JPH04105290A - Magnetic storage element and its manufacture - Google Patents

Magnetic storage element and its manufacture

Info

Publication number
JPH04105290A
JPH04105290A JP2224593A JP22459390A JPH04105290A JP H04105290 A JPH04105290 A JP H04105290A JP 2224593 A JP2224593 A JP 2224593A JP 22459390 A JP22459390 A JP 22459390A JP H04105290 A JPH04105290 A JP H04105290A
Authority
JP
Japan
Prior art keywords
film
magnetic
striped
memory element
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2224593A
Other languages
Japanese (ja)
Inventor
Hisao Matsudera
久雄 松寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2224593A priority Critical patent/JPH04105290A/en
Publication of JPH04105290A publication Critical patent/JPH04105290A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the storage density by sectioning a ferromagnetic material film in stripes whose width is much less than the film thickness of the ferroelectric material film. CONSTITUTION:Striped grooves which are as deep as a magnetic garnet film is thick and have a constant period are formed at right angles to the in-surface easy-axis direction of the film. Namely, the grooves are formed and the striped areas 1 which are sectioned with the grooves are regarded as rectangular thin layers which have long sides in the length direction of striped film sectioning and short sides in the film thickness direction. The rectangular thin layers have uniaxial magnetic anisotropy at right angles to the layer, so magnetic domains 3 are formed and storage areas including their magnetic walls as transfer paths are formed. The length direction of the transfer paths of the magnetic domains 3 is perpendicular to the film surface. Consequently, data which is stored as a Bloch pair can be transferred from the film surface to the substrate side 4 and returned from the substrate side to the film surface reversely, thereby improving the recording medium.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は不揮発性の超高密度固体磁気記憶素子に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a nonvolatile ultra-high density solid state magnetic memory element.

(従来の技術と発明が解決しようとする課題)高密度固
体磁気記憶素子を目積して、磁気バブル素子の開発が各
所で盛んに行われている。しかし、現在使用されている
ガーネット材料では、到達可能な最小バブル径は0.3
□mといわれている。したがって、0.3μm径以下の
バブルを保持するバブル材料はガーネット材料以外に求
めなければならない。これは容易ではなく、ここがバブ
ル高密度化の限界であるとさえ考えられている。
(Prior Art and Problems to be Solved by the Invention) Magnetic bubble devices are being actively developed in various places with the aim of producing high-density solid-state magnetic storage devices. However, with the currently used garnet materials, the minimum attainable bubble diameter is 0.3
It is said to be □m. Therefore, a bubble material that retains bubbles with a diameter of 0.3 μm or less must be found other than garnet material. This is not easy and is even considered to be the limit of bubble density.

このようなバブル保持層の特性に基づく高密度化限界を
大幅に改善し、かつ情報読出し時間は従来の素子と同程
度に保つことができる超高密度磁気記憶素子として膜面
垂直方向を磁化容易方向とする軟磁性強磁性体(フェリ
磁性体を含む)膜に形成されるストライプドメインの境
界を形成するブロッホ磁壁の中に静的に安定に存在する
垂直ブロッホライン(以下単にブロッホラインと称する
)2個からなるブロッホライン対を記憶単位として用い
る素子が発明された(特願昭57−182346)。
It is easy to magnetize in the direction perpendicular to the film surface as an ultra-high-density magnetic memory element that greatly improves the density limit based on the characteristics of the bubble retention layer and can maintain information readout time at the same level as conventional elements. A perpendicular Bloch line (hereinafter simply referred to as a Bloch line) that exists statically and stably within a Bloch domain wall that forms the boundary of a striped domain formed in a soft magnetic ferromagnetic material (including ferrimagnetic material) film with a certain direction. A device using a pair of Bloch lines as a storage unit was invented (Japanese Patent Application No. 182346/1983).

