JPH04104984A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH04104984A
JPH04104984A JP2219389A JP21938990A JPH04104984A JP H04104984 A JPH04104984 A JP H04104984A JP 2219389 A JP2219389 A JP 2219389A JP 21938990 A JP21938990 A JP 21938990A JP H04104984 A JPH04104984 A JP H04104984A
Authority
JP
Japan
Prior art keywords
superconducting
oxide superconductor
substances
substance
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2219389A
Other languages
Japanese (ja)
Inventor
Akihiko Yamaji
昭彦 山路
Yoichi Enomoto
陽一 榎本
Tsunekazu Iwata
岩田 恒和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2219389A priority Critical patent/JPH04104984A/en
Publication of JPH04104984A publication Critical patent/JPH04104984A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain excellent uniformity and chemical stability of oxide superconductor by sticking a specific substance to the surface of a superconducting parent material and heat-treating in an oxidizing atmosphere. CONSTITUTION:A composition having a composition shown by the formula (M is one or more of K, Rb and Li; x is 0-0.5; N is one or more of Pb and Cu; y is 0-0.8) is sintered to give a superconducting parent material (A). Then one or more substances (B) of simple substance of Cu, Bi, Tl, Mn, Fe, V, Ti, Sb, Cr, Sr, Ca, Ba, Ni, Zn, Li, K, Na, Rb, Cs, Ag, Y or Re (rare earth metal), an oxide (carbonate) thereof and a compound to produce an oxide by thermal decomposition is stuck to the surface of the component A to give an attached substance (C). Then the component C is heat-treated in an oxidizing atmosphere (e.g. O2 gas stream atmosphere) at 300-1,000 deg.C to produce an oxide superconductor.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、酸化物超伝導体の製造法に係り、より詳細に
は、均質でしかも化学的に安定な酸化物超伝導体を製造
することが可能な酸化物超伝導体の製造法に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for producing an oxide superconductor, and more specifically, a method for producing a homogeneous and chemically stable oxide superconductor. The present invention relates to a method for producing oxide superconductors that can be manufactured using oxide superconductors.

[従来の技術〕 従来、酸化物超伝導体の製造方法としては、酸化物超伝
導体を構成する元素を含む複数の粉末を混合し、この混
合物を例えば圧縮成形により成形した後、酸化性雰囲気
中で焼成する方法(以下焼結法という)が知られている
[Prior Art] Conventionally, the method for producing oxide superconductors involves mixing a plurality of powders containing elements constituting the oxide superconductor, molding this mixture by compression molding, for example, and then placing it in an oxidizing atmosphere. A method of firing in a sintered container (hereinafter referred to as a sintering method) is known.

しかし、かかる方法により製造した酸化物超伝導体は超
伝導特性が悪いという欠点を有している。超伝導特性の
一つとして臨界電流密度を例にとると、超伝導現象を安
定に得るためには10″′^/cm2以上の値が必要で
あるが、上記従来方法により製造した酸化物超伝導体の
臨界電流密度は、−船釣には1X10”A/Cゴよりも
低く、I X 102”=10’ A/ crn”程度
のものを得ることは非常に困難であり、1 x 10’
A/cm”を超えるものは存在しなかった。。
However, the oxide superconductor produced by this method has a drawback of poor superconducting properties. Taking critical current density as an example of one of the superconducting properties, a value of 10''^/cm2 or more is required to stably obtain superconducting phenomena, but the oxide superconductivity produced by the conventional method described above The critical current density of a conductor is lower than 1 x 10"A/crn" for boat fishing, and it is very difficult to obtain something on the order of I x 102" = 10'A/crn";'
There were no cases exceeding A/cm.

一方、超伝導特性を改善するために、例えばY−Ba−
Cu−0系では、超伝導相が包晶反応によって生成する
ことを利用した方法が試みられている(例えば、M、 
Murakami et al、 :Jpn、J、^p
p1.Phys、、 28.1189(1989) )
 。すなわち、この方法は、超伝導材料を溶融径急冷す
ることにより超伝導体を製造するという方法である。
On the other hand, in order to improve the superconducting properties, for example, Y-Ba-
In the Cu-0 system, a method using the fact that a superconducting phase is generated by a peritectic reaction has been attempted (for example, M,
Murakami et al.: Jpn, J, ^p
p1. Phys, 28.1189 (1989))
. That is, this method is a method of manufacturing a superconductor by rapidly cooling a superconducting material to a melt diameter.

