JPH04105041A - Method and device for measurement of mirror image isomer surplus rate - Google Patents

Method and device for measurement of mirror image isomer surplus rate

Info

Publication number
JPH04105041A
JPH04105041A JP22461190A JP22461190A JPH04105041A JP H04105041 A JPH04105041 A JP H04105041A JP 22461190 A JP22461190 A JP 22461190A JP 22461190 A JP22461190 A JP 22461190A JP H04105041 A JPH04105041 A JP H04105041A
Authority
JP
Japan
Prior art keywords
component
spectrum
optical activity
enantiomeric excess
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22461190A
Other languages
Japanese (ja)
Inventor
Akio Wada
明生 和田
Yutaka Yoshida
裕 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Jasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jasco Corp filed Critical Jasco Corp
Priority to JP22461190A priority Critical patent/JPH04105041A/en
Publication of JPH04105041A publication Critical patent/JPH04105041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure the mirror image isomer surplus rate of different type of optical activating bodies included in a mixture specimen by calculating the primary coupling constant of the optical activation amount and the absorptive spectrum of the mixture specimen while the pure specimen is expressed with the quantities specified in Standards. CONSTITUTION:The absorptive spectrum U(lambda) of a mixture specimen 10 is measured by a spectro-photometer 12, and the CD curve V(lambda) is measured by a circle two-color type measuring device 14 and stored in memories 16a, 16b of a microcomputer 16. For each pure specimen, the CD curve and the absorption spectrum specified in Standards on the concentration basis are accommodated in an external memory device 18, and if the operator enters the name of component which he assumes as contained by the specimen 10, a reference data reading part 16c reads the CD curve g1(lambda) and absorption spectrum f1(lambda) of this component out of the external memory device 18 and stores in memory parts 16d, 16e. At this time, a component concentration calculating part 16f determines the primary coupling constant C1+ in Eq. I, while a component difference concentration calculating part 16g determines the primary coupling constant C1- in Eq. II, and a mirror image isomer surplus rate calculating part 16h can calculate the surplus rate from Eq. III.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は鏡像異性体過剰率測定方法及び装置に関する。 The present invention relates to a method and apparatus for measuring enantiomeric excess.

【従来の技術】[Conventional technology]

医薬品を例にとると、医薬品を構成する物質は光学活性
であることが多く、かつ、その光学異性体間で、薬効、
副作用、毒性などが異なることが多いため、薬品の開発
及び検査において鏡像異性体過剰率を測定する必要があ
る。 鏡像異性体過剰率は、純粋試料(単一成分)の場合には
、旋光針で測定することができる。 また、純粋試料のタロマドグラムのピークがd体とβ体
について完全に分離する場合には、各ピーク面積の差と
和の比から鏡像異性体過剰率を求めることができる。し
かし、このような分離をする物質は非常に少なく、しか
も、複数成分からなる混合試料については、各成分間の
分離とその成分についての光学分離が同時に必要となり
、したがって、混合試料について各成分の鏡像異性体過
剰率をクロマトグラフィーで求とることは一般に殆ど不
可能である。 以上の如く、光学異性体の分離技術は確立されておらず
、複数の光学活性体が混合している試料について鏡像異
性体過剰率を求とることは従来殆ど不可能であった。
Taking pharmaceuticals as an example, the substances that make up pharmaceuticals are often optically active, and the medicinal efficacy and
Because side effects, toxicity, etc. often differ, it is necessary to measure enantiomeric excess in drug development and testing. Enantiomeric excess can be determined with an optical rotation needle in the case of pure samples (single component). Furthermore, when the peaks of the talomadogram of a pure sample are completely separated for the d-form and the β-form, the enantiomeric excess can be determined from the ratio of the difference and sum of the respective peak areas. However, there are very few substances that can be separated in this way, and moreover, for a mixed sample consisting of multiple components, separation between each component and optical separation of that component are required at the same time. It is generally almost impossible to determine enantiomeric excess by chromatography. As described above, the technology for separating optical isomers has not been established, and it has been almost impossible to determine the enantiomeric excess of a sample containing a mixture of a plurality of optically active substances.