本素子において、情報の入力及び出力をブロッホライン
の直接書き込みあるいは読み謁しで行なうことは現在の
技術では困難であり、そのため、磁気バブル素子におい
て技術上確立している磁気バブル(以下ではバブルと称
する)の発生、転送および検出技術を用いてデータ入力
をバブル発生器でバブルを発生させることにより行ない
、該バブルをバブル転送路上を転送させ変換ゲートにお
いてブロッホラインに変換する。また読み出し時はブロ
ッホラインを変換ゲートにおいてバブルに変換した後、
バブルをバブル転送路上を転送させ、バブル検出器8で
読み出す構成になっている。
In this device, it is difficult with current technology to input and output information by direct writing or reading of Bloch lines. Data input is performed by generating bubbles in a bubble generator using a generation, transfer, and detection technique (referred to as ), and the bubbles are transferred on a bubble transfer path and converted into Bloch lines at a conversion gate. Also, when reading, after converting the Bloch line into a bubble at the conversion gate,
The configuration is such that bubbles are transferred on a bubble transfer path and read out by a bubble detector 8.

この記憶素子では通常、アクセス時間を低減するため、
第2図のようなメジャー/マイナー構成と呼ばれる素子
構成が採られる。即ち、第1の転送路であるメジャーラ
イン端に設けられたバブル発生器により次々と書き込ま
れたバブルによるデータ列はメジャーライン転送路上を
転送し、次いで該メジャーラインに対し直角に位置し、
多数本のフロンホラインを転送させる第2の転送路であ
るマイナーループと呼ばれる転送路へデータを異動する
ため、各マイナーループ端に設けられた変換ゲートでバ
ブルからブロッホラインにデータが並列的に変換される
。読み出し時はマイナーループ端の変換ゲート部に位置
したブロッホラインは変換ゲートでバブルに変換される
。変換されたバブルは、メジャーライン上を転送し、メ
ジャーライン端のバブル検出器で検出され、データ出力
される。図中5,7はそれぞれブロッホライン書込み/
読出し導体、メジャーラインのバブルドメイン転送用導
体である。
This storage element typically uses
An element configuration called a major/minor configuration as shown in FIG. 2 is adopted. That is, a data string of bubbles written one after another by a bubble generator provided at the end of the major line, which is the first transfer path, is transferred on the major line transfer path, and then positioned at right angles to the major line,
In order to transfer data to a transfer path called a minor loop, which is a second transfer path that transfers multiple Fronho lines, data is converted in parallel from bubbles to Bloch lines using conversion gates installed at the ends of each minor loop. be done. At the time of reading, the Bloch line located at the conversion gate section at the end of the minor loop is converted into a bubble by the conversion gate. The converted bubble is transferred on the major line, detected by a bubble detector at the end of the major line, and output as data. 5 and 7 in the figure are respectively Bloch line writing/
This is a read conductor and a major line bubble domain transfer conductor.

しかしながら、このような新しい構成の記憶素子におい
てもその記憶密度はガーネット膜特性上の制限からの〜
数ギガビット1cm2程度に制限される。近年のデジタ
ル画像処理技術の向上はより大きな記憶容量、記憶密度
を有する記憶素子を必要としはじめている。
However, even in a memory element with such a new configuration, the storage density is limited due to limitations on the characteristics of the garnet film.
It is limited to several gigabits per cm2. Recent improvements in digital image processing technology have begun to require storage elements with larger storage capacity and storage density.

本発明はこのような点に鑑みてなされたもので、その目
的は従来のブロッホラインを情報担体とする磁気記憶素
子の1桁以上高記憶密度を有する磁気記憶素子を提供す
るにある。
The present invention has been made in view of these points, and its object is to provide a magnetic memory element having a memory density one order of magnitude higher than that of a conventional magnetic memory element using Bloch lines as information carriers.

(課題を解決するための手段) 即ち本発明は情報読み出し手段、情報書込み手段及び情
報蓄積手段を有し、かつ、膜面内の一方向を磁化容易方
向を持つ軟磁性の強磁性体(フェリ磁性体を含む)膜を
たとえば縞状に膜厚の深さまで溝掘りすることにより区
分し、該区分した膜内に生じる面内方向を向いた磁区を
転送路とし、該磁区内に生じる相隣る2つの垂直ブロッ
ホラインからなる垂直ブロッホライン対を情報担体とし
、かつ該ブロッホラインを書込かつ読出す機能を有し、
かつ該磁区の長手方向が膜面に垂直方向を向き、かつ該
軟磁性の強磁性体膜として膜面内で該縞状の区分の方向
に垂直な方向の一軸異方性を有する磁気記憶素子である
(Means for Solving the Problems) That is, the present invention has an information reading means, an information writing means, and an information storage means, and a soft magnetic ferromagnetic material (ferrimagnetic material) having an easy magnetization direction in one direction within the film surface. The film (containing a magnetic substance) is divided by trenching to the depth of the film thickness in a striped pattern, and the magnetic domains that are generated in the divided film and are oriented in the in-plane direction are used as transfer paths, and the adjacent magnetic domains that occur within the magnetic domain are A vertical Bloch line pair consisting of two vertical Bloch lines is used as an information carrier, and has a function of writing and reading the Bloch line,
and a magnetic memory element in which the longitudinal direction of the magnetic domains is perpendicular to the film surface, and the soft magnetic ferromagnetic film has uniaxial anisotropy in the film surface in a direction perpendicular to the direction of the striped sections. It is.

