JPS5940220A - Simultaneous fractional determining apparatus for multiple components - Google Patents

Simultaneous fractional determining apparatus for multiple components

Info

Publication number
JPS5940220A
JPS5940220A JP15211982A JP15211982A JPS5940220A JP S5940220 A JPS5940220 A JP S5940220A JP 15211982 A JP15211982 A JP 15211982A JP 15211982 A JP15211982 A JP 15211982A JP S5940220 A JPS5940220 A JP S5940220A
Authority
JP
Japan
Prior art keywords
absorption spectrum
component
differential
concentration
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15211982A
Other languages
Japanese (ja)
Inventor
Takahiro Tajima
田島孝博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP15211982A priority Critical patent/JPS5940220A/en
Publication of JPS5940220A publication Critical patent/JPS5940220A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To perform highly accurate quantitative analysis, by differentiating the output of an absorption spectrum measuring part, and simulating the differentiated absorption spectrum by a method of least squares based on a standard absorption spectrum of each component. CONSTITUTION:The absorption spectrum, which is measured by an absorption spectrum measuring part 1, is differentiated by a differential operating part 2 and sent to an analytic operation part 3. The differentiated absorption spectrum is simulated by a method of least squares based on the differentiated absorption spectrum of each component. The concentration of each component is computed from each weight coefficient and outputted from a concentration output part 4. Thus, the highly accurate quantitative analysis is performed.

Description

【発明の詳細な説明】 この発明は、多成分同時分別定量装置に関し、さらに詳
しくは、多成分試料中の各成分の濃度を吸収スペクトル
を利用して定量する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for simultaneous fractionation and determination of multiple components, and more particularly to an apparatus for determining the concentration of each component in a multi-component sample using an absorption spectrum.

従来、多成分同時分別定量方法として、多成分試料の吸
収スペクトルを測定し、その吸収スペクトルのデータと
各成分個々の濃度既知の標準吸収スペクトルのデータと
を最小2乗法を適用して解析し、試料中の各成分を定量
する方法が提案されている( H,A、 Barnet
t at、 al ; AnalChem B2 (1
960) 1158 〕。
Conventionally, as a multi-component simultaneous fractionation quantification method, the absorption spectrum of a multi-component sample is measured, and the absorption spectrum data and the data of a standard absorption spectrum for which the concentration of each component is known are analyzed by applying the least squares method. A method for quantifying each component in a sample has been proposed (H, A, Barnet
t at, al; AnalChem B2 (1
960) 1158].

しかし、吸収スペクトルの場合、セル面の汚れ、セルの
マツチングのずれ等により測定ごとにベースラインが変
動し、定量の精度が悪くなる欠点がある。
However, in the case of absorption spectra, there is a drawback that the baseline fluctuates from measurement to measurement due to dirt on the cell surface, mismatching of the cells, etc., resulting in poor quantitative accuracy.

この発明の発明者は、このような事情に@与て鋭意研究
した結果、多成分試料の吸収スペクトルおよび各成分個
々の標準吸収スペクトルを微分して微分スペクトルを得
、それら微分スペクトルに対して最小2乗法を適用して
解析すれば、上記欠点が解消でき、高精度で定量ができ
るとの知見を得た。
As a result of intensive research under these circumstances, the inventor of this invention obtained a differential spectrum by differentiating the absorption spectrum of a multi-component sample and the standard absorption spectrum of each component, and calculated the minimum value for these differential spectra. It has been found that the above-mentioned drawbacks can be overcome and quantification can be performed with high accuracy by applying the square method for analysis.

一方、従来の多成分同時分別定曾装置としては、たとえ
ば液体クロマトグラフやガスクロマトグラフのような、
各成分を空間的に分離するものが主として用いられてお
り、空間的な分離を行わず吸収スペクトルを利用して定
量を行うものはほとんどみられなかった。
On the other hand, conventional multi-component simultaneous fractionation devices such as liquid chromatographs and gas chromatographs,
Methods that spatially separate each component are mainly used, and there are almost no methods that perform quantitative determination using absorption spectra without spatial separation.

この発明は、このような状況下において、かつ前記知見
に基いてなされたものである。
This invention was made under these circumstances and based on the above findings.

