合研究所 Ti alloy for living body
JP2008506838A (en) * 2004-07-13 2008-03-06 エルケム アクシエセルスカプ High strength, oxidation resistance, wear resistance titanium-silicon substrate alloy
WO2006125776A1 (en) * 2005-05-23 2006-11-30 Thyssenkrupp Titanium Gmbh Titanium alloy
EP1726669A1 (en) * 2005-05-23 2006-11-29 Deutsche Titan Gmbh Titanium alloy
US8021605B2 (en) 2005-05-23 2011-09-20 Thyssfnkrupp VDM GmbH Titanium alloy
WO2007114218A1 (en) * 2006-03-30 2007-10-11 Kabushiki Kaisha Kobe Seiko Sho Titanium alloy and engine exhaust pipes
US20100173171A1 (en) * 2006-03-30 2010-07-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Titanium alloy and engine exhaust pipes
US8431231B2 (en) * 2006-03-30 2013-04-30 Kobe Steel, Ltd. Titanium Material and Exhaust Pipe for Engine
JP2009097064A (en) * 2007-10-19 2009-05-07 Piolax Medical Device:Kk Ti-BASE ALLOY

Similar Documents

Publication Publication Date Title
Joy-anne et al. Bioactive glass coatings on metallic implants for biomedical applications
Geng et al. The preparation, cytocompatibility, and in vitro biodegradation study of pure β-TCP on magnesium
NO310060B1 (en) Material for bone replacement and manufacture thereof
JPS63102762A (en) Living body compatible composite and its production
JPH02255515A (en) Coating method for bioactive hydroxylapatite film
Tanaka et al. Apatite formation and biocompatibility of a low Young’s modulus Ti-Nb-Sn alloy treated with anodic oxidation and hot water
JPS6324952A (en) Production of composite material coated with calcium phosphate compound
Kon et al. Porous Ti‐6Al‐4V alloy fabricated by spark plasma sintering for biomimetic surface modification
JPH04105659A (en) Biological titanium alloy and manufacture thereof
US4650109A (en) Method of manufacture of bone implant porous surfaces
Shankar et al. Thermal spray processes influencing surface chemistry and in-vitro hemocompatibility of hydroxyapatite-based orthopedic implants
Mahanty et al. Calcium substituted with magnesium, silver and zinc in hydroxyapatite: a review
Rokaya et al. Modification of titanium alloys for dental applications
JP2003235954A (en) Bone conductive biomaterial and manufacturing method therefor
Yabutsuka et al. Improvement of hydroxyapatite formation ability of titanium‐based alloys by combination of acid etching and apatite nuclei precipitation
Ducheyne et al. Bioceramic composites
TWI513480B (en) Magnesium alloy suitable for medical implants and method for manufacturing the same
JP2775523B2 (en) Bone substitute material and its manufacturing method
JPH04107259A (en) Production of titanium biomaterial
JP2710849B2 (en) Implant components
Sadrkhah et al. An In-Vivo Study on Nanostructured Ti Dental Implant Produced by Caliber Rolling and Surface Modification by SLActive
JPH0360B2 (en)
JPH08182755A (en) Material for living body and method for treating its surface
JPH08117324A (en) Method for manufacturing a bio-implant material
JP3084397B2 (en) Composite biomaterial