即ち、本発明は従来のブロッホラインを情報担体とする
磁気記憶素子に比較し、膜面内では同程度の記憶密度を
有する上に、膜面に垂直方向にも複数ビットの情報を蓄
積するような3次元構造をとらせ得る構造を発明するこ
とにより、従来の10倍以上の記憶密度を有する磁気記
憶素子を提供するものである。
That is, compared to the conventional magnetic memory element using Bloch lines as information carriers, the present invention has a similar storage density within the film surface, and also stores multiple bits of information in the direction perpendicular to the film surface. By inventing a structure that can take a three-dimensional structure, the present invention provides a magnetic memory element having a memory density ten times or more that of the conventional one.

(実施例) 以下、本発明を実施例により詳細に説明をする。膜厚が
4.4□m、面内の一軸磁気異方性定数200.000
erg/cm3.4yrMsが1430Gの磁性ガーネ
ット膜を用い、該膜中に幅0.2□mで深さが膜厚に等
しい周期0.5□mの縞状溝を形成する。縞状溝の形成
方向は該膜の面内容易軸方向に垂直な方向である。本溝
は、溝形成部のガーネット膜にイオン注入した上、加温
したリン酸でエツチングすることにより形成できる。
(Example) Hereinafter, the present invention will be explained in detail with reference to Examples. Film thickness: 4.4□m, in-plane uniaxial magnetic anisotropy constant: 200.000
A magnetic garnet film with an erg/cm3.4yrMs of 1430G is used, and striped grooves with a width of 0.2 □m, a depth equal to the film thickness, and a pitch of 0.5 □m are formed in the film. The direction in which the striped grooves are formed is perpendicular to the in-plane easy axis direction of the film. This groove can be formed by implanting ions into the garnet film in the groove forming portion and then etching it with heated phosphoric acid.

第1図は本発明の主要部を示す図である。縞状の溝を形
成することにより、この溝で区分された縞状領域1はあ
たかも縞状膜区分の長手方向が矩形の長辺で、膜厚方向
が矩形の短辺の矩形状薄層とみなせるようになる。この
時、0.311m幅の縞幅は矩形状薄層の厚さとみなせ
る。この矩形状薄層は層に垂直方向に一軸磁気異方性を
有するため、磁区3が形成でき、その磁壁を転送路とす
る記憶領域を形成することができる。この磁区による転
送路の長手方向を膜面に垂直方向することにより、ブロ
ッホライン対として記憶されているデータを膜表面から
基板側4へと転送路し、逆に基板側から膜表面へと戻す
ことができる。転送方法は、矩形薄層間に周期0.1μ
m周期で膜厚0.05μmのクロム導体層6を形成し、
ビット固定パタンを形成した上で矩形状薄層に垂直な方
向にパルス磁界を印加することにより行なう。
FIG. 1 is a diagram showing the main part of the present invention. By forming the striped grooves, the striped region 1 divided by the grooves appears to be a rectangular thin layer, with the long side of the striped film section being the long side of the rectangle and the short side of the rectangle being in the thickness direction. You will be able to understand it. At this time, the stripe width of 0.311 m can be regarded as the thickness of a rectangular thin layer. Since this rectangular thin layer has uniaxial magnetic anisotropy in the direction perpendicular to the layer, a magnetic domain 3 can be formed, and a storage area can be formed using the domain wall as a transfer path. By making the longitudinal direction of the transfer path by this magnetic domain perpendicular to the film surface, data stored as Bloch line pairs is transferred from the film surface to the substrate side 4, and conversely back from the substrate side to the film surface. be able to. The transfer method uses a period of 0.1μ between rectangular thin layers.
Forming a chromium conductor layer 6 with a thickness of 0.05 μm in m periods,
This is done by forming a bit fixing pattern and applying a pulsed magnetic field in a direction perpendicular to the rectangular thin layer.