以下、図面を参照して説明する。This will be explained below with reference to the drawings.

第1図に示す(5)は、この発明の多成分同時分別定量
装置の一笑施例であシ、吸収スペクトル測定部(1)、
微分演算部(2)、解析演算部(3)および濃度出力部
(4)からなっている。
(5) shown in FIG. 1 is a simple embodiment of the multi-component simultaneous fractionation and quantification device of the present invention; an absorption spectrum measuring section (1);
It consists of a differential calculation section (2), an analysis calculation section (3), and a concentration output section (4).

吸収スペクトル測定部(1)は、多成分試料もしくは各
成分の濃度既知の標準試料の吸収スペクトルを測定する
もので、成分に応じて[7,可視光。
The absorption spectrum measuring section (1) measures the absorption spectrum of a multi-component sample or a standard sample in which the concentration of each component is known.

1只のいずれであってもよい。 通常の分光光度計と同
様VC構成される。
It may be either one. It has a VC configuration similar to a normal spectrophotometer.

微分演算部(21は、吸収スペクトルを微分して微分ス
ペクトルを得るもので、微分電気回路あるいは吸収スペ
クトルの係数処理により微分スペクトルを得る演算装置
により構成される。 また、分光器を2つ使って微分ス
ペクトルを得る装置を用いて構成してもよい。 なお、
この場合には微分演算部(2)は吸収スペクトル測定部
(1)と一体的に構成される。 微分は1次微分でも2
次微分でもよい。
The differential calculation section (21 is for differentiating the absorption spectrum to obtain the differential spectrum, and is composed of a differential electric circuit or a calculation device for obtaining the differential spectrum by coefficient processing of the absorption spectrum. Also, using two spectrometers, It may also be configured using a device that obtains a differential spectrum.
In this case, the differential calculation section (2) is configured integrally with the absorption spectrum measurement section (1). Even the first derivative is 2
It may also be the second derivative.

解析演算部(3)は、マイクロコンピュータのような演
算装置により構成され、次のような最小2乗法解析を行
う・。 すなわち、前記微分演算部(2)で得られた多
成分試料の微分吸収スペクトルを8(λ)とし、かつ各
成分の標準の微分吸収スペクトルをRj(λ)(j=l
−n)としたときに、波長λ1〔1=l−m〕に対する
データS(λ1)およびRj (λ1)を次の(1)式
にあてはめ、最小2乗法にてcjO値を求める。
The analysis calculation unit (3) is composed of a calculation device such as a microcomputer, and performs the following least squares analysis. That is, the differential absorption spectrum of the multi-component sample obtained by the differential calculation section (2) is 8 (λ), and the standard differential absorption spectrum of each component is Rj (λ) (j=l
-n), the data S(λ1) and Rj (λ1) for the wavelength λ1 [1=lm] are applied to the following equation (1), and the cjO value is determined by the least squares method.

各成分R1−Rnに濃度の過大のものがなくて吸光度に
線型性が成、り立ち、かつ各成分が独立で干渉がなけれ
ば、(1)式の01〜Onとして得られる値は、試料に
含まれる成分R1〜Rnの濃度である。
If each component R1-Rn does not have an excessive concentration and the absorbance is linear, and each component is independent and there is no interference, the values obtained as 01 to On in equation (1) are This is the concentration of components R1 to Rn contained in .

第2図に、微分スペクトルS(λ)、 R1(λ)〜R
n(λ)を例示する。
In Fig. 2, the differential spectra S(λ), R1(λ)~R
An example of n(λ) is given below.

濃度出力部(4)は、解析演算部(3)で得られた濃度
を出力するもので、CRTディスプレイやプリンタ等に
よって構成される。
The density output unit (4) outputs the density obtained by the analysis calculation unit (3), and is constituted by a CRT display, a printer, or the like.

次に、この発明の装置を冥際に構成して多成分試料を定
量した分析例について説明する。
Next, an analysis example in which a multi-component sample was quantified using the apparatus of the present invention will be described.

