JPH04105011A - Ultrasonic thickness gauge - Google Patents

Ultrasonic thickness gauge

Info

Publication number
JPH04105011A
JPH04105011A JP22322290A JP22322290A JPH04105011A JP H04105011 A JPH04105011 A JP H04105011A JP 22322290 A JP22322290 A JP 22322290A JP 22322290 A JP22322290 A JP 22322290A JP H04105011 A JPH04105011 A JP H04105011A
Authority
JP
Japan
Prior art keywords
signal
thickness
sound speed
ultrasonic
setting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22322290A
Other languages
Japanese (ja)
Other versions
JP2731622B2 (en
Inventor
Yoshitaka Yoshiyama
吉山 嘉孝
Koji Saito
斎藤 興二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokimec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokimec Inc filed Critical Tokimec Inc
Priority to JP22322290A priority Critical patent/JP2731622B2/en
Publication of JPH04105011A publication Critical patent/JPH04105011A/en
Application granted granted Critical
Publication of JP2731622B2 publication Critical patent/JP2731622B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To enhance the measuring accuracy by determining a correction factor through comparison of the thickness signals given by No. 1 reference device and a reference sound speed setting device with a signal given by No. 2 reference device, and correcting the sound speed with the correction factor obtained. CONSTITUTION:An ultrasonic transfer time signal for No. 1 calibration range selected by No. 1 reference device 1 is fed to a signal converter 2, and a thickness signal obtained from the product with the sound speed given by a reference sound speed setting device 5 is emitted and displayed 4 through an A/D converter 3. Part of this thickness signal is fed to a calculating circuit 8 together with thickness signal of No. 1 calibration range selected by No. 2 reference device 7, and the two thicknesses are compared, and the result is emitted as a correction factor. The set value on the reference sound speed setting device 5 is corrected 5 with this correction factor, and the result is fed to the signal converter 2 through a changeover device 14 and a sound speed zero signal generating device 15. Then reference signal generating device of the reference devices 1, 7 is selected, and the set value on a reference zero setting device 6 is corrected. Thereby the correction factor is modified even though the characteristics of the signal converter 2 vary, and thickness measurement can be done with high precision.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は例えば被検材へ向は超音波を入射し超音波伝
搬時間に基づいて被検材の厚さを測定する超音波厚さ計
、特に厚さ計の校正に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to an ultrasonic thickness meter that injects ultrasonic waves into a material to be tested and measures the thickness of the material based on the ultrasonic propagation time. , especially regarding the calibration of thickness gauges.

[従来の技術j 第4図は従来の超音波厚さ計のブロック図であり、2(
ジ測定信号を厚さ信号へ変換する信号変換器、3はA−
D変換器、4は厚さを表示する表示装置、11は音速設
定器、12はゼロ設定器、15は音速ならびにゼロ設定
器からの信号を変換する音速・ゼロ信号発生器、18は
試験片、19は超音波探触子でおる。
[Conventional technology j Figure 4 is a block diagram of a conventional ultrasonic thickness gauge.
A signal converter for converting a thickness measurement signal into a thickness signal, 3 is A-
D converter, 4 is a display device that displays the thickness, 11 is a sonic speed setting device, 12 is a zero setting device, 15 is a sonic speed/zero signal generator that converts the signals from the sonic speed and zero setting device, 18 is a test piece , 19 are ultrasonic probes.

従来の超音波厚さ計は上記のように構成され、超音波を
送波する送信用探触子と被検材からの反射波を受波する
受信用探触子が一体に構成された超音波探触子19が用
いられ、厚さ針本体には被検材の音速を設定する音速設
定器11ヤゼロ設定器12が付属されている。
Conventional ultrasonic thickness gauges are configured as described above, and are integrated with a transmitting probe that transmits ultrasonic waves and a receiving probe that receives reflected waves from the test material. A sonic probe 19 is used, and the thickness needle body is attached with a sound velocity setting device 11 and a Yazero setting device 12 for setting the sound velocity of the material to be examined.