【発明が解決しようとする課題】[Problem to be solved by the invention]

本発明の目的は、このような問題点に鑑み、混合試料に
含まれる複数種の光学活性体の各々の鏡像異性体過剰率
を測定することができる鏡像異性体過剰率測定方法及び
装置を提供することにある。
In view of these problems, an object of the present invention is to provide a method and apparatus for measuring the enantiomeric excess rate, which can measure the enantiomeric excess rate of each of a plurality of optically active substances contained in a mixed sample. It's about doing.

【課題を解決するた約の手段】[Means of promise to solve problems]

この目的を達成するために、本発明に係る鏡像異性体過
剰率測定方法では、混合試料のスペクトルU(λ)を測
定し、該スペクトルU(λ)を、純粋試料i  (i=
1〜n)の各々について濃度で規格化されたスペクトル
fi  (λ)の一次結合、Σ+=1 C1゜f、(λ)で表したときの、一次結合定数C3゜
を算出し、該混合試料の波長λに関する光学活性量V(
λ)を測定し、該光学活性量V(λ)を、光学活性体の
該純粋試料i  (i=1〜m、m≦n)の各々につい
て濃度で規格化された波長に関する光学活性量g+  
(λ)の一次結合ΣCi−g +wl (λ)で表したときの一次結合定数C1−を算出し、該
混合試料に含まれている成分1の鏡像異性体過剰率%e
、e、(i>= 100 I C+−l /C++に関
する量を算出する。 ここに、光学活性量とは、CD(円二色性)やORD 
(旋光分散)などの、純粋試料の場合にd体とβ体とで
符号が逆かつ絶対値が等しくなる量を意味するものとす
る。 また、鏡像異性体過剰率に関する量とは、鏡像異性体過
剰率自体または容易に鏡像異性体過剰率を求めることが
できる量、例えば成分】のd体及びβ体の各比率等を意
味するものとする。 また、本発明に係る鏡像異性体過剰率測定装置では、上
記方法を実施するために、混合試料のスペクトルU(λ
)を測定するスペクトル測定装置と、該混合試料の波長
λに関する光学活性量■(λ)を測定する光学活性量測
定装置と、純粋試料i  (i=l〜n)の各々につい
て濃度で規格化されたスペクトルfi  (λ)が格納
され、かつ、光学活性体の該純粋試料i  (i=1〜
m、m≦n)の各々について濃度で規格化された波長に
関する光学活性量gt  (λ)が格納された参照デー
タ記憶手段と、該混合試料の該スペクトルU(λ)を、
該純粋試料に関する該規格化スペクトルの一次結合定数
01.fi(λ)で表したときの、1=1 次結合定数61゜を算出する成分濃度算出手段と、該混
合試料の波長λに関する光学活性量V(λ)を、該純粋
試料に関する該規格化光学活性量の一次結合ΣC,−g
、(λ)で表したときの一次結合i=1 定数C1−を算出する成分差濃度算出手段と、該成分濃
度算出手段及び該成分差濃度算出手段で算出された一次
結合定数01゜、C1−に基づいて、該混合試料に含ま
れている成分1の鏡像異性体過剰率%e、e、 (i)
= 100 C=l/C,、に関する量を算出する鏡像異性体過剰率
算出手段と、を備えている。
In order to achieve this objective, in the enantiomeric excess measurement method according to the present invention, the spectrum U(λ) of a mixed sample is measured, and the spectrum U(λ) is converted into a pure sample i (i=
For each of 1 to n), the linear coupling constant C3° of the concentration-normalized spectrum fi (λ), Σ+=1 C1°f, (λ) is calculated, and the linear coupling constant C3° is calculated for the mixed sample. The amount of optical activity V(
λ), and the optical activity V(λ) is calculated as the optical activity g+ with respect to the wavelength normalized by the concentration for each of the pure samples i (i=1 to m, m≦n) of the optically active substance.
Calculate the linear bond constant C1- when expressed as the linear bond ΣCi-g +wl (λ) of (λ), and calculate the enantiomeric excess rate %e of component 1 contained in the mixed sample.
, e, (i>= 100 I C+-l /C++ is calculated. Here, the optical activity amount refers to CD (circular dichroism) and ORD.
(optical rotational dispersion), which in the case of a pure sample, has opposite signs and equal absolute values for the d-form and the β-form. In addition, the amount related to the enantiomeric excess refers to the enantiomeric excess itself or an amount from which the enantiomeric excess can be easily determined, such as the ratio of the d-form and the β-form of the component. shall be. In addition, in the enantiomeric excess rate measuring device according to the present invention, in order to carry out the above method, the spectrum U (λ
), an optical activity measuring device that measures the optical activity amount (λ) with respect to the wavelength λ of the mixed sample, and normalization by concentration for each of the pure samples i (i = l to n). The resulting spectrum fi (λ) is stored, and the pure sample i (i=1~
a reference data storage means storing the optical activity amount gt (λ) with respect to the wavelength normalized by the concentration for each of m, m≦n); and the spectrum U(λ) of the mixed sample;
The linear coupling constant of the normalized spectrum for the pure sample is 01. component concentration calculation means for calculating 1=linear coupling constant 61° when expressed as fi (λ), and normalization of the optical activity amount V (λ) with respect to the wavelength λ of the mixed sample with respect to the pure sample. Linear combination of optical activity ΣC, -g
, (λ), a component difference concentration calculation means for calculating a constant C1-, and a linear combination constant 01°, C1 calculated by the component concentration calculation means and the component difference concentration calculation means. - based on the enantiomeric excess of component 1 contained in the mixed sample %e, e, (i)
= 100 C=l/C, enantiomeric excess calculation means.

