JPH0360B2 - - Google Patents
Info
- Publication number
- JPH0360B2 JPH0360B2 JP58053347A JP5334783A JPH0360B2 JP H0360 B2 JPH0360 B2 JP H0360B2 JP 58053347 A JP58053347 A JP 58053347A JP 5334783 A JP5334783 A JP 5334783A JP H0360 B2 JPH0360 B2 JP H0360B2
- Authority
- JP
- Japan
- Prior art keywords
- functional
- tin
- alloy
- niti
- functional alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000956 alloy Substances 0.000 claims description 42
- 229910045601 alloy Inorganic materials 0.000 claims description 41
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 19
- 229910001000 nickel titanium Inorganic materials 0.000 claims description 18
- 239000007943 implant Substances 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 10
- 210000000988 bone and bone Anatomy 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000006399 behavior Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000003446 memory effect Effects 0.000 description 3
- 206010007269 Carcinogenicity Diseases 0.000 description 2
- 231100000260 carcinogenicity Toxicity 0.000 description 2
- 230000007670 carcinogenicity Effects 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 231100001223 noncarcinogenic Toxicity 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
- Materials For Medical Uses (AREA)
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Physical Vapour Deposition (AREA)
Description
【発明の詳細な説明】
発明の分野
この発明は、機能合金、特に生体内にインプラ
ントする材料として用いられる機能合金およびそ
の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to functional alloys, particularly functional alloys used as materials for implantation in living organisms, and methods for producing the same.
先行技術の説明
従来より、NiTi系機能合金を生体内にインプ
ラントする材料として利用することが試みられて
いる。ここで、機能合金とは、超弾性挙動あるい
は形状記憶効果などを示す合金をいう。Description of Prior Art Conventionally, attempts have been made to utilize NiTi-based functional alloys as materials for implantation in living organisms. Here, the term "functional alloy" refers to an alloy that exhibits superelastic behavior or shape memory effect.
しかしながら、NiTi系合金は生体内インプラ
ント材料として用いる場合いくつかの未解決の問
題点を有する。すなわち、NiTiの生体適合性が
必ずしも良好ではなく、かつNiの細胞に対する
発癌性についても疑いが持たれている。それゆえ
に、生体適合性に優れた機能合金の登場が望まれ
ている。 However, NiTi-based alloys have some unresolved problems when used as in-vivo implant materials. That is, the biocompatibility of NiTi is not necessarily good, and there are also doubts about the carcinogenicity of Ni to cells. Therefore, the emergence of functional alloys with excellent biocompatibility is desired.
ところで、NiTi合金の上述の問題点を解消す
るために、その表面を生体適合性に優れた材料に
よりコーテイングすることが考えられる。しかし
ながら、機能合金においては、その形状が変化す
るため、形状変化が起こつても歪みあるいは剥離
の生じないコーテイング剤が要求される。すなわ
ちNiTiに強固に密着し耐摩耗性に優れたコーテ
イングが施されなければならない。現在のとこ
ろ、このような要請を満たし得るコーテイングが
施された機能合金は存在しなかつた。 By the way, in order to solve the above-mentioned problems of the NiTi alloy, it is conceivable to coat its surface with a material having excellent biocompatibility. However, since the shape of functional alloys changes, a coating agent that does not cause distortion or peeling even when the shape changes is required. In other words, a coating must be applied that firmly adheres to NiTi and has excellent wear resistance. At present, there is no functional alloy with a coating that can meet these requirements.
発明の目的
それゆえに、この発明の主たる目的は、上述の
問題点を解消し、生体適合性に優れ、かつ耐摩耗
性にも優れたNiTi系機能合金部材、この機能合
金を用いた生体内インプラント部材、ならびにこ
の機能合金の製造方法を提供することにある。Purpose of the Invention Therefore, the main purpose of the present invention is to solve the above-mentioned problems, to provide a NiTi-based functional alloy member with excellent biocompatibility and wear resistance, and to provide an in-vivo implant using this functional alloy. The object of the present invention is to provide a member and a method for manufacturing this functional alloy.
発明の構成
この発明は、TiNが生体適合性に優れかつ
NiTiへの密着性が良好であるという知見に基づ
く。すなわち、第1の発明は、表面にTiNがコ
ーテイングされたNiTi系機能合金部材であり、
表面にNiが存在しないため生体適合性に優れ、
発癌性を有せずかつ耐摩耗性も良好な機能合金部
材を得ることができる。好ましくは、TiN層の
内面にさらにCr層を形成することにより、耐蝕
性をより高めることができる。Structure of the Invention This invention provides that TiN has excellent biocompatibility and
Based on the knowledge that adhesion to NiTi is good. That is, the first invention is a NiTi-based functional alloy member whose surface is coated with TiN,
Excellent biocompatibility as there is no Ni on the surface.
