JPH0410544Y2 - - Google Patents

Info

Publication number
JPH0410544Y2
JPH0410544Y2 JP13682887U JP13682887U JPH0410544Y2 JP H0410544 Y2 JPH0410544 Y2 JP H0410544Y2 JP 13682887 U JP13682887 U JP 13682887U JP 13682887 U JP13682887 U JP 13682887U JP H0410544 Y2 JPH0410544 Y2 JP H0410544Y2
Authority
JP
Japan
Prior art keywords
nitrogen
gas
condenser
pipe
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13682887U
Other languages
Japanese (ja)
Other versions
JPS6445290U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13682887U priority Critical patent/JPH0410544Y2/ja
Publication of JPS6445290U publication Critical patent/JPS6445290U/ja
Application granted granted Critical
Publication of JPH0410544Y2 publication Critical patent/JPH0410544Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 ネオンNe、水素、H2、ヘリウムHeのような
低沸点ガスを含まない高純度窒素ガスを製造する
装置に関するものである。
[Detailed description of the invention] Industrial application field This invention relates to an apparatus for producing high-purity nitrogen gas that does not contain low-boiling point gases such as neon (Ne), hydrogen, H 2 , and helium (He).

従来技術 空気を液化精留して窒素ガスを製造する装置と
して、水分、炭酸ガス等を除去した圧縮空気を製
品窒素ガス等の低温ガスとの熱交換で冷却し、一
部液化した状態で単式精留塔の下部に導入して、
その塔頂から製品ガスを取出す装置が一般に使用
されている。この種の装置で製造する窒素ガスは
高純度であるが、ネオン、水素、ヘリウムのよう
な低沸点ガスは除去されずに含有されており、半
導体工業用のような用途には適さないという欠点
があつた。
Conventional technology As a device for producing nitrogen gas by liquefaction rectification of air, compressed air from which moisture, carbon dioxide, etc. have been removed is cooled by heat exchange with low-temperature gas such as product nitrogen gas, and is partially liquefied. Introduced into the bottom of the rectification column,
Equipment is commonly used to extract product gas from the top of the tower. Although the nitrogen gas produced by this type of equipment is highly pure, it contains low-boiling point gases such as neon, hydrogen, and helium without being removed, making it unsuitable for applications such as the semiconductor industry. It was hot.

そこで、この欠点を除去し、低沸点成分を含ま
ない高純度の窒素ガスを製造する装置として、例
えば特開昭58−64478号公報所載のものが挙げら
れる。
An example of an apparatus for eliminating this drawback and producing high purity nitrogen gas free of low boiling point components is the one described in Japanese Patent Application Laid-open No. 58-64478.

前記公報記載の高純度窒素製造装置は、凝縮部
を介して上部に気化部、下部に液化部を形成した
熱交換器を設けて、単式精留塔頂部から採取する
製品ガス(高純度窒素ガス)をこの熱交換器の液
化部に導入して気化部の減圧液体窒素で冷却して
液化せしめるとともに、含有する低沸点成分を未
凝縮ガスとして凝縮部から排出させ、液化された
窒素を液化部から減圧弁を介して気化部に導入し
て気化させ、低沸点成分を含有しない製品高純度
窒素ガスとして採取するものである。
The high-purity nitrogen production apparatus described in the above publication is equipped with a heat exchanger with a vaporization section at the top and a liquefaction section at the bottom via a condensation section, and the product gas (high-purity nitrogen gas) collected from the top of the single rectification column is ) is introduced into the liquefaction section of this heat exchanger and liquefied by cooling with reduced pressure liquid nitrogen in the vaporization section, and the low-boiling components contained therein are discharged as uncondensed gas from the condensation section, and the liquefied nitrogen is transferred to the liquefaction section. The nitrogen gas is introduced into the vaporization section via a pressure reducing valve, where it is vaporized and collected as a high-purity nitrogen gas product that does not contain low-boiling components.

しかしながらこの装置では、気化して製品とな
る液体窒素は、単式精留塔の塔頂部から取出され
て熱交換器の凝縮部で凝縮されたものであり、凝
縮からパージされる低沸点成分含有ガスと平衡状
態にあるものなので、不純物である低沸点成分を
なお含有しているということができる。
However, in this device, the liquid nitrogen that is vaporized and becomes a product is taken out from the top of the single rectification column and condensed in the condensation section of the heat exchanger, and the gas containing low-boiling components is purged from the condensation. Since it is in equilibrium with the above, it can be said that it still contains low-boiling components that are impurities.

考案が解決しようとする問題点 前記従来方式の諸問題点を解決し、さらに一層
低沸点成分を除去し得る高純度窒素ガス製造装置
を提供するものである。
Problems to be Solved by the Invention The object of the present invention is to provide a high-purity nitrogen gas production apparatus that solves the problems of the conventional method and can further remove low-boiling point components.