通常被検材の厚さ測定に先立ち手動操作により厚さ計の
校正が行われる。測定対象の被検材と同じ音速で測定レ
ンジの最大ならびに最小寸法をなす2種類の校正レンジ
の試験片18へ超音波探触子19を交互に当接し、これ
に従い音速設定器11とゼロ設定器12をそれぞれ調整
して測定された厚さが所定精度にて表示できるよう繰返
し行い、超音波厚さ計が校正される。
Normally, the thickness gauge is calibrated manually prior to measuring the thickness of the material to be inspected. The ultrasonic probe 19 is alternately brought into contact with the test pieces 18 of the two types of calibration ranges that have the maximum and minimum dimensions of the measurement range at the same sound speed as the material to be measured, and the sound speed setting device 11 and zero are set accordingly. The ultrasonic thickness gauge is calibrated by repeatedly adjusting the instruments 12 so that the measured thickness can be displayed with a predetermined accuracy.

つぎに超音波探触子19を接触媒質を介して被検材へ当
接する。例えば平板状被検材の表面ならびに底面から反
射されたエコーは音速設定器11とゼロ設定器12の設
定値を音速・ゼロ信号変換器15を介し変換された信号
と共に信号変換器2において厚さ信号へ変換され、AD
変換器3からのディジタル値が表示装置4へ被検材の厚
さとして表示される。
Next, the ultrasonic probe 19 is brought into contact with the specimen through the couplant. For example, echoes reflected from the surface and bottom of a flat plate-shaped test material are sent to the signal converter 2 to convert the set values of the sonic velocity setter 11 and zero setter 12 into the sound velocity/zero signal converter 15 and convert the thickness. converted into a signal and AD
The digital value from the converter 3 is displayed on the display device 4 as the thickness of the material to be inspected.

[発明が解決しようとする課題] 上記ような従来の超音波厚さ計では、超音波探触子19
からの被検材の表面ならびに底面からのエコーは信号変
換器2へ加えられ、被検樋内超音波伝搬時間と当該試験
片18の音速との積により得られた厚さが電圧として出
力される。
[Problem to be solved by the invention] In the conventional ultrasonic thickness gauge as described above, the ultrasonic probe 19
The echoes from the surface and bottom of the test material are applied to the signal converter 2, and the thickness obtained by multiplying the ultrasonic propagation time in the test gutter and the sound speed of the test piece 18 is output as a voltage. Ru.

信号変換器2は例えば積分回路や定電流回路なとから溝
成され、これら電子回路は周囲の温度、湿度の環境条1
牛ならびに電源電圧の変化などの影響を受(すて持1生
か変化して厚さ測定の精度か劣化する。
The signal converter 2 is composed of, for example, an integrating circuit or a constant current circuit, and these electronic circuits are controlled by environmental conditions such as ambient temperature and humidity.
The accuracy of thickness measurement deteriorates due to the influence of changes in power supply voltage and power supply voltage.

測定@度向上のためには被検材と同じ材質で厚さの異な
る2種類の校正レンジの試験片18へ交互に超音波探触
子19を当接し、対応する音速設定器11とゼロ設定器
12とを交互に調整して厚さか所定精度にて表示できる
よう校正か行われるが校正には時間を要する、 特に高精度超音波厚さ計の佼正においては繰返しの頻度
が増加して一層時間を要し、更に操作に習熟しないと迅
速な校正ができないという問題点があった。
Measurement@To improve the accuracy, the ultrasonic probe 19 is alternately brought into contact with two types of test pieces 18 in the calibration range, which are made of the same material as the material to be tested but have different thicknesses, and the corresponding sound velocity setting device 11 and zero setting are performed. Calibration is performed so that the thickness can be displayed with a predetermined accuracy by adjusting the gauge 12 alternately, but calibration takes time.Especially when calibrating a high-precision ultrasonic thickness gauge, the frequency of repetition increases, making it even more difficult. There are problems in that it takes time and quick calibration cannot be performed unless one is familiar with the operation.

