JPH04105042A - Measuring method for underwater dissolved coal dioxide - Google Patents

Measuring method for underwater dissolved coal dioxide

Info

Publication number
JPH04105042A
JPH04105042A JP2222518A JP22251890A JPH04105042A JP H04105042 A JPH04105042 A JP H04105042A JP 2222518 A JP2222518 A JP 2222518A JP 22251890 A JP22251890 A JP 22251890A JP H04105042 A JPH04105042 A JP H04105042A
Authority
JP
Japan
Prior art keywords
gas
photometer
gas flow
gasifier
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2222518A
Other languages
Japanese (ja)
Inventor
Mutsuo Ayukawa
鮎川 睦雄
Koji Asano
浅野 幸治
Toru Takagi
高木 透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP2222518A priority Critical patent/JPH04105042A/en
Publication of JPH04105042A publication Critical patent/JPH04105042A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure the underwater CO2 quickly by furnishing a gasifying means for underwater dissolved CO2 and an infrared absorptive photometer of non-dispersion type for use in combination. CONSTITUTION:As preparation for measurement, current is fed to an infrared absorptive photometer 16 of non-dispersion type and an electronic dehumidifier 14, which are thus stabilized, and then a valve 4 is opened for regulation 6 of the rate of gas flow from a CO2 standard gas container 1, and the gas is sent to the photometer 16 for checking it. A cock 5 is switched to regulate 6 the rate of gas flow from a N2 gas container 2 into its specified value. Sulfuric acid of a specified quantity is put in a CO2 gasifier 10, and a cock 8 is switched to the gasifier 10 side, and after adjusting the rate of N2 gas flow again, a specified amount of specimen to be measured is poured in from the pour-in mouth of the gasifier 10 using a micro-syringe 11 fitted with filter, and now the CO2 is liberated and gasified. This CO2 is carried by carrier gas, N2 and passed through glass wool 13, dehumidifier 14, and drying agent 15 to the photometer 16. Thus the CO2 concentration can be determined from the dosage by measuring the wave height having appeared on a recording sheet of a recording meter 17.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、水(液)中の溶存二酸化炭素を迅速にかつ高
精度に測定する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for rapidly and highly accurately measuring dissolved carbon dioxide in water (liquid).

〔従来の技術〕[Conventional technology]

従来、水中の溶存二酸化炭素の測定方法としては、水酸
化バリウムや塩化ストロンチウムでc。
Conventionally, dissolved carbon dioxide in water has been measured using barium hydroxide or strontium chloride.

、を安定化(不溶性塩として沈澱)させた後、その量を
フェノールフタレインを指示薬とし、水酸化ナトリウム
で滴定することによって求める中和滴定法が知られてい
る。
is stabilized (precipitated as an insoluble salt), and then its amount is determined by titration with sodium hydroxide using phenolphthalein as an indicator.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記従来の方法においては、測定試料により前
処理方法が異なり、多くのガラス器具類を使用しなけれ
ばならないと共に試薬調製にも時間がかかる。
However, in the above-mentioned conventional method, the pretreatment method differs depending on the sample to be measured, many glass instruments must be used, and it takes time to prepare the reagent.

また、測定工程として約1〜2時間かかるため、測定操
作中に空気中のCO2を吸収してしまう等により、測定
精度の低下を来すといった問題点がある。
Furthermore, since the measurement process takes about 1 to 2 hours, there is a problem that measurement accuracy decreases due to absorption of CO2 in the air during the measurement operation.

本発明の目的は、水中の溶存二酸化炭素を迅速に、かつ
高精度に測定する方法を提供することにある。
An object of the present invention is to provide a method for rapidly and highly accurately measuring dissolved carbon dioxide in water.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明はなされたものであ
る。
The present invention has been made in order to solve the above problems.

すなわち本発明は、水中の溶存二酸化炭素を測定するに
際して、該水中溶存二酸化炭素(以下水中CO2という
)の気化手段と非分散型赤外線吸光光度計とを組み合わ
せた分析装置により、測定することを特徴とする水中の
溶存二酸化炭素の測定力法である。
That is, the present invention is characterized in that when measuring dissolved carbon dioxide in water, the measurement is carried out using an analysis device that combines a means for vaporizing the carbon dioxide dissolved in water (hereinafter referred to as CO2 in water) and a non-dispersive infrared absorption photometer. This is a power method for measuring dissolved carbon dioxide in water.

本発明において使用される測定サンプルはCO2を含む
すべての溶液について適用することができる。
The measurement sample used in the present invention can be applied to all solutions containing CO2.