A functional alloy member that is not carcinogenic and has good wear resistance can be obtained. Preferably, by further forming a Cr layer on the inner surface of the TiN layer, corrosion resistance can be further improved.
第2の発明は、上述した構成の機能合金部材か
らなる生体用インプラント部材である。すなわ
ち、上述した機能合金部材を、たとえばボーンプ
レートなどの形状に加工することにより、種々の
生体内インプラント部材が得られる。 The second invention is a living body implant member made of a functional alloy member having the above-described configuration. That is, various in-vivo implant members can be obtained by processing the above-mentioned functional alloy member into the shape of, for example, a bone plate.
第3の発明は、上述した機能合金部材の製造方
法であり、NiTi系合金にTiNをコーテイングし、
次いで300℃〜700℃の温度で機能付与のための熱
処理を施するものである。好ましくは、TiNの
コーテイングに先立ちCrがコーテイングされる。 The third invention is a method for manufacturing the above-mentioned functional alloy member, in which a NiTi-based alloy is coated with TiN,
Next, heat treatment is performed at a temperature of 300°C to 700°C to impart functionality. Preferably, Cr is coated prior to TiN coating.
発明の効果
以上のように、この発明によれば、NiTi系合
金の表面にTiNがコーテイングされているため、
もはや表面にNiは存在しない。しがつて、生体
適合性に優れ、発癌性を有せず耐摩耗性に優れた
機能合金部材を得ることができる。また、TiN
およびNiTiの双方がTiを含有するため、両者の
密着性は極めて良好であり、しがつて形状記憶効
果あるいは超弾性挙動に伴う形状の変化が起こつ
たとしても、TiNコーテイング層は、形状変化
に円滑に追随し得る。それゆえに、TiNのコー
テイング層が機能効果を害することもない。した
がつて、生体用インプラント部材とし最適の機能
合金部材を得ることが可能となる。Effects of the Invention As described above, according to the present invention, since the surface of the NiTi alloy is coated with TiN,
Ni is no longer present on the surface. Therefore, it is possible to obtain a functional alloy member that has excellent biocompatibility, is non-carcinogenic, and has excellent wear resistance. Also, TiN
Since both NiTi and NiTi contain Ti, the adhesion between the two is extremely good, and even if a change in shape occurs due to shape memory effect or superelastic behavior, the TiN coating layer will resist the change in shape. It can be followed smoothly. Therefore, the TiN coating layer does not impair the functional effect. Therefore, it is possible to obtain a functional alloy member that is optimal for use as a biological implant member.
また、この発明の機能合金の製造方法は、単に
TiNをコーテイングし、次いで300℃〜700℃の
温度で機能付与のための熱処理をほとごすもので
あるため、極めて簡単に、生体適合性に優れた機
能合金部材を得ることができる。 In addition, the method for producing a functional alloy of this invention simply
Since TiN is coated and then heat treated to impart functionality at a temperature of 300°C to 700°C, a functional alloy member with excellent biocompatibility can be obtained extremely easily.
この発明は、たとえばボーンプレートなどの生
体内インプラント部材、接骨用部材、人工関節お
よび骨用ねじなどの様々な製品に利用され得る。 The present invention can be used in various products such as in-vivo implant members such as bone plates, bone fitting members, artificial joints, and bone screws.
実施例の説明
実施例 1
周知のCVD装置によつて、NiTi合金を基盤と
し、TiCl4液をめつき試薬とし、H2とN2との混
合ガスをキヤリヤガスとして用い、1000℃、1気
圧の下で反応させて、第1図に示すようにTiN
層2を得た。この部材は、Tiが50原子量%の合
金ボーンプレートであり、CVD装置で処理した
後、平面形状に固定したまま、500℃の温度で20
分間形状記憶効果付与のための処理を行なつた。
次に、第2図に示すように、2%伸ばした状態
で、骨折部3に固定し、体内に埋込んだ、その後
高周波加熱により、機能合金部材1を加熱したと
ころ、第3図に示すように骨折部3が密着した。
実験によれば、この処理の間発癌性等の問題は何
ら生じなかつた。Description of Examples Example 1 Using a well-known CVD apparatus, a NiTi alloy was used as a base, TiCl 4 liquid was used as a plating reagent, a mixed gas of H 2 and N 2 was used as a carrier gas, and the temperature was 1000°C and 1 atm. As shown in Figure 1, TiN
Layer 2 was obtained. This component is an alloy bone plate containing 50 atomic percent Ti, and after being treated with a CVD device, it is heated at a temperature of 500℃ for 20 minutes while being fixed in a planar shape.