この発明はかかる問題点を解決するためになされたもの
で、例え周囲の環境条件や電源電圧が変化してもこれら
の影響を受けることなく、音速設定器の設定値と実際の
音速との一致が自動的に且つ迅速に行えて所定の測定精
度が容易に確保できる超音波厚さ計を得ることを目的と
する。
This invention was made to solve this problem, and it is possible to match the set value of the sound speed setting device with the actual sound speed without being affected by changes in the surrounding environmental conditions or power supply voltage. It is an object of the present invention to provide an ultrasonic thickness gauge that can automatically and quickly perform measurement and easily ensure a predetermined measurement accuracy.

、1課題を解決するための手段: この発明に係る超音波厚さ計は、異なる校正レンジに対
する超音波伝搬時間の信号を個別に発生する第1基準器
と、校正に係わる音速を設定する基準音速設定器と、校
正レンジに対応する厚さ信号を個別に発生する第2基準
器と、第1基準器と基準音速設定器の両信号から得られ
た厚さ信号と当該レンジの第2基準器からの信号を比較
し補正係数を出力する演算回路と、演算回路出力により
設定された音速を補正する補正回路を設けたものである
, 1 Means for Solving Problems: The ultrasonic thickness gauge according to the present invention includes a first reference device that individually generates ultrasonic propagation time signals for different calibration ranges, and a reference that sets the sound speed related to calibration. A sound velocity setting device, a second reference device that individually generates a thickness signal corresponding to a calibration range, and a thickness signal obtained from both signals of the first reference device and the reference sound velocity setting device and a second reference for the range. The system is equipped with an arithmetic circuit that compares signals from the devices and outputs a correction coefficient, and a correction circuit that corrects the sound speed set by the output of the arithmetic circuit.

[作用] この発明においては、被検材の厚さ測定に先立って行わ
れる超音波厚さ計の校正は、校正レンジの超音波伝搬時
間信号を発生する第1基準器と基準音速設定器とから得
られた厚さ信号と第2基準器からの信号との比較に基づ
いて得られた補正係数によって音速が補正されて実際の
音速が得られる。
[Function] In the present invention, the calibration of the ultrasonic thickness gauge that is performed prior to measuring the thickness of the material to be tested is performed using the first reference device that generates the ultrasonic propagation time signal in the calibration range and the reference sound velocity setting device. The sound speed is corrected by a correction coefficient obtained based on a comparison between the thickness signal obtained from the second standard and the signal from the second reference device, and the actual sound speed is obtained.

周囲の温度や湿度の環境条件ならびに電源電圧か変化し
ても超音波厚さ計はこれらの影響を回避できるので、測
定精度や再現ぼか向上できる。
Even if the environmental conditions such as ambient temperature and humidity, as well as the power supply voltage, change, the ultrasonic thickness gauge can avoid these effects, improving measurement accuracy and reproducibility.

音速の異なる被検材の厚さ測定には所定の音速を設定す
るのみで再度校正を要しない。
To measure the thickness of specimens with different sound velocities, just set a predetermined sound velocity and no recalibration is required.

従って測定レンジや音速の異なる被検材に対しても精度
ならびに効率良く厚さ測定ができる。
Therefore, it is possible to accurately and efficiently measure the thickness of test materials with different measurement ranges and sound velocities.

[実施例] この発明の一実施例を添付図面を参照して詳細に説明す
る。
[Embodiment] An embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第1図はこの発明の一実施例を示すブロック図、 図において、2.3.4.11.12.15.18.1
9は上記従来厚さ計と同一であり、1は校正レンジ毎の
超音波伝搬時間信号を発生する第1基準器、5は校正に
係わる音速を設定する基準音速設定器、6は基準ゼロ設
定器、ヱは校正レンジ毎の厚さ信号を発生する第2基準
器、8は第1基準器ユと基準音速設定器5から得られた
厚さ信号と第2基準器ヱからの信号とを比較する演算回
路、9は演算回路8からの補正係数により基準音速設定
器5の音速を補正する第1補正回路、10は記憶回路、
13は音速設定器11の音速を補正する第2補正回路、
14(よ第1切換器、16は第2切換器、17は音速表
示器を示している。
FIG. 1 is a block diagram showing one embodiment of the present invention. In the figure, 2.3.4.11.12.15.18.1
Reference numeral 9 is the same as the conventional thickness gauge described above, 1 is a first reference device that generates an ultrasonic propagation time signal for each calibration range, 5 is a reference sound velocity setting device that sets the sound velocity related to calibration, and 6 is a reference zero setting. A second reference device 8 generates a thickness signal for each calibration range, and a reference numeral 8 indicates a thickness signal obtained from the first reference device Y and the reference sound velocity setting device 5, and a signal from the second reference device E. an arithmetic circuit for comparison; 9 a first correction circuit that corrects the sound speed of the reference sound speed setting device 5 using a correction coefficient from the arithmetic circuit 8; 10 a storage circuit;
13 is a second correction circuit for correcting the sound speed of the sound speed setting device 11;
14 (first switch), 16 a second switch, and 17 a sound speed indicator.