まず、装置は、吸収スペクトル測定部として「島津自記
分光光度計U’V−250形」を使用し、微分演算部、
解析演算部および濃度出力部として[横筒ヒューレット
パツカードUP−857Jコンピュータを使用し、前者
と後者とを[島津オプションユニットOPニー1形]イ
ンターフェイスにて一昨に接続した。 コンピュータハ
、5avi−”tgk7法〔ム、 5avitzky 
et、 al; Anal。Ohem。
First, the device uses a "Shimadzu self-recording spectrophotometer U'V-250 type" as an absorption spectrum measuring section, a differential calculation section,
[Horizontal Hewlett Pack Card UP-857J computer] was used as the analysis calculation unit and the concentration output unit, and the former and the latter were connected via a [Shimadzu optional unit OP knee 1 type] interface. computer, 5avi-”tgk7 method [mu, 5avitzky
et, al; Anal. Ohem.

86 (1964) 1627 )  による係数処理
で2次微分スペクトルを求めることにより微分演算部と
して機能し、また、(!holeski法〔磯田、大野
監修;” Fortran  による数値計算ハンドブ
ック1′オーム社(1971) p、 19 )を利用
して最小2乗法解析することで解析演算部として機能す
る。
86 (1964) 1627) to obtain the second-order differential spectrum through coefficient processing, and also functions as a differential calculation section by calculating the second-order differential spectrum through coefficient processing according to It functions as an analytical calculation unit by performing a least squares method analysis using p, 19).

多成分試料は市販のフエナセチン、アスピリン。Multi-component samples include commercially available phenacetin and aspirin.

カフェインを、メタノール−クロロホルム9:l混合溶
液を溶媒として、下記の割合で混合したものを用いた。
Caffeine was mixed in the following ratio using a 9:1 methanol-chloroform mixed solution as a solvent.

 6− 注意1: アスピリンはデシケータ−(シリカゲル)で5時間乾燥
、ツェナセチンは105℃で2時間乾燥、カフェインは
80℃で4時間乾燥して用いた。
6- Note 1: Aspirin was dried in a desiccator (silica gel) for 5 hours, zenacetin was dried at 105°C for 2 hours, and caffeine was dried at 80°C for 4 hours before use.

注意2: ツェナセチンアスピリンはメタノールに可溶であるが、
カフェインは不溶であるため可溶であるクロロホルムを
加えて混合溶媒とした。 クロロホルムは250nm以
下から強い吸収があシ混合溶媒中の割合を小さくしたが
、アスピリンの吸収ピークである228nmで混合溶媒
それ自身の吸光度2>f 2.80程度あっに0 その
ため、アスピリンを用いて228 nmの吸収ピークで
検量線を求め六ところ、吸光度1.8付近で吸光度と濃
度間の線形性にずれが生じてきたために、混合試料を作
成する際に250 nm以下で試料の吸光度が1.8以
下になるように調製した。
Note 2: Tzenacetin aspirin is soluble in methanol, but
Since caffeine is insoluble, chloroform, which is soluble, was added to form a mixed solvent. Chloroform has strong absorption from below 250 nm, so we reduced its proportion in the mixed solvent, but at 228 nm, which is the absorption peak of aspirin, the absorbance of the mixed solvent itself is 2> f 2.80. When we calculated a calibration curve using the absorption peak at 228 nm, we found that there was a shift in the linearity between the absorbance and the concentration at around 1.8. It was adjusted so that it was .8 or less.

標準試料は、ツェナセチン、アスピリン、カフェインを
それぞれ10μシ絋40μf/ml 、20μr/sl
の濃度としfc8つの溶液を用いた。
Standard samples were zenacetin, aspirin, and caffeine at 10μ, 40μf/ml, and 20μr/sl, respectively.
Eight solutions with a concentration of fc were used.

ツェナセチン、アスピリン、カフェインは紫外部でのみ
吸収があるので、吸収スペクトル測定部において波長8
 Q Q nmから285 nmまで0.5nm間隔で
吸光度と波長とを測定し、紫外吸収スペクトルを得た。
Tzenacetin, aspirin, and caffeine only absorb in the ultraviolet region, so the absorption spectrum measurement unit detects wavelength 8.
Absorbance and wavelength were measured from Q Q nm to 285 nm at 0.5 nm intervals to obtain an ultraviolet absorption spectrum.