A treatment was carried out to impart a shape memory effect.
Next, as shown in FIG. 2, the functional alloy member 1 was stretched by 2% and fixed to the fracture site 3 and implanted into the body. After that, the functional alloy member 1 was heated by high frequency heating, as shown in FIG. 3. The fracture part 3 was brought into close contact.
According to experiments, no problems such as carcinogenicity occurred during this treatment.
実施例 2
第5図に正面図で示すような形状のNiTi合金
からなるステープル5に、Crを0.1μmの厚みに湿
式めつきした後、CVD法により、TiN層をコー
テイングした。このステープルの断面形状は、第
4図に示されるようにNiTi合金ステープル5の
表面にCr層6が形成されており、さらに外側に
TiN層7がコーテイングされている。次に、得
られたステープル8を第6図に示すように、約2
%の歪みを与えてその形状を変化させたが、コー
テイング部分には割れ、剥離などは発生しなかつ
た。Example 2 A staple 5 made of NiTi alloy having a shape as shown in the front view in FIG. 5 was wet-plated with Cr to a thickness of 0.1 μm, and then coated with a TiN layer by CVD. As shown in Fig. 4, the cross-sectional shape of this staple is such that a Cr layer 6 is formed on the surface of the NiTi alloy staple 5, and a Cr layer 6 is formed on the outside.
A TiN layer 7 is coated. Next, as shown in FIG.
% strain was applied to change its shape, but no cracking or peeling occurred in the coating.
実施例 3
逆変態温度が約10℃となる組成のNiTi合金部
材上に、イオンプレーテイングによりTiNをコ
ーテイングした後、400℃にて15分間加熱処理し
て機能合金部材を得た。この機能合金部材は良好
な超弾性挙動を示した。この部材を、ボーンプレ
ートとし使用したところ、良好な試料効果が得ら
れた。Example 3 A NiTi alloy member having a composition with a reverse transformation temperature of about 10°C was coated with TiN by ion plating, and then heat-treated at 400°C for 15 minutes to obtain a functional alloy member. This functional alloy member showed good superelastic behavior. When this member was used as a bone plate, a good sample effect was obtained.
第1図は、この発明の一実施例の断面構造を示
す図である。第2図および第3図は、生体用イン
プラント部材としてのこの発明の一実施例の動作
を説明するための略図的正面図である。第4図
は、この発明の他の実施例の断面構造図である。
第5図および第6図は、第4図に示した断面構造
を有するこの発明の実施例の形状変化を示す正面
図である。
1……機能合金部材、2……TiN層、5……
NiTi合金、6……Cr層、7……TiN層、8……
ステープルとしての機能合金部材。
FIG. 1 is a diagram showing a cross-sectional structure of an embodiment of the present invention. FIGS. 2 and 3 are schematic front views for explaining the operation of an embodiment of the present invention as a biological implant member. FIG. 4 is a cross-sectional structural diagram of another embodiment of the present invention.
5 and 6 are front views showing changes in shape of the embodiment of the present invention having the cross-sectional structure shown in FIG. 4. FIG. 1...Functional alloy member, 2...TiN layer, 5...
NiTi alloy, 6...Cr layer, 7...TiN layer, 8...
Functional alloy parts as staples.