本発明における水中C○2の気化手段としては、次のよ
うな手段が用いられる。すなわち、サンプル液中に溶存
する各種炭酸物質は強酸を加えて酸性(PH=2以下)
にすると炭酸物質からCO2が遊離して気化する。これ
を利用するのが好ましい。
In the present invention, the following means are used to vaporize C○2 in water. In other words, various carbonic substances dissolved in the sample solution are made acidic (PH = 2 or less) by adding a strong acid.
When this happens, CO2 is liberated from the carbonic acid substance and vaporizes. It is preferable to use this.

例えば、硫酸を入れた容器内にマイクロシリンジを介し
て硫酸を注入する等の手段が用いられる。
For example, a method such as injecting sulfuric acid into a container containing sulfuric acid via a microsyringe is used.

例えば使用される硫酸は溶液のPHを下げて、CO2を
気化させるためのPH調製用として作用するのである。
For example, the sulfuric acid used lowers the pH of the solution and acts as a pH adjuster for vaporizing CO2.

このような気化手段によって気化、遊離されたCO2は
、キャリアーガスで運ばれ、通常ガラスウール、除湿器
、乾燥剤等を通して充分水分が除かれて非分散型赤外線
吸光光度計(16) (検知器)に送られ、測定される
。キャリアーガスとしては、検知器にて感知されない窒
素、アルゴン等の不活性ガスが用いられる。
The CO2 vaporized and liberated by such vaporization means is carried by a carrier gas, and the water is removed sufficiently through glass wool, a dehumidifier, a desiccant, etc., and then the CO2 is transferred to a non-dispersive infrared absorption photometer (16) (detector). ) and measured. As the carrier gas, an inert gas such as nitrogen or argon, which is not detected by the detector, is used.

非分散型赤外線吸光光度計及び電子除湿器の安定時間と
しては、通常30分〜1時間が必要である。
The stabilization time of a non-dispersive infrared absorption photometer and an electronic dehumidifier is usually 30 minutes to 1 hour.

測定時間は、サンプル注入後測定結果が得られるまで、
通常5分以内という短時間である。
The measurement time is from sample injection until measurement results are obtained.
It is a short time, usually within 5 minutes.

〔実施例〕〔Example〕

以下、本発明に係る測定方法の実施の態様を、図面に示
す装置例を参照して具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the measuring method according to the present invention will be specifically described with reference to an example of the apparatus shown in the drawings.

第1図は本発明に係る測定方法を実施するための装置例
の概略図である。
FIG. 1 is a schematic diagram of an example of an apparatus for carrying out the measuring method according to the present invention.

まず、測定前準備として、非分散型赤外線吸光光度計1
6(島津製作所製赤外線式ガス分析計URA−107型
)及び電子除湿器14の電源を入れて約1時間、装置の
安定化を図る。
First, as a preparation before measurement, a non-dispersive infrared absorption photometer 1
6 (infrared gas analyzer model URA-107 manufactured by Shimadzu Corporation) and electronic dehumidifier 14 were turned on and the devices were stabilized for about 1 hour.

装置安定後、CO2標準ガスの圧力バルブ4を開き切替
コック5を切替え、流量計7で0.15A/min、に
ガス流量調整バルブ6で調整する。標準ガスは切替コッ
ク8を経て逆止弁9を通り気液分離器12、ガラスウー
ル13、電子除湿器14、過塩素酸マグネシウム15を
経て非分散型赤外線吸光光度計16へと達し、ここで標
準ガス濃度にスパンを合わせ、非分散型赤外線吸光光度
計16のチエツクを行う。CO2標準ガスは非分散型赤
外線吸光光度計16のスパンを合わせ、計器のチエツク
に使用されるのである。
After the apparatus is stabilized, the CO2 standard gas pressure valve 4 is opened, the switching cock 5 is switched on, and the flow rate is adjusted to 0.15 A/min using the flow meter 7 using the gas flow rate adjustment valve 6. The standard gas passes through the switching cock 8, the check valve 9, the gas-liquid separator 12, the glass wool 13, the electronic dehumidifier 14, the magnesium perchlorate 15, and reaches the non-dispersive infrared absorption photometer 16, where it is Adjust the span to the standard gas concentration and check the non-dispersive infrared absorption photometer 16. The CO2 standard gas is used to span the non-dispersive infrared spectrophotometer 16 and check the instrument.

切替コック5をN2ガス圧力調整バルブ3側、切替コッ
ク8を逆止弁9側に切替える。
Switch the switching cock 5 to the N2 gas pressure adjustment valve 3 side and switch the switching cock 8 to the check valve 9 side.

N、ガス圧力調整バルブ3を開いて、N2ガス流量がガ
ス流量計7で規定流量(キャリアーガスの流量は通常0
.1517 min、である)になるようにガス流量調
整バルブ6で調節する。
Open the N gas pressure adjustment valve 3, and check the N2 gas flow rate at the specified flow rate using the gas flow meter 7 (the carrier gas flow rate is normally 0).
.. 1517 min) using the gas flow rate adjustment valve 6.