情報の書込みは基本的には従来例と同一方法であり、矩
形薄層の表面側にバブルドメイン転送を行なうメジャー
ライン7を設け、メジャーラインを転送してきたバブル
によるデータをマイナーループ転送路内にブロッホライ
ンとして変換する。この時、マイナーループ転送路であ
るドメイン端を伸張させ、メジャーラインにバブルが存
在しない時は該ドメインは容易に伸張し、該ドメイン伸
張部に導体5にパルス電流を印加することにより、該矩
形薄層に垂直方向のパルス磁界を発生させ、正負のブロ
ッホラインを発生させた状態でドメインを切断し、2本
の負のブロッホラインを書込む。メジャーラインにバブ
ルが存在しているときはマイナーループ端は伸張せず、
以上の書込みは起こらない。
Information is basically written using the same method as in the conventional example. A major line 7 for bubble domain transfer is provided on the surface side of the rectangular thin layer, and data by bubbles transferred from the major line is transferred into the minor loop transfer path. Convert as Bloch line. At this time, the edge of the domain, which is the minor loop transfer path, is extended, and when there is no bubble in the major line, the domain is easily extended, and by applying a pulse current to the conductor 5 at the domain extension part, the rectangle is A perpendicular pulsed magnetic field is generated in the thin layer to cut the domain while generating positive and negative Bloch lines, and two negative Bloch lines are written. When there is a bubble on the major line, the minor loop end will not stretch,
No further writing occurs.

読み出し法も従来と同様な方法、即ち転送路先端部を伸
張させ、ブロッホラインの有無により先端部の磁壁状態
が異なることを利用し、ドメイン切断に要する導体5の
電流値の差を検出し、読み出しを行なうことができる。
The readout method is the same as the conventional method, that is, the tip of the transfer path is extended, and the difference in the current value of the conductor 5 required for domain cutting is detected by utilizing the fact that the state of the domain wall at the tip varies depending on the presence or absence of a Bloch line. Reading can be performed.

以上実施例により詳細に説明したように、本発明により
、従来より1桁以上大きな記憶密度を有する磁気記憶素
子を提供することができ、大容量磁気記憶素子の実用化
に資すること犬である。
As described above in detail using the embodiments, the present invention makes it possible to provide a magnetic memory element having a memory density that is one order of magnitude higher than that of the prior art, and contributes to the practical application of large-capacity magnetic memory elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による磁気記憶素子の実施例を示す図で
あり、第2図は従来の磁気記憶素子を示す図である。 図中1は矩形状薄層、2は面内−軸磁気異方性の容易方
向、3は矩形状薄層に形成したドメインによる転送路、
4は軟磁性の強磁性体薄膜基板、5はブロッホライン書
込み/続出し導体であり、6はビット固定パタン薄層、
7はメジャーラインのバブルドメイン転送用導体であり
、8はデータ人出力部であり、バブル発生およびバブル
検出部である。
FIG. 1 is a diagram showing an embodiment of a magnetic memory element according to the present invention, and FIG. 2 is a diagram showing a conventional magnetic memory element. In the figure, 1 is a rectangular thin layer, 2 is an easy direction of in-plane-axial magnetic anisotropy, 3 is a transfer path formed by a domain formed in a rectangular thin layer,
4 is a soft magnetic ferromagnetic thin film substrate, 5 is a Bloch line writing/continuation conductor, 6 is a bit fixed pattern thin layer,
7 is a major line bubble domain transfer conductor, 8 is a data output section, and is a bubble generation and bubble detection section.