【作用】[Effect]

本発明によれば、従来測定できなかった、混合試料に含
まれる複数種の光学活性体の各々の鏡像異性体過剰率を
測定することができる。
According to the present invention, it is possible to measure the enantiomeric excess of each of a plurality of types of optically active substances contained in a mixed sample, which could not be measured conventionally.

【実施例】【Example】

以下、図面に基づいて本発駅に係る鏡像異性体過剰率測
定方法及び装置の一実施例を膜間する。 第1図は鏡像異性体過剰率測定装置の構成を示す。 混合試料10にはn個の成分i  (i=l〜n)が含
まれており、そのうち、m個の成分1(11〜m、m≦
n)は光学活性体で、他は光学不活性体であるとする。 医薬品を例にとれば、薬品の開発、検査の場においては
、混合試料10に含まれているこれら成分は予め判って
いる。 混合試料10の例えば紫外可視域の吸収スペクトルU 
(、l)を分光光度計12で測定し、かつ、混合試料1
0のCD曲線V(λ)を円二色性測定装置14で測定し
て、それぞれマイクロコンピュタ16の吸収スペクトル
記憶部16a、CD曲線記憶部16bに格納する。なあ
、マイクロコンピュータ16のハードウェアは周知の構
成であり、第1図ではソフトウェア構成を機能ブロック
16a〜16hで示す。 一方、外部記憶装置18には、各種純粋試料について、
濃度で規格化された吸収スペクトル及びCD曲線が格納
されている。 操作者は、デイスプレィ装置20で確認しながらキーボ
ード22を操作して、混合試料10に含まれている又は
混合試料10に含まれでいると想定される成分名を人力
する。 参照データ続出部16cは、これに応答して、該成分の
吸収スペクトルfr  (λ)(i=1〜n)を外部記
憶装置工8から読み圧して第1参照データ記fii部1
6dに格納し、かつ、該成分J(1−1〜m)のCD曲
線g+  (λ)を外部記憶装置]8から読み出して第
2参照データ記憶部16eに格納する。 成分濃度算出部16fは、吸収スペクトル記憶部16a
に格納されているU(λ)を、第1参照データ記憶al
E16dに格納されているf、(λ)の一次結合で表し
て、その一次結合定数を求める。 すなわち、 U(λ)−ΣC++fi(λ)   ・・・ (1);
;1 における一次結合定数C8+を成分1の濃度として求約
る。これは、公知の多成分分析法により又はn点の波長
λ、(l−1〜n)を上式(1)に代入して得られるn
元連立方程式を解くことにより求めることができる。 同様に、成分差濃度算出部16gは、CD曲線記憶部1
6bに格納されている■(λ)を、第2参照データ記憶
部16eに格納されているg(λ)の一次結合で表して
、その一次結合定数を求める。すなわち、 ■(λ)−凡Ct−g+(λ)   ・・・ (2)+
=1 における一次結合定数C,−を成分1の差濃度として、
上記方法により求める。 ここで、混合試料10に含まれている光学活性体1(i
=1〜m)のd体の濃度をCidとし、L体の濃度をC
++とすると、次式が成立する。 C0゜−c 、d+ C++        ・・・ 
(3)C+−−C、、、IC+、        ・・
・ (4)鏡像異性体過剰率算出部16hは、成分濃度
算出部16f及び成分差濃度算出部16gで算出された
C+−、C+−(+−1〜m)に基づいて、光学活性体
lの鏡像異性体過剰率 %e、e、(1−100I C+−l/CI+・・・(
5)を算出し、これをデイスプレィ装置20に供給して
表示させるとともに、プリンタ24に供給して記録する
。 上記の如く構成された鏡像異性体過剰率測定装置に対し
、吸収スペクトル記憶部16aに第2図に示すような吸
収スペクトルを供給し、CD曲線記憶部16bに第3図
に示すようなCD曲線を供給した場合のシミュレーショ
ン結果を下表1に示表1
Hereinafter, an embodiment of the method and apparatus for measuring enantiomeric excess rate according to the present station will be described based on the drawings. FIG. 1 shows the configuration of an enantiomeric excess measuring device. The mixed sample 10 contains n components i (i=l~n), among which m components 1 (11~m, m≦
It is assumed that n) is an optically active substance and the others are optically inactive substances. Taking pharmaceuticals as an example, in drug development and testing, these components contained in the mixed sample 10 are known in advance. For example, the absorption spectrum U in the ultraviolet-visible region of the mixed sample 10
(, l) with the spectrophotometer 12, and the mixed sample 1
The CD curve V(λ) of 0 is measured by the circular dichroism measuring device 14 and stored in the absorption spectrum storage section 16a and the CD curve storage section 16b of the microcomputer 16, respectively. The hardware of the microcomputer 16 has a well-known configuration, and the software configuration is shown in FIG. 1 by functional blocks 16a to 16h. On the other hand, the external storage device 18 stores information about various pure samples.