問題点を解決するための手段 本考案者等は種々検討、実験の結果本考案装置
の開発に成功したものであり、本考案の技術的構
成は前記実用新案登録請求の範囲各項に明記した
とおりであるが、本考案装置の具体例を示す添付
図面に基いて詳細に説明する。
Means for Solving the Problems The inventors of the present invention have successfully developed the device of the present invention as a result of various studies and experiments, and the technical configuration of the present invention is specified in each claim of the above-mentioned utility model registration. However, a detailed explanation will be given based on the attached drawings showing a specific example of the device of the present invention.

実施例(第1図) 原料空気5000Nm3/hrは8.7Kg/cm2に圧縮さ
れ、水分、炭酸ガス等を除去された後、温度20℃
で管路1から熱交換器2に入り、製品窒素ガス、
廃ガス等で−166℃まで冷却され、管路3により
取出され、単式精留塔4の下部に導入される。精
留塔4の塔頂からは5500Nm3/hrの窒素ガスが
管路5により取出され、アルミニウムろう付型の
窒素凝縮器6に導入されて、ここで冷却液化さ
れ、ネオン、ヘリウム等の不純物を含む未凝縮ガ
ス1Nm3/hrが管路7からパージされる。前記窒
素凝縮器6で液化された液体窒素5499Nm3/hr
は、管路8により精留塔4の塔頂部の精留板A上
に戻される。精留塔4の塔底からは3199Nm3
hrの酸素富化液体空気(−172℃)が、管路9に
よつて取出され、膨脹弁10で4.2Kg/cm2に減圧
された後窒素凝縮器6に導入されて寒冷源とな
る。ここで気化した液体空気は−172℃の冷空気
(酸素リツチ)として管路11から取出され、熱
交換器2に導入されて原料空気を冷却した後−
150℃まで昇温し、管路12で取出される。つい
で膨脹タービン13で0.5Kg/cm2まで膨脹されて
−180℃となり、管路14から再度熱交換器2に
取入れられて原料空気の冷却に用いられ、常温ま
で加温されて廃ガスとして管路15から排出され
る。
Example (Figure 1) Raw air of 5000Nm 3 /hr is compressed to 8.7Kg/cm 2 , and after removing moisture, carbon dioxide, etc., the temperature is 20℃.
The product nitrogen gas enters the heat exchanger 2 from pipe 1,
It is cooled to −166° C. with waste gas, etc., taken out through a pipe 3, and introduced into the lower part of a single rectification column 4. 5500Nm 3 /hr of nitrogen gas is taken out from the top of the rectification column 4 through a pipe 5, introduced into an aluminum brazing type nitrogen condenser 6, where it is cooled and liquefied, and impurities such as neon and helium are removed. 1 Nm 3 /hr of uncondensed gas is purged from line 7. Liquid nitrogen liquefied in the nitrogen condenser 6: 5499Nm 3 /hr
is returned to the rectifying plate A at the top of the rectifying column 4 through a pipe 8. 3199Nm 3 / from the bottom of rectification column 4
hr of oxygen-enriched liquid air (-172°C) is taken out through pipe 9, reduced in pressure to 4.2 kg/cm 2 by expansion valve 10, and then introduced into nitrogen condenser 6 to serve as a cold source. The liquid air vaporized here is taken out from the pipe 11 as -172°C cold air (oxygen-rich), introduced into the heat exchanger 2 to cool the raw air, and then -
The temperature is raised to 150°C and taken out through pipe 12. The air is then expanded to 0.5Kg/cm 2 in the expansion turbine 13 to a temperature of -180°C, taken into the heat exchanger 2 again through the pipe 14, used to cool the raw material air, heated to room temperature, and discharged into the pipe as waste gas. It is discharged from channel 15.