 第8図は、得られた紫外吸収スペクトルを示すもので
、(蜀は試料2 、(a)はツェナセチンの標準、 (
b)はアスピリンの標準、(c)はカフェインの標準で
ある。(試料1.8については省略し飢 ) 得られた紫外吸収スペクトルから2次微分スペクトルを
得、これらを0.5nm間隔で解析演算処理した。 表
2は、その結果を示すものである。
Figure 8 shows the obtained ultraviolet absorption spectra (Shu is sample 2, (a) is the standard of zenacetin, (
b) is the aspirin standard; (c) is the caffeine standard. (Sample 1.8 is omitted) Second-order differential spectra were obtained from the obtained ultraviolet absorption spectra, and these were subjected to analytical calculation processing at intervals of 0.5 nm. Table 2 shows the results.

表2 ツェナセチン アスピリン カフェイン試料1 4.0
 100.5 80.0 101.8 10.0 10
0.1試料2 6.0  99.7 20.0 1G2
.8 2Q、0 102.8試料8 8.0  97.
9 10.0 1085  Bo、0 99.?ツェナ
セチン、アスピリン、カフェインに対する平均回収率は
99o4±0.6チ、104.8±1.9チ、100.
9±0,8チで添加量と良く一致する。
Table 2 Tzenacetin Aspirin Caffeine Sample 1 4.0
100.5 80.0 101.8 10.0 10
0.1 sample 2 6.0 99.7 20.0 1G2
.. 8 2Q, 0 102.8 Sample 8 8.0 97.
9 10.0 1085 Bo, 0 99. ? The average recoveries for zenacetin, aspirin, and caffeine were 99°±0.6°, 104.8°±1.9°, and 100°.
It is 9±0.8 inches, which agrees well with the amount added.

微分スペクトルの場合、吸収スペクトルの平坦な吸収の
部分は零となるので、セル面の汚れなどによるベースラ
インの上下の変動が消去てきる長所があり、そのためデ
ータのばらつきが小さい。
In the case of a differential spectrum, since the flat absorption portion of the absorption spectrum is zero, it has the advantage of eliminating fluctuations above and below the baseline due to contamination on the cell surface, and therefore, data variation is small.

なお、アスピリンはツェナセチン、カフェインに比べて
誤差が大きいが、アスピリンの吸収ピーク付近で混合溶
媒それ自身の吸収が大きくアスピリンの吸収スペクトル
に影響を及ぼしているためと考えられる。  したがっ
て、溶媒を改善するのがより好ましい。
Note that aspirin has a larger error than zenacetin and caffeine, but this is probably because the absorption of the mixed solvent itself is large near the absorption peak of aspirin, affecting the absorption spectrum of aspirin. Therefore, it is more preferable to improve the solvent.

以上の説明から理解されるように、この発明の多成分同
時分別定量装置によれば、ベースラインの変動の影蕃な
く、多成分試料の各成分濃度を同時かつ高精度に、しか
も簡便に、定量することができるようになる。 そこで
、この発明の装置は、医薬品等の品質検査機のような用
途に極めて有用 。
As can be understood from the above explanation, the multi-component simultaneous fractionation and quantification device of the present invention can easily and simultaneously measure the concentration of each component in a multi-component sample with high precision, without the influence of baseline fluctuations. Become able to quantify. Therefore, the device of the present invention is extremely useful for applications such as a quality inspection machine for pharmaceuticals and the like.

−〇 − である。−〇 − It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の多成分同時分別定量装置の一実施例
の構成ブロック図、第2図は微分スペクトルを例示する
スペクトル図、第8図は実際の試料を分析したときの吸
収スペクトルを例示するスペクトル図である。 (1)・・・吸収スペクトル測定部、(2)・・・微分
演算部、(3)・・・解析演算部、(4)・・・濃度出
力部、(5)・・・多成分同時分別定量装置。  10− 第1図 第2図 マ 波長 第3図 週長
Figure 1 is a block diagram of the configuration of an embodiment of the multi-component simultaneous separation and quantification device of the present invention, Figure 2 is a spectrum diagram illustrating a differential spectrum, and Figure 8 is an example of an absorption spectrum when an actual sample is analyzed. FIG. (1)...Absorption spectrum measurement section, (2)...Differential calculation section, (3)...Analysis calculation section, (4)...Concentration output section, (5)...Multi-component simultaneous Differential quantitative device. 10- Figure 1 Figure 2 Wave length Figure 3 Week length