上記のように構成された超音波厚さ計においては、厚さ
測定に先立って実施される校正において、第1基準器1
は校正レンジに対応した超音波伝搬時間の信号を発生す
る。
In the ultrasonic thickness gauge configured as described above, in the calibration performed prior to thickness measurement, the first reference device 1
generates a signal with an ultrasonic propagation time corresponding to the calibration range.

第2図は第1基準器の一実施例を示すブロック図であり
、 21は第1の校正レンジに対する超音波伝搬時間信号を
発生する第1基準信号発生器工、22は第2の校正レン
ジに対する超音波伝搬時間信号を発生する第1基準信号
発生器■、23は第3切換器を示している。
FIG. 2 is a block diagram showing an embodiment of the first reference device, in which 21 is a first reference signal generator that generates an ultrasonic propagation time signal for the first calibration range, and 22 is a second calibration range. A first reference signal generator (2) generates an ultrasonic propagation time signal for the reference signal, and 23 indicates a third switch.

第3図は第2基準器の一実施例を示すブロック図でおり
、 24は第1校正レンジの厚さ信号を発生する第2基準信
号発生器工、25は第2校正レンジの厚さ信号を発生す
る第2基準信号発生器■、第3切換器23は第1基準器
口内の切換器と互いに連動する。
FIG. 3 is a block diagram showing an embodiment of the second reference device, in which 24 is a second reference signal generator that generates a thickness signal for the first calibration range, and 25 is a thickness signal for the second calibration range. The second reference signal generator (2) which generates the signal and the third switch 23 are interlocked with the switch in the first reference port.

第1基準器1において第3切換器23により選択された
第1基準信号発生器工21からの第1校正レンジに対す
る超音波伝搬時間信号は、信号変換器2へ加えられ基準
音速設定器5からの音速との積により得られた厚さ信号
が電圧として出力され、A−D変換器3を経てディジタ
ル値となり表示装置4へ表示される。
The ultrasonic propagation time signal for the first calibration range from the first reference signal generator 21 selected by the third switch 23 in the first reference device 1 is applied to the signal converter 2 and sent from the reference sound velocity setting device 5. The thickness signal obtained by multiplying by the sound velocity is outputted as a voltage, passed through the AD converter 3, becomes a digital value, and is displayed on the display device 4.

上記厚さ信号の一部は第2基準器ヱ内の第3切換器23
により選択された第2基準信号発生器工24からの第1
校正レンジの厚さ信号と共に演算回路8へ加えられ、両
者の厚さが比較されてその比即ち補正係数として出力さ
れる。演算回路8からの補正係数により基準音速設定器
5の設定値は第1補正回路9にて補正され、第1切換器
14から音速・ゼロ信号発生器15を経て実際の音速か
信号変換器2へ加えられる。
A part of the thickness signal is sent to the third switch 23 in the second reference device.
The first signal from the second reference signal generator 24 selected by
It is applied to the arithmetic circuit 8 together with the thickness signal of the calibration range, and the two thicknesses are compared and output as a ratio, that is, a correction coefficient. The setting value of the reference sound velocity setting device 5 is corrected in the first correction circuit 9 by the correction coefficient from the calculation circuit 8, and the actual sound speed is output from the first switch 14 via the sound speed/zero signal generator 15 to the signal converter 2. added to.