Absorption spectra and CD curves normalized by concentration are stored. The operator operates the keyboard 22 while checking on the display device 20 to manually input the names of components contained in the mixed sample 10 or that are assumed to be contained in the mixed sample 10. In response, the reference data successive section 16c reads the absorption spectrum fr (λ) (i=1 to n) of the component from the external storage device 8 and stores it in the first reference data recording section 1.
6d, and reads out the CD curve g+ (λ) of the component J (1-1 to m) from the external storage device]8 and stores it in the second reference data storage section 16e. The component concentration calculation section 16f includes an absorption spectrum storage section 16a.
U(λ) stored in the first reference data storage al
Express the linear combination of f and (λ) stored in E16d to find the linear combination constant. That is, U(λ)-ΣC++fi(λ)... (1);
; The linear binding constant C8+ at 1 is calculated as the concentration of component 1. This can be obtained by a known multi-component analysis method or by substituting the wavelength λ, (l-1 to n) of n points into the above equation (1).
It can be obtained by solving the original simultaneous equations. Similarly, the component difference concentration calculation section 16g calculates the CD curve storage section 1.
6b is expressed as a linear combination of g(λ) stored in the second reference data storage section 16e, and its linear combination constant is determined. In other words, ■(λ)-Ct-g+(λ)... (2)+
Let the linear coupling constant C,- at =1 be the differential concentration of component 1,
Obtained using the above method. Here, the optically active substance 1 (i
=1~m), the concentration of the d-isomer is Cid, and the concentration of the L-isomer is C.
++, the following formula holds true. C0゜-c, d+ C++...
(3) C+--C,,,IC+,...
- (4) The enantiomeric excess rate calculation unit 16h calculates the optically active substance l based on C+-, C+-(+-1 to m) calculated by the component concentration calculation unit 16f and the component difference concentration calculation unit 16g. Enantiomeric excess %e, e, (1-100I C+-l/CI+...(
5) is calculated and supplied to the display device 20 for display, as well as to the printer 24 for recording. For the enantiomeric excess measuring device configured as described above, an absorption spectrum as shown in FIG. 2 is supplied to the absorption spectrum storage section 16a, and a CD curve as shown in FIG. 3 is supplied to the CD curve storage section 16b. Table 1 below shows the simulation results when supplying

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は本発明の鏡像異性体過剰率測定方法
及び装置の一実施例に係り、 第1図は鏡像異性体過剰率測定装置の構成を示すブロッ
ク図、 第2図はシミュレーションに用いた混合試料の吸光スペ
クトル図、 第3図はシミュレーションに用いた該混合試料のCD曲
線図である。 図中、 10は混合試料 16はマイクロコンピュータ
1 to 3 relate to an embodiment of the method and apparatus for measuring enantiomeric excess of the present invention, FIG. 1 is a block diagram showing the configuration of the enantiomeric excess measuring apparatus, and FIG. 2 is a simulation Fig. 3 is a CD curve diagram of the mixed sample used in the simulation. In the figure, 10 is a mixed sample 16 is a microcomputer