低沸点成分を含まない高純度液体窒素
1800Nm3/hrは精留塔4の精留板B(精留板Aの
数段下)から管路16で取出され、膨脹弁17で
7.5Kg/cm2に膨脹された後、窒素凝縮器6に導入
され、前記酸素富化液体空気とともに、管路5か
らの窒素ガスを冷却、液化させる。気化された高
純度窒素ガスは管路18から取出され、ついで熱
交換器2に導入され、原料空気を冷却して自らは
常温まで昇温し、管路19によつて製品ガスとし
て取出される。低沸点成分を含有していても差支
えない用途向けの高純度窒素ガスを生産又は併産
するときは、管路5の窒素ガスの全量または一部
を管路20に送り、熱交換器2で常温まで昇温し
て管路21から製品として取出すことができる。
High purity liquid nitrogen containing no low boiling point components
1800Nm 3 /hr is taken out from rectifying plate B of rectifying column 4 (several stages below rectifying plate A) through conduit 16, and is taken out through expansion valve 17.
After being expanded to 7.5 kg/cm 2 , it is introduced into a nitrogen condenser 6, where the nitrogen gas from the pipe line 5 is cooled and liquefied together with the oxygen-enriched liquid air. The vaporized high-purity nitrogen gas is taken out through the pipe line 18, then introduced into the heat exchanger 2, where it cools the raw material air, raises its temperature to room temperature, and is taken out as a product gas through the pipe line 19. . When producing or co-producing high-purity nitrogen gas for applications that do not pose a problem even if it contains low-boiling components, all or part of the nitrogen gas in the pipe 5 is sent to the pipe 20, and the nitrogen gas is transferred to the heat exchanger 2. It can be heated to room temperature and taken out as a product from the conduit 21.

実施例(第2図) この実施例は、低沸点成分を含む未凝縮ガスの
パージ管路が異なる以外は、第1図の実施例と同
じである。
Embodiment (FIG. 2) This embodiment is the same as the embodiment of FIG. 1 except that the purge line for uncondensed gas containing low-boiling components is different.

管路5から取出され、アルミニウムろう付型窒
素凝縮器6で冷却液化された液体窒素は管路22
で取出されて気液セパレータ23に導かれ、ここ
で気液分離される。ガス相に凝縮された低沸点成
分は気液分離時にそのほとんどが気体中に入り、
管路20、熱交換器2、管路21を経て一般用高
純度窒素ガスとして取出される。気液セパレータ
ー23底部の液体窒素は、管路8で精留塔4の精
留板A上へ戻される。
The liquid nitrogen taken out from the pipe 5 and cooled and liquefied in the aluminum brazing type nitrogen condenser 6 is transferred to the pipe 22.
It is taken out and guided to the gas-liquid separator 23, where it is separated into gas and liquid. Most of the low boiling point components condensed in the gas phase enter the gas during gas-liquid separation,
It is taken out as general-use high-purity nitrogen gas through the pipe line 20, heat exchanger 2, and pipe line 21. The liquid nitrogen at the bottom of the gas-liquid separator 23 is returned to the rectification plate A of the rectification column 4 through the pipe line 8.

一般用高純度窒素ガスを生産又は併産するとき
は、管路20の流量を増加することにより可能と
なる。
When producing or co-producing general-use high-purity nitrogen gas, it becomes possible by increasing the flow rate of the pipe line 20.

考案の効果 本考案装置では、製品となる低沸点成分を含ま
ない高純度窒素ガスは、窒素凝縮器6で液化され
た液体窒素が戻される精留塔4の精留板Aよりも
数段下の精留板B上から取出されて、窒素凝縮器
6で気化されたものである。したがつて、窒素凝
縮器6で液化された液体窒素をそのまま気化した
ものに比べ低沸点成分の含有量は非常に低下し一
層高純度の窒素ガスが得られる。
Effects of the invention In the device of the present invention, the high-purity nitrogen gas that does not contain low-boiling point components and becomes the product is produced several stages below the rectifying plate A of the rectifying column 4 to which the liquid nitrogen liquefied in the nitrogen condenser 6 is returned. is taken out from above the rectifying plate B and vaporized in the nitrogen condenser 6. Therefore, the content of low-boiling components is much lower than when the liquid nitrogen liquefied in the nitrogen condenser 6 is directly vaporized, and nitrogen gas with higher purity can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案装置の一例を示すフローシー
ト、第2図は第1図の装置に気液セパレーターを
設けた変形例を示すフローシートであり、図中、
1……原料空気、2……熱交換器、4……窒素精
留塔、6……窒素凝縮器、10,17……膨脹
弁、13……膨脹タービン、15……廃ガス、1
9……高純度窒素ガス、21……窒素ガス、23
……気液セパレーター、A,B……精留板、その
他の符号は管路を示す。
FIG. 1 is a flow sheet showing an example of the device of the present invention, and FIG. 2 is a flow sheet showing a modification of the device shown in FIG. 1 with a gas-liquid separator.
1... Raw material air, 2... Heat exchanger, 4... Nitrogen rectification column, 6... Nitrogen condenser, 10, 17... Expansion valve, 13... Expansion turbine, 15... Waste gas, 1
9... High purity nitrogen gas, 21... Nitrogen gas, 23
. . . Gas-liquid separator, A, B . . . Rectification plate, and other symbols indicate pipes.