また)寅算回路8からの補正係数はラッチ回路などが用
いられた記憶回路10にて記・厖される。
Furthermore, the correction coefficients from the calculation circuit 8 are stored and stored in a memory circuit 10 using a latch circuit or the like.

次に第1基準器ユならびに第2基準器ヱ内の第3切換器
23が作動して、第1基準信号発生器lI22ならびに
第2基準信号発生器lI25か選択されて上記と同様の
動作か行われ基準ゼロ設定器6の設定値が補正される。
Next, the third switching device 23 in the first reference device Y and the second reference device E is activated to select either the first reference signal generator lI22 or the second reference signal generator lI25, and performs the same operation as above. The set value of the reference zero setter 6 is corrected.

周囲の温度ならびに湿度などに関する環境条件や電源電
圧の変動による信号変換器2などの特性か変化しても、
上記校正の実施により補正係数が修正されてこれらの影
響が回避でき精度ならびに再現性のすぐれた厚さ測定が
行える。
Even if the characteristics of the signal converter 2 change due to environmental conditions such as ambient temperature and humidity or fluctuations in power supply voltage,
By performing the above calibration, the correction coefficients are corrected, and these influences can be avoided and thickness measurement with excellent accuracy and reproducibility can be performed.

超音波厚ざ計の校正動作は下記のとおり行われる。The calibration operation of the ultrasonic thickness meter is performed as follows.

試験片の寸法による校正レンジρ0は、2o =KXt
o XC。
The calibration range ρ0 based on the dimensions of the test piece is 2o = KXt
o XC.

to二校正レンジにあける超音波伝搬時間、Co :試
験片の基準音速、Kは補正係数を示している。
Ultrasonic propagation time in the TO2 calibration range, Co: reference sound velocity of the test piece, K indicates a correction coefficient.

K−2o、−′↑□xcm 上式より補正係数か得られ記憶回路10へ保持される。K-2o, -'↑□xcm A correction coefficient is obtained from the above equation and held in the storage circuit 10.

被検材の厚さ測定においてその音速か既知のとき、音速
設定器11を被検材の音速C工に設定して、被検材へ接
触媒質を介して超音波探触子19を当接すると厚ざジェ
か、 pニーKxkxcえ として自動的に測定できる。このとき音速校正は不要で
ある。
When measuring the thickness of a material to be tested, when the sound velocity is known, the sound velocity setting device 11 is set to the sound velocity C of the material to be tested, and the ultrasonic probe 19 is brought into contact with the material to be tested via the couplant. Then, it can be automatically measured as thickness or p-knee. At this time, sound velocity calibration is not necessary.

また被検材の音速か不明のときは、被検材と同一材質で
測定レンジか異なる2種類の試験片18を用いて音速設
定器11ならびにゼロ設定器12の設定値の調整を交互
に行ない、音速設定器11からの音速は記憶回路10か
らの補正係数により第2補正回路13にて補正されて実
際の音速が得られ、第1切換器14と音速・ゼロ信号発
生器15を経て信号変換器2へ加えられて、超音波探触
子19による被検材の超音波伝搬時間とから超音波厚さ
計が校正され、精度ヤ再現姓のすぐれた厚さ測定かfT
える。
If it is unclear whether the sound velocity is the same as the material to be tested, adjust the set values of the sound velocity setting device 11 and zero setting device 12 alternately using two types of test pieces 18 made of the same material as the material to be tested but with different measurement ranges. The sound speed from the sound speed setting device 11 is corrected in the second correction circuit 13 using the correction coefficient from the storage circuit 10 to obtain the actual sound speed, and then the sound speed is outputted as a signal via the first switching device 14 and the sound speed/zero signal generator 15. The ultrasonic thickness gauge is calibrated from the ultrasonic propagation time of the specimen material by the ultrasonic probe 19 by being applied to the transducer 2, and the thickness measurement fT with excellent accuracy and reproducibility is obtained.
I can do it.

また複数の測定レンジを備えた超音波厚さ計においては
、上記補正係数ならびに各測定レンジ毎の試験片18を
用いて校正されたセロ点を予め記憶しておくと、測定レ
ンジ変更の都度校正を行う必要がない。
In addition, in an ultrasonic thickness gauge equipped with multiple measurement ranges, if you memorize the above correction coefficient and the zero point calibrated using the test piece 18 for each measurement range in advance, you can calibrate it each time the measurement range is changed. There is no need to do this.