CO7気化器10に硫酸(規定の希釈率、1+50)を
規定量(8〜l0m1)入れる。
A specified amount (8 to 10 ml) of sulfuric acid (specified dilution rate, 1+50) is put into the CO7 vaporizer 10.

切替コック8を気化器lO側に切替える。N2ガス流量
が低下するので再度ガス流量調整バルブ6でガス流量を
規定流量(0,151/min、 )に調節する。
Switch the switching cock 8 to the carburetor lO side. Since the N2 gas flow rate decreases, the gas flow rate is adjusted again to the specified flow rate (0.151/min) using the gas flow rate adjustment valve 6.

記録計17のベースラインが安定したら、測定準備完了
となる。
When the baseline of the recorder 17 becomes stable, preparation for measurement is completed.

測定は、気化器10の注入口からフィルター付マイクロ
シリンジ11で測定試料の規定量(含CO2世に応じて
通常、5μm〜5m1)を注入する。
For the measurement, a specified amount of the sample to be measured (usually 5 μm to 5 ml depending on the CO2 content) is injected from the inlet of the vaporizer 10 using the microsyringe 11 with a filter.

注入後、約5分以内に記録計17にCO2のピークが出
る。
After injection, a CO2 peak appears on the recorder 17 within about 5 minutes.

記録紙上の波高を測定して、検量線からCO2濃度を求
める。
The wave height on the recording paper is measured and the CO2 concentration is determined from the calibration curve.

以上説明した、第1図に示す本発明に係る測定方法を実
施するための分析装置を用いて異なる箇所から採取した
分析サンプルA、B、Cの液中溶存二酸化炭素の測定を
行った。
The dissolved carbon dioxide in the liquid of analysis samples A, B, and C collected from different locations was measured using the analyzer for carrying out the measurement method according to the present invention as shown in FIG. 1 as described above.

サンプル−件当たりの測定の所要時間は5分以内である
ことが記録紙から確認された。
It was confirmed from the recording paper that the time required for measurement per sample was within 5 minutes.

また、サンプルの測定結果を従来法(中和滴定法)と比
較して第1表に示す。A、 B、 Cはサンプル採取箇
所、nは採取時点が異なることを示す。
Table 1 also shows the measurement results of the samples in comparison with the conventional method (neutralization titration method). A, B, and C indicate sample collection locations, and n indicates different sampling times.

第 表 該表かられかるように、従来法では測定結果としての数
値が低く出ており、これは分析操作中におけるCO2の
吸収により生じた誤差であると推定される。すなわち、
本発明の測定方法によれば高精度な測定結果が得られる
ことがわかる。
As can be seen from Table 1, the measurement results obtained using the conventional method are low, and this is presumed to be an error caused by the absorption of CO2 during the analytical operation. That is,
It can be seen that highly accurate measurement results can be obtained according to the measurement method of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明の、水中の溶存二酸化炭素をCO2気化手段と非
分散型赤外線吸光光度計とを組み合わせた分析装置を用
いた測定方法によれば、サンプル1外光たりの測定所要
時間がサンプル注入後5分以内という短時間で測定可能
となり、かつ測定値も高精度なため、その効果は極めて
大きいものである。
According to the method of measuring dissolved carbon dioxide in water using an analyzer combining a CO2 vaporization means and a non-dispersive infrared absorption photometer according to the present invention, the time required for measurement per external light of one sample is 55 minutes after injection of the sample. The effect is extremely large because it can be measured in a short time, within minutes, and the measured values are highly accurate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る測定方法を実施するための装置例
の概略図である。 1・・・・N、ガスボンベ、 2・・・・C02標準ガスボンベ、 3・・・・N2ガス圧力調整バルブ、 4・・・・CO2標準ガス圧力調整バルブ、5・・・・
切替コック、 6・・・・ガス流量調整/<ルブ、 7・・・・ガス流量計、  8・・・・切替コ・ツク、
9・・・・逆止弁、   IO・・・・気化器、11・
・・・フィルター付マイクロシリンジ、12・・・・気
液分離器、 13・・・・ガラスウール、14・・・・
電子除湿器、 15・・・・過塩素酸マグネシウム、 16・・・・非分散型赤外線吸光光度計、17・・・・
記録計
FIG. 1 is a schematic diagram of an example of an apparatus for carrying out the measuring method according to the present invention. 1...N gas cylinder, 2...C02 standard gas cylinder, 3...N2 gas pressure adjustment valve, 4...CO2 standard gas pressure adjustment valve, 5...
Switching cock, 6...Gas flow rate adjustment/<lub, 7...Gas flow meter, 8...Switching cock,
9... Check valve, IO... Carburizer, 11...
... Microsyringe with filter, 12 ... Gas-liquid separator, 13 ... Glass wool, 14 ...
Electronic dehumidifier, 15... Magnesium perchlorate, 16... Non-dispersive infrared absorption photometer, 17...
recorder