Claims (1)

【実用新案登録請求の範囲】 (1) 水分、炭酸ガス等を除去し、熱交換器2で冷
却された原料空気を窒素精留塔4下部に導入
し、液化精留して塔頂に窒素を、下部に液体空
気をそれぞれ分離し、前記分離窒素の一部を製
品ガスとして採取するとともに、残部を前記液
体空気と熱交換して液化し、還流液とする高純
度窒素製造装置において、前記窒素精留塔4塔
頂部とアルミニウムろう付型窒素凝縮器6とを
窒素ガス取出管路5及び該窒素凝縮器6で液化
された液体窒素を前記窒素精留塔4塔頂部に戻
す管路8で連通し、かつ前記窒素精留塔4中段
と前記窒素凝縮器6とを膨脹弁17を備えた管
路16で連通したことを特徴とする高純度窒素
製造装置。 (2) 前記窒素凝縮器6がパージ管路7を具備する
実用新案登録請求の範囲第1項記載の高純度窒
素製造装置。 (3) 前記窒素凝縮器6に気液セパレーター23を
併設した実用新案登録請求の範囲第1項記載の
高純度窒素製造装置。
[Scope of Claim for Utility Model Registration] (1) The raw air that has been cooled by the heat exchanger 2 after removing moisture, carbon dioxide, etc. is introduced into the lower part of the nitrogen rectification column 4, and is liquefied and rectified to produce nitrogen at the top of the column. In the high-purity nitrogen production apparatus, the liquid air is separated in the lower part, a part of the separated nitrogen is collected as a product gas, and the remaining part is liquefied by heat exchange with the liquid air to become a reflux liquid. A nitrogen gas take-off pipe 5 connects the top of the nitrogen rectification column 4 and an aluminum brazed nitrogen condenser 6, and a pipe 8 returns liquid nitrogen liquefied in the nitrogen condenser 6 to the top of the nitrogen rectification column 4. and the middle stage of the nitrogen rectification column 4 and the nitrogen condenser 6 are connected through a pipe line 16 provided with an expansion valve 17. (2) The high-purity nitrogen production apparatus according to claim 1, wherein the nitrogen condenser 6 includes a purge line 7. (3) The high-purity nitrogen production apparatus according to claim 1, which is provided with a gas-liquid separator 23 in addition to the nitrogen condenser 6.
JP13682887U 1987-09-09 1987-09-09 Expired JPH0410544Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13682887U JPH0410544Y2 (en) 1987-09-09 1987-09-09

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13682887U JPH0410544Y2 (en) 1987-09-09 1987-09-09

Publications (2)

Publication Number Publication Date
JPS6445290U JPS6445290U (en) 1989-03-17
JPH0410544Y2 true JPH0410544Y2 (en) 1992-03-16

Family

ID=31397700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13682887U Expired JPH0410544Y2 (en) 1987-09-09 1987-09-09

Country Status (1)

Country Link
JP (1) JPH0410544Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2966999B2 (en) * 1992-04-13 1999-10-25 日本エア・リキード株式会社 Ultra high purity nitrogen / oxygen production equipment

Also Published As

Publication number Publication date
JPS6445290U (en) 1989-03-17

Similar Documents

Publication Publication Date Title
US5146756A (en) Air separation
US4254629A (en) Cryogenic system for producing low-purity oxygen
US3401531A (en) Heat exchange of compressed nitrogen and liquid oxygen in ammonia synthesis feed gas production
NZ260393A (en) Air separation: liquid nitrogen reflux obtained from intermediate mass transfer region of low pressure rectifier
JPH0731003B2 (en) Method and apparatus for producing nitrogen under high pressure
KR970025674A (en) Air Separation Method and Apparatus for Nitrogen Generation
JPH05296651A (en) Apparatus for producing nitrogen/oxygen of ultrahigh purity
JPH07198249A (en) Method and equipment for separating air
US4834785A (en) Cryogenic nitrogen generator with nitrogen expander
EP1086345B1 (en) Process and apparatus for the production of nitrogen by cryogenic distillation using a dephlegmator
EP0751358A2 (en) Method and apparatus for producing ultra-high purity oxygen
US5385024A (en) Cryogenic rectification system with improved recovery
KR100192873B1 (en) Separation of gas mixtures
US5934106A (en) Apparatus and method for producing nitrogen
JP2865281B2 (en) Low temperature distillation method of air raw material
TW202117249A (en) Process and system for the cryogenic separation of air
US2779174A (en) Low temperature separation of gaseous mixtures
JPH04227460A (en) Low-temperature nitrogen generator with bottom reboiler and nitrogen expander
JPH0410544Y2 (en)
JPH074833A (en) Separation of air
US5809802A (en) Air seperation
JPH0410546Y2 (en)
JPH0410545Y2 (en)
JP3082092B2 (en) Oxygen purification method and apparatus
JPS6142070Y2 (en)