音速表示器17は第2切換器16をπ測定部にすると音
速設定器11の設定値が、また「音速」にすると補正さ
れた実際の音速をそれぞれ表示する。
The sound speed display 17 displays the set value of the sound speed setting device 11 when the second switch 16 is set to the π measuring section, and displays the corrected actual sound speed when set to "sound speed".

音速が既知の他の被検材の厚さ測定は音速設定器11を
所定の音速に設定するのみで音速校正を行うことなく迅
速に厚さ測定が行える。
When measuring the thickness of other test materials whose sound speed is known, the thickness can be quickly measured by simply setting the sound speed setting device 11 to a predetermined sound speed without performing sound speed calibration.

[発明の効果] この発明は以上説明したとおり、第1基準器ならびに基
準音速設定器と第2基準器とからの信号により補正係数
を得る演算回路と音速設定値を補正する補正回路を設け
る簡単な構成により、 被検材の音速を設定すると自動的に実際の音速による厚
さ測定か行える。
[Effects of the Invention] As explained above, the present invention is simple in that it includes an arithmetic circuit that obtains a correction coefficient from signals from a first reference device, a reference sound speed setting device, and a second reference device, and a correction circuit that corrects a sound speed setting value. With this configuration, once the sound speed of the material to be tested is set, the thickness can be automatically measured using the actual sound speed.

校正を行うと温度・湿度の環境条件や電源電圧の変動に
よる特性変化が回避され精度ならびに再現けか向上でき
る。
Calibration can improve accuracy and reproducibility by avoiding changes in characteristics due to environmental conditions such as temperature and humidity or fluctuations in power supply voltage.

複数の測定レンジの厚さ測定においては測定レンジ毎の
補正係数と校正されたゼロ点を記憶しておくと測定レン
ジ変更の都度校正を行う必要かない。
When measuring thickness in multiple measurement ranges, if the correction coefficient and calibrated zero point for each measurement range are memorized, there is no need to perform calibration each time the measurement range is changed.

測定レンジの異なる2種類の試験片にて音速とゼロ点を
校正すると実際の音速か自動的に得られるという効果か
ある。
Calibrating the sound velocity and zero point using two types of test pieces with different measurement ranges has the effect of automatically obtaining the actual sound velocity.

【図面の簡単な説明】 第1図はこの発明の一実施例を示すブロック図、第2図
は第1基準器の一実施例を示すブロック図、第3図は第
2基準器の一実施例を示すブロック図、第4図は従来の
超音波厚さ計のブロック図である。 図において、ユは第1基準器、5は基準音速設定器、6
は基準ゼロ設定器、ヱは第2基準器、8は演算回路、9
は第1補正回路、10は記憶回路、13は第2補正回路
である。 なあ、各図中同一符号は同一または相当部分を示す。 特許出願人   株式会社  東京計器第1図 5;基準音速設定器 6:基!ぜ口設定繕 6;演算回路 13−第2補正回路
[Brief Description of the Drawings] Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a block diagram showing an embodiment of the first reference device, and Fig. 3 is an implementation of the second reference device. A block diagram showing an example, FIG. 4 is a block diagram of a conventional ultrasonic thickness gauge. In the figure, Y is the first reference device, 5 is the reference sound speed setting device, and 6 is the reference sound speed setting device.
is the reference zero setter, ヱ is the second reference device, 8 is the arithmetic circuit, 9
1 is a first correction circuit, 10 is a storage circuit, and 13 is a second correction circuit. Note that the same reference numerals in each figure indicate the same or corresponding parts. Patent applicant Tokyo Keiki Co., Ltd. Figure 1 5; Reference sound velocity setting device 6: Base! Door opening setting and repair 6; Arithmetic circuit 13 - second correction circuit

Claims (1)