【発明の効果】【Effect of the invention】

以上説明した如く、本発明に係る鏡像異性体過剰率測定
方法及び装置では、従来測定できなかった、混合試料に
含まれる複数種の光学活性体の各々の鏡像異性体過剰率
を測定することができるという優れた効果を奏する。
As explained above, the enantiomeric excess measuring method and device according to the present invention can measure the enantiomeric excess of each of a plurality of optically active substances contained in a mixed sample, which could not be measured conventionally. It has excellent effects.

Claims (1)

【特許請求の範囲】 1)、混合試料のスペクトルU(λ)を測 定し、該スペクトルU(λ)を、純粋試料i(i=1〜
n)の各々について濃度で規格化されたスペクトルf_
i(λ)の一次結合▲数式、化学式、表等があります▼
(λ)で表したときの、一次結合定数C_i_+を算出
し、該混合試料の波長λに関する光学活性量V(λ)を
測定し、該光学活性量(λ)を、光学活性体の該純粋試
料i(i=1〜m、m≦n)の各々について濃度で規格
化された波長に関する光学活性量g_i(λ)の一次結
合▲数式、化学式、表等があります▼(λ)で表したと
きの一次結合定数C_i_−を算出し、該混合試料に含
まれている成分iの鏡像異性体過剰率%e.e.(i)
=100|C_i_−|/C_i_+に関する量を算出
することを特徴とする鏡像異性体過剰率測定方法。 2)、混合試料のスペクトルU(λ)を測 定するスペクトル測定装置と、 該混合試料の波長λに関する光学活性量V(λ)を測定
する光学活性量測定装置と、 純粋試料i(i=1〜n)の各々について濃度で規格化
されたスペクトルf_i(λ)が格納され、かつ、光学
活性体の純粋試料i(i=1〜m、m≦n)の各々につ
いて濃度で規格化された波長に関する光学活性量g_i
(λ)が格納された参照データ記憶手段と、 該混合試料の該スペクトルU(λ)を、該純粋試料に関
する該規格化スペクトルの一次結合▲数式、化学式、表
等があります▼_i_+f_i(λ)で表したときの、
一次結合定数C_i_+を算出する成分濃度算出手段と
、 該混合試料の波長λに関する光学活性量V(λ)を、該
純粋試料に関する該規格化光学活性量の一次結合▲数式
、化学式、表等があります▼(λ)で表したときの一次
結合定数C_i_−を算出する成分差濃度算出手段と、
該成分濃度算出手段及び該成分差濃度算出手段で算出さ
れた一次結合定数C_i_+、C_i_−に基づいて、
該混合試料に含まれている成分iの鏡像異性体過剰率%
e.e.(i)=100|C_i_−|/C_i_+に
関する量を算出する鏡像異性体過剰率算出手段と、 を有することを特徴とする鏡像異性体過剰率測定装置。
[Claims] 1) Measure the spectrum U(λ) of the mixed sample, and compare the spectrum U(λ) with the pure sample i (i=1 to
n) for each of the concentration-normalized spectra f_
Linear bond of i(λ)▲There are mathematical formulas, chemical formulas, tables, etc.▼
Calculate the linear coupling constant C_i_+ when expressed as (λ), measure the optical activity amount V(λ) with respect to wavelength λ of the mixed sample, and calculate the optical activity amount (λ) from Linear combination of optical activity g_i (λ) with respect to wavelength normalized by concentration for each sample i (i=1~m, m≦n)▲There are mathematical formulas, chemical formulas, tables, etc.▼Represented by (λ) Calculate the linear binding constant C_i_- at the time, and calculate the enantiomeric excess rate %e of component i contained in the mixed sample. e. (i)
=100|C_i_-|/C_i_+ A method for measuring enantiomeric excess rate characterized by calculating an amount related to. 2), a spectrum measurement device that measures the spectrum U (λ) of a mixed sample; an optical activity amount measurement device that measures the optical activity amount V (λ) with respect to the wavelength λ of the mixed sample; and a pure sample i (i=1 -n), and the concentration-normalized spectra f_i(λ) are stored for each of the optically active pure samples i (i=1-m, m≦n). Optical activity amount g_i regarding wavelength
(λ), and a linear combination of the spectrum U(λ) of the mixed sample and the normalized spectrum of the pure sample ▲There are mathematical formulas, chemical formulas, tables, etc. ▼_i_+f_i(λ) When expressed as
A component concentration calculation means for calculating a linear coupling constant C_i_+, and a linear combination of the normalized optical activity of the pure sample to calculate the optical activity V(λ) of the mixed sample with respect to the wavelength λ. There is a component difference concentration calculation means for calculating the linear coupling constant C_i_- when expressed as ▼(λ),
Based on the linear coupling constants C_i_+ and C_i_- calculated by the component concentration calculation means and the component difference concentration calculation means,
% enantiomeric excess of component i contained in the mixed sample
e. e. (i)=100|C_i_-|/C_i_+ An enantiomeric excess ratio calculation means for calculating an amount related to (i)=100|C_i_-|/C_i_+. An enantiomeric excess ratio measuring device characterized by having these.
JP22461190A 1990-08-27 1990-08-27 Method and device for measurement of mirror image isomer surplus rate Pending JPH04105041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22461190A JPH04105041A (en) 1990-08-27 1990-08-27 Method and device for measurement of mirror image isomer surplus rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22461190A JPH04105041A (en) 1990-08-27 1990-08-27 Method and device for measurement of mirror image isomer surplus rate