Claims (1)

【特許請求の範囲】[Claims] 1、水中の溶存二酸化炭素を測定するに際して、該水中
溶存二酸化炭素の気化手段と非分散型赤外線吸光光度計
とを組み合わせた分析装置により、測定することを特徴
とする水中の溶存二酸化炭素の測定方法。
1. Measurement of dissolved carbon dioxide in water, characterized in that when measuring dissolved carbon dioxide in water, the measurement is carried out using an analysis device that combines means for vaporizing the dissolved carbon dioxide in water and a non-dispersive infrared absorption photometer. Method.
JP2222518A 1990-08-27 1990-08-27 Measuring method for underwater dissolved coal dioxide Pending JPH04105042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2222518A JPH04105042A (en) 1990-08-27 1990-08-27 Measuring method for underwater dissolved coal dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2222518A JPH04105042A (en) 1990-08-27 1990-08-27 Measuring method for underwater dissolved coal dioxide

Publications (1)

Publication Number Publication Date
JPH04105042A true JPH04105042A (en) 1992-04-07

Family

ID=16783685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2222518A Pending JPH04105042A (en) 1990-08-27 1990-08-27 Measuring method for underwater dissolved coal dioxide

Country Status (1)

Country Link
JP (1) JPH04105042A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010090641A (en) * 2000-04-10 2001-10-19 손정익 Infrared CO2 analyzing system using sample injection method
CN105203502A (en) * 2015-08-14 2015-12-30 北京大学 In-situ online collection analysis meter and method for aerosol carbonaceous components

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010090641A (en) * 2000-04-10 2001-10-19 손정익 Infrared CO2 analyzing system using sample injection method
CN105203502A (en) * 2015-08-14 2015-12-30 北京大学 In-situ online collection analysis meter and method for aerosol carbonaceous components
CN105203502B (en) * 2015-08-14 2017-11-07 北京大学 A kind of aerosol carbonaceous components online acquisition analyzer in situ and its method

Similar Documents

Publication Publication Date Title
Arnold et al. Fiber optic ammonia gas sensing probe
Van Hall et al. Rapid Combustion Method for the Determination of Organic Substances in Aqueous Solutions.
Reiszner et al. Collection and determination of sulfur dioxide incorporating permeation and West-Gaeke procedure
Miller et al. Measurement of nitric acid in smog
US6690462B2 (en) Calibration scheme for continuous monitoring of mercury emissions from stationary sources by plasma emission spectrometry
Blanchette et al. Determination of hydrogen sulfide and methyl mercaptan in mouth air at the parts-per-billion level by gas chromatography
JPH04105042A (en) Measuring method for underwater dissolved coal dioxide
Swaans et al. Laboratory and field validation of a combined NO 2–SO 2 Radiello passive sampler
Patton et al. Gas chromatographic determination of some hydrocarbons in cigarette smoke
van der Mark et al. Water vapour and carbon dioxide decrease nitric oxide readings
US4934182A (en) Process and apparatus for determining water content of materials
US3117841A (en) Method and apparatus for detecting gases or vapors
Cadoff et al. Passive sampler for ambient levels of nitrogen dioxide
Nishikawa et al. Ion chromatographic determination of nitrogen dioxide in the atmosphere by using a triethanolamine-coated cartridge
Konieczka et al. Utilization of thermal decomposition of immobilized compounds for the generation of gaseous standard mixtures used in the calibration of gas analysers
DIVINCENZO et al. The gas chromatographic analysis of methylene chloride in breath, blood, and urine
Pursglove et al. Colorimetric determination of carbony sulfide in synthesis gas
Stephens et al. Spectrophotometric determination of sulphur dioxide by reduction of iron (III) and simultaneous chelation of the iron (II) with 2, 4, 6-tri (2-pyridyl) 1, 3, 5-triazine
Licki et al. Monitoring and control systems for an EB flue gas treatment pilot plant—Part I. Analytical system and methods
Webber et al. The adaptation of coated piezoelectric devices for use in the detection of gases in aqueous solutions
Gaudebout et al. Assessment of Scholander micromethod for gas concentrations versus weighing method
CN111307744A (en) Device for measuring mercury in flue gas
JPH07113605B2 (en) Gas analyzer
KRING et al. Laboratory validation and field verification of a new passive colorimetric air monitoring badge for sampling hydrogen sulfide in air
JPH10104220A (en) Combustion-oxidation type toc meter