Claims (1)
Tiを主成分とする機能合金部材。 2 前記TiN層の内面にさらにCr層が形成され
ている、特許請求の範囲第1項記載の機能合金部
材。 3 表面にTiNがコーテイングされたNiおよび
Tiを主成分とする機能合金部材からなる生体用
インプラント部材。 4 NiTi系合金にTiNをコーテイングし、次い
で300℃〜700℃の温度で機能付与のための熱処理
を施す、機能合金の製造方法。 5 前記TiNのコーテイングに先立ち、Crをコ
ーテイングする、特許請求の範囲第4項記載の機
能合金の製造方法。[Claims] 1. Ni whose surface is coated with TiN and
A functional alloy material whose main component is Ti. 2. The functional alloy member according to claim 1, wherein a Cr layer is further formed on the inner surface of the TiN layer. 3 Ni with TiN coating on the surface and
A biological implant component made of a functional alloy component whose main component is Ti. 4. A method for producing a functional alloy, in which a NiTi-based alloy is coated with TiN and then heat treated at a temperature of 300°C to 700°C to impart functionality. 5. The method for manufacturing a functional alloy according to claim 4, wherein Cr is coated prior to the TiN coating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58053347A JPS59177041A (en) | 1983-03-28 | 1983-03-28 | Functional alloy member, body implant comprising same and production of functional alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58053347A JPS59177041A (en) | 1983-03-28 | 1983-03-28 | Functional alloy member, body implant comprising same and production of functional alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59177041A JPS59177041A (en) | 1984-10-06 |
JPH0360B2 true JPH0360B2 (en) | 1991-01-07 |
Family
ID=12940237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58053347A Granted JPS59177041A (en) | 1983-03-28 | 1983-03-28 | Functional alloy member, body implant comprising same and production of functional alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59177041A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0720487B2 (en) * | 1985-11-22 | 1995-03-08 | 京セラ株式会社 | Biomedical implant material |
FR2595572B1 (en) * | 1986-03-12 | 1989-06-16 | France Implant | PROCESS FOR THE MANUFACTURE OF SURGICAL IMPLANTS AT LEAST PARTIALLY COATED WITH A METAL COMPOUND, AND IMPLANTS PERFORMED ACCORDING TO SAID METHOD |
JP2002065709A (en) * | 2000-08-23 | 2002-03-05 | Tokyo Bio Ceramics Kenkyusho:Kk | Fixture of tooth or bone |
CN104046951B (en) * | 2014-06-13 | 2016-02-24 | 西安交通大学 | A kind of method preparing praseodymium doped titanium nitride coating on medical titanium alloy surface |
CN113373403B (en) * | 2021-08-12 | 2021-10-26 | 中南大学湘雅医院 | Modification method for gas nitriding on surface of intestinal stent |
-
1983
- 1983-03-28 JP JP58053347A patent/JPS59177041A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59177041A (en) | 1984-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2553355A1 (en) | BIO-COMPATIBLE DENTURE DEVICES AND THEIR MANUFACTURING | |
JPS6143065B2 (en) | ||
EP0128383A1 (en) | Process for producing wear-resistant layers on the surfaces of components made of titanium or alloys based on titanium | |
WO1983003350A1 (en) | Auditory ossicles prosthesis and method for the fabrication thereof | |
JPH0360B2 (en) | ||
Niinomi et al. | Improvement of the fatigue life of titanium alloys for biomedical devices through microstructural control | |
Mukhtar et al. | Development and characterization of hot dip aluminide coated stainless steel 316L | |
Cimpean et al. | Enhancement of the electrochemical behaviour and biological performance of Ti–25Ta–5Zr alloy by thermo-mechanical processing | |
JPS62211334A (en) | Functional alloy and its manufacture | |
Siu et al. | Electrodeposition of Co–Mo–P barrier coatings for Cu/Au coated systems | |
JPH04105659A (en) | Biological titanium alloy and manufacture thereof | |
Kannan et al. | Development of calcium phosphate coatings on type 316L SS and their in vitro response | |
JP4804648B2 (en) | Bone substitute material | |
US20090127226A1 (en) | Process for producing self-supporting titanium and nickel layers | |
JP2000093498A (en) | Bone substitution material and its production | |
DE2118364C3 (en) | Process for hard chrome plating a titanium substrate | |
Fatehi et al. | Biomimetic Synthesis, Characterization, and Adhesion Properties of Bone-Like Apatite on Heat and Alkaline-Treated Titanium Alloy | |
DE3715397C2 (en) | ||
Britchi et al. | Surface properties of 316L austenitic steel improved by simultaneous diffusion of titanium and aluminium | |
DE102019102544A1 (en) | METHOD FOR PRE-TREATING STAINLESS STEEL SUBSTRATES BEFORE SOLDERING WITH NANOCRISTALLINE SOLDER FILMS | |
Kamiński et al. | Corrosion resistance of NiTi shape memory alloy after nitriding and oxynitriding processes under glow discharge conditions for medical applications | |
Rozali et al. | The effect of protein concentration on corrosion of nitinol alloy: Einfluss der Proteinkonzentration auf die Korrosion einer Nitinol‐Legierung | |
JP3353308B2 (en) | Biological metal and surface treatment method thereof | |
CN108295312A (en) | Mix titanium or titanium alloy of silver and preparation method thereof in surface | |
Wong et al. | Deposition of TiO2 on NiTi by Cathodic Synthesis for Improving Corrosion Resistance and Apatite‐Forming Ability |