Claims (1)

【特許請求の範囲】 1、吸収スペクトル測定部、その吸収スペクトル測定部
の出力を微分して微分スペクトルを得る微分演算部、前
記吸収スペクトル測定部と前記微分演算部とで得られる
多成分試料の微分スペクトルのデータ8(λ1)と各成
分それぞれの標準の微分スペクトルのデータRj(λ1
)とに基づいて、次式 %式%(1) を満たすCjを最小2乗法解析により算出する解析演算
部、および多成分試料の各成分Xjの濃度として前記O
jを出力する濃度出力部を具備してなる多成分同時分別
定量装置。  1−
[Scope of Claims] 1. An absorption spectrum measurement section, a differential calculation section for differentiating the output of the absorption spectrum measurement section to obtain a differential spectrum, and a multi-component sample obtained by the absorption spectrum measurement section and the differential calculation section. Differential spectrum data 8 (λ1) and standard differential spectrum data Rj (λ1) of each component
), and an analytical calculation unit that calculates Cj that satisfies the following formula % formula % (1) by least squares analysis, and the concentration of each component Xj of the multi-component sample as the concentration of the O
A multi-component simultaneous separation and quantification device comprising a concentration output section that outputs j. 1-
JP15211982A 1982-08-31 1982-08-31 Simultaneous fractional determining apparatus for multiple components Pending JPS5940220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15211982A JPS5940220A (en) 1982-08-31 1982-08-31 Simultaneous fractional determining apparatus for multiple components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15211982A JPS5940220A (en) 1982-08-31 1982-08-31 Simultaneous fractional determining apparatus for multiple components

Publications (1)

Publication Number Publication Date
JPS5940220A true JPS5940220A (en) 1984-03-05

Family

ID=15533471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15211982A Pending JPS5940220A (en) 1982-08-31 1982-08-31 Simultaneous fractional determining apparatus for multiple components

Country Status (1)

Country Link
JP (1) JPS5940220A (en)

Similar Documents

Publication Publication Date Title
EP1017993B1 (en) Spectroscopic analysis of samples with turbidity and high absorbance
Miles et al. Calibration and standardisation of synchrotron radiation and conventional circular dichroism spectrometers. Part 2: Factors affecting magnitude and wavelength
CN113324973A (en) Multi-factor correction Raman spectrum quantitative analysis method combined with spectrum internal standard
CN108680523B (en) Method for measuring object to be measured by using multiple fitting modes to link standard curve
CA2469099A1 (en) Spectroscopic method and apparatus for total hemoglobin measurement
CN108037084A (en) A kind of anti-jamming measurement methods suitable for photometry principle water quality automatic analyzer
JP3203798B2 (en) How to measure chromogen
JP3754581B2 (en) Analysis method for multi-component organic solutions
US4099882A (en) Apparatus for optically analyzing fluids
Duša et al. Low-molecular-mass colored compounds for fine tracing of pH gradient on broad and narrow scale in isoelectric focusing
JPS6332132B2 (en)
JPS63111446A (en) Analyzing device
Hiskey et al. Precision Colorimetry
Prokopiuk et al. Improving the accuracy of the NDIR-based CO2 sensor for breath analysis
CN106053367A (en) Method for improving stability and sensitivity in content detection of formaldehyde in cosmetics
JPS5940220A (en) Simultaneous fractional determining apparatus for multiple components
JP2001141648A (en) Method and apparatus for estimation of measured value by absorbance measurement
JPH0245150B2 (en)
Workman Jr et al. Using Reference Materials, Part II: Photometric Standards
JPS60205336A (en) System for removing and processing interference spectrum of mixed material in spectrochemical analyzing apparatus
JPS63204146A (en) Qualitative analysis for gas chromatography mass spectrometer
Lorber Improved analytical performance in multichannel spectrometry by compensation of nonrandom signal fluctuations
CN117191728B (en) Method for measuring multi-component concentration based on ultraviolet-visible absorption spectrum and application
CN112414962B (en) Method for measuring content of hydroxysafflor yellow A
JPH04303768A (en) Data processor for chromatograph