Publications (1)

Publication Number Publication Date
JPH04105041A true JPH04105041A (en) 1992-04-07

Family

ID=16816439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22461190A Pending JPH04105041A (en) 1990-08-27 1990-08-27 Method and device for measurement of mirror image isomer surplus rate

Country Status (1)

Country Link
JP (1) JPH04105041A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007524845A (en) * 2003-10-14 2007-08-30 バイオ トゥールズ インク Reaction monitoring of chiral molecules using Fourier transform infrared vibrational circular dichroism spectroscopy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007524845A (en) * 2003-10-14 2007-08-30 バイオ トゥールズ インク Reaction monitoring of chiral molecules using Fourier transform infrared vibrational circular dichroism spectroscopy

Similar Documents

Publication Publication Date Title
Walter Dry reagent chemistries in clinical analysis
Brown A new instrument for the simultaneous measurement of total hemoglobin,% oxyhemoglobin,% carboxyhemoglobin,% methemoglobin, and oxygen content in whole blood
Urbanová et al. Measurements of concentration dependence and enantiomeric purity of terpene solutions as a test of a new commercial VCD spectrometer
US20060223192A1 (en) Rapid test for glycated albumin
ATE30780T1 (en) PROCEDURE FOR DETERMINING BIOACTIVE SUBSTANCES.
CA1158890A (en) Photometric analyser for studying automatically complex solutions
Faller et al. Physicochemical parameters as tools in drug discovery and lead optimization
CA1115546A (en) Apparatus and method for determining the concentration in a sample
US10564094B2 (en) Device and method for blood hemoglobin measurement without carboxyhemoglobin interference
JPH04105041A (en) Method and device for measurement of mirror image isomer surplus rate
JPH07218491A (en) Detector for chromatograph
US5592290A (en) Method for correcting instrumental error of spectroscope of optical analyzer
Daviter et al. Circular and linear dichroism spectroscopy for the study of protein–ligand interactions
Gilbert et al. Cross-validation of bioanalytical methods between laboratories
JPS63111446A (en) Analyzing device
EP1483577B1 (en) Absorbing organic reagents into diagnostic test devices by formation of amine salt complexes
Rizk et al. Validated and selective potentiometric analysis of anti-coagulant edoxaban via a screen-printed electrode: green assessment by Eco-Scale and Complex-GAPI
Aune [7] Molecular weight measurements by sedimentation equilibrium: Some common pitfalls and how to avoid them
JPS60104238A (en) Method and device for quantitative analysis by detecting simultaneously multi-wavelength
JPS60125542A (en) Measured data correcting method
US5354689A (en) Method of detecting isocyanates
Bonini et al. Automation in urinalysis: Evaluation of three urine test strip analysers
JPS6053823A (en) Synthesized-spectrum display device of spectrophotometer
JPS5940220A (en) Simultaneous fractional determining apparatus for multiple components
McQueen Holographic refractometer