Claims (4)

【特許請求の範囲】[Claims] (1)情報読み出し手段、情報書込み手段及び情報蓄積
手段を有し、かつ、膜面内の一方向を磁化容易方向に持
つ軟磁性の強磁性体(フェリ磁性体を含む)膜を実質的
に該強磁性体膜の膜厚に比しその幅が充分小さいように
縞状に区分することにより、該区分した膜内に生じる面
内に向いた磁区を転送路とし、該磁区内に生じる相隣る
2つの垂直ブロッホラインからなる垂直ブロッホライン
対を情報担体とし、かつ該ブロッホラインを書込みかつ
読出す機能を有することを特徴とする磁気記憶素子。
(1) A soft magnetic ferromagnetic material (including ferrimagnetic material) film having an information reading means, an information writing means, and an information storage means and having one direction in the film surface as an easy magnetization direction. By dividing the ferromagnetic film into stripes whose width is sufficiently small compared to the thickness of the ferromagnetic film, the in-plane magnetic domains generated in the divided film are used as transfer paths, and the phases generated within the magnetic domains are A magnetic memory element characterized in that a vertical Bloch line pair consisting of two adjacent vertical Bloch lines is used as an information carrier, and has a function of writing and reading the Bloch lines.
(2)該磁区の長手方向が膜面に垂直方向であることを
特徴とする特許請求の範囲第1項記載の磁気記憶素子。
(2) The magnetic memory element according to claim 1, wherein the longitudinal direction of the magnetic domain is perpendicular to the film surface.
(3)該軟磁性の強磁性体膜として膜面内で縞状の区分
の長手方向に垂直な方向に一軸異方性を有することを特
徴とする特許請求の範囲第1項または第2項に記載の磁
気記憶素子。
(3) Claims 1 or 2, characterized in that the soft magnetic ferromagnetic film has uniaxial anisotropy in a direction perpendicular to the longitudinal direction of the striped sections within the film plane. The magnetic memory element described in .
(4)該軟磁性の強磁性体膜の区分法として、縞状に該
膜の膜厚に等しい深さの溝を形成することを特徴とする
特許請求の範囲第1項記載の磁気記憶素子の製造方法。
(4) The magnetic memory element according to claim 1, wherein the soft magnetic ferromagnetic film is divided by forming striped grooves with a depth equal to the film thickness of the film. manufacturing method.
JP2224593A 1990-08-27 1990-08-27 Magnetic storage element and its manufacture Pending JPH04105290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2224593A JPH04105290A (en) 1990-08-27 1990-08-27 Magnetic storage element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2224593A JPH04105290A (en) 1990-08-27 1990-08-27 Magnetic storage element and its manufacture

Publications (1)

Publication Number Publication Date
JPH04105290A true JPH04105290A (en) 1992-04-07

Family

ID=16816162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2224593A Pending JPH04105290A (en) 1990-08-27 1990-08-27 Magnetic storage element and its manufacture

Country Status (1)

Country Link
JP (1) JPH04105290A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5653480A (en) * 1993-03-19 1997-08-05 Bridgestone Flowtech Corporation Pipe coupling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5653480A (en) * 1993-03-19 1997-08-05 Bridgestone Flowtech Corporation Pipe coupling

Similar Documents

Publication Publication Date Title
JP5344810B2 (en) Information storage device using domain wall motion and manufacturing method thereof
WO2008090305A1 (en) Magnetic structure with multiple-bit storage capabilities
JPH04105290A (en) Magnetic storage element and its manufacture
US4414648A (en) Magnetic bubble domain swap gate circuit
JPS6059669B2 (en) High density bubble memory element
GB1582471A (en) Magnetic memories for the storage of data
US5436861A (en) Vertical bloch line memory
JPS5996592A (en) Magnetic storage element
JPH03147591A (en) Magnetic storage element
JPH03238688A (en) Method for writing of magnetic memory element
JPH04105291A (en) Magnetic storage element
JPH03198284A (en) Writing method of magnetic storage element
JPH04170785A (en) Magnetic memory cell
JPH04170786A (en) Magnetic memory cell
JPS5996590A (en) Formation of stripe domain minor loop
JPH05234357A (en) Magnetic memory element and reading method thereof
JPH03256290A (en) Writing method for magnetic storage element
Dorleijn et al. Repulsive interactions between magnetic bubbles: Consequences for bubble devices
JPH0346186A (en) Magnetic storage element and its driving method
JPH0458674B2 (en)
JPH04305886A (en) Magnetic storage element and its driving method
JPS60113391A (en) Magnetic memory element
JPS5996593A (en) Write transfer gate
JPH03147592A (en) Magnetic storage element
KR20190024207A (en) Shift register and data shift method thereof