【特許請求の範囲】 被検材に超音波を入射し被検材内超音波伝搬時間と設定
された音速に基づいて被検材の厚さを測定する超音波厚
さ計において、 異なる校正レンジに対する超音波伝搬時間の信号を個別
に発生する第1基準器と、上記校正に係わる音速を設定
する基準音速設定器と、上記校正レンジに対応する厚さ
信号を個別に発生する第2基準器と、上記第1基準器と
上記基準音速設定器の両信号から得られた厚さ信号と当
該レンジの第2基準器からの信号を比較し補正係数を出
力する演算回路と、上記演算回路出力により設定された
音速を補正する補正回路とを備えたことを特徴とする超
音波厚さ計。
[Scope of Claim] An ultrasonic thickness meter that injects ultrasonic waves into a material to be tested and measures the thickness of the material to be tested based on the ultrasonic propagation time within the material and a set speed of sound, which has different calibration ranges. a first reference device that individually generates a signal of the ultrasonic propagation time for the above, a reference sound speed setting device that sets the sound speed related to the above calibration, and a second reference device that individually generates a thickness signal corresponding to the above calibration range. and an arithmetic circuit that compares the thickness signal obtained from both the signals of the first reference device and the reference sound velocity setting device with the signal from the second reference device of the range and outputs a correction coefficient, and the arithmetic circuit output. An ultrasonic thickness gauge characterized by comprising a correction circuit that corrects the sound velocity set by.
JP22322290A 1990-08-24 1990-08-24 Ultrasonic thickness gauge Expired - Lifetime JP2731622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22322290A JP2731622B2 (en) 1990-08-24 1990-08-24 Ultrasonic thickness gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22322290A JP2731622B2 (en) 1990-08-24 1990-08-24 Ultrasonic thickness gauge

Publications (2)

Publication Number Publication Date
JPH04105011A true JPH04105011A (en) 1992-04-07
JP2731622B2 JP2731622B2 (en) 1998-03-25

Family

ID=16794707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22322290A Expired - Lifetime JP2731622B2 (en) 1990-08-24 1990-08-24 Ultrasonic thickness gauge

Country Status (1)

Country Link
JP (1) JP2731622B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020193882A (en) * 2019-05-29 2020-12-03 有限会社ユネット Piping deterioration situation estimation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020193882A (en) * 2019-05-29 2020-12-03 有限会社ユネット Piping deterioration situation estimation device

Also Published As

Publication number Publication date
JP2731622B2 (en) 1998-03-25

Similar Documents

Publication Publication Date Title
US4391124A (en) Electroacoustic transducer calibration method and apparatus
US3847017A (en) Strain measuring system
US20100046576A1 (en) Method for performing ultrasonic testing
US4182155A (en) Method and apparatus for zero point calibration of ultrasonic thickness gauge
CN108680651A (en) Calibrating/the calibration system and method for pulse reflection ultrasonic device
JPS6249921B2 (en)
JPH04105011A (en) Ultrasonic thickness gauge
JPS63150664A (en) Defect measuring instrument for ultrasonic flaw detection device
JP2651269B2 (en) Ultrasonic thickness gauge
Barrera-Figueroa et al. On experimental determination of the free-field correction of laboratory standard microphones at normal incidence
JPS6395353A (en) Measuring range setter for ultrasonic flaw detector
SU1000752A1 (en) Ultrasonic checking measuring instrument distance measurement error determination method
JPH0561591B2 (en)
CN208313907U (en) Calibrating/calibration system of pulse reflection ultrasonic device
US3054864A (en) Instrument for reciprocity calibration of electroacoustic transducers
JP2001128967A (en) Phantom for ultrasonographic apparatus and error correcting system and error correcting method using phantom
RU1778586C (en) Method for graduating pressure gradient receivers
RU2034236C1 (en) Ultrasound echo thickness gage
JPS6159460B2 (en)
JP2001124747A (en) Calibration system for time base of digital ultrasonic testing apparatus
JPS601553A (en) Ultrasonic inspection apparatus
SU1631409A1 (en) Method of testing ultrasonic echo-pulse instruments
JPS59104550A (en) Correcting device of time base of ultrasonic flaw detector
SU754200A1 (en) Method of checking non-metallic coating gauges
SU1093962A1 (en) Method of checking eddy-current thickness gauges