しかし、この方法は、高い温度で試料を熔融せねばなら
ないこと、坩堝との反応による不純物の取り込みがある
こと、再溶融が必要であること、液相がつねに作製中に
存在するため不均一な組成になること、などの欠点を有
している。
However, this method requires melting the sample at a high temperature, incorporates impurities due to reaction with the crucible, requires remelting, and is non-uniform because a liquid phase is always present during the preparation. It has disadvantages such as the composition.

[発明が解決しようとするfil!!]本発明の目的は
、溶融等の方法によることなく、優れた超伝導特性(例
えば臨界電流密度がI X 10’ A/Cd以上)を
有する超伝導体を容易に製造することが可能な酸化物超
伝導体の製造方法を提供することにある。
[fil that invention tries to solve! ! ] The object of the present invention is to develop an oxidation method that allows the easy production of superconductors with excellent superconducting properties (for example, critical current density of I x 10' A/Cd or more) without using methods such as melting. An object of the present invention is to provide a method for manufacturing a physical superconductor.

[課題を解決するための手段] 上記目的を達成するための本発明の要旨は、(Bad−
xMx) (Bit−yNy)  03(ただし、Mは
KRb、Liのうちから選ばれた一種または二種以上、
x=O〜0.5、NはPb、Cuのうちから選ばれた一
種または二種、y=0〜0.8)なる組成の超伝導母体
を作製し、しかるのち、CuB1.Ti2.Mn、Fe
、V、Ti、5bCr、Sr、Ca、Ba、Ni、Zn
、Li。
[Means for Solving the Problem] The gist of the present invention for achieving the above object is (Bad-
xMx) (Bit-yNy) 03 (However, M is one or more selected from KRb, Li,
x=O~0.5, N is one or two selected from Pb and Cu, y=0~0.8), and then CuB1. Ti2. Mn, Fe
, V, Ti, 5bCr, Sr, Ca, Ba, Ni, Zn
, Li.

K、Na、Rb、Cs、Ag、Y、Re (ただし、R
eはレアアース金属)の車体、これらの酸化物もしくは
炭酸化物または熱分解によって酸化物を生ずる化合物の
一種もしくは二種以上の物質(以下付着物質という)を
、前記超伝導母体の表面に付着させ、次いで300〜1
000℃の温度で、酸化性雰囲気中で熱処理を行うこと
を特徴とする酸化物超伝導体の製造法に存在する。
K, Na, Rb, Cs, Ag, Y, Re (however, R
e is a rare earth metal), one or more substances (hereinafter referred to as adhesion substances) of oxides or carbonates of these or compounds that produce oxides by thermal decomposition are attached to the surface of the superconducting matrix, Then 300-1
A method for producing an oxide superconductor is characterized in that heat treatment is performed at a temperature of 1,000° C. in an oxidizing atmosphere.

次に本発明の構成を詳細に述べる。Next, the configuration of the present invention will be described in detail.

本発明において、超伝導母体(付着物質の付着および熱
処理前の超伝導体)としては、例えば、[従来の技術]
で述べたような、焼結法により得られる超伝導焼結体、
あるいは各種薄膜形成法(例えばプラズマスパッタ法)
によって得られる超伝導薄膜があげられる。また単結晶
超伝導体でもよい。
In the present invention, the superconducting matrix (superconductor before adhering substances and heat treatment) includes, for example, [prior art]
Superconducting sintered bodies obtained by the sintering method, as described in
Or various thin film formation methods (e.g. plasma sputtering method)
One example is the superconducting thin film obtained by Alternatively, a single crystal superconductor may be used.

本発明の対象とする超伝導母体は、 (Bad−xMx) (Bit−yNy) Osかうな
る。
The superconducting matrix targeted by the present invention is (Bad-xMx) (Bit-yNy) Os.

Mは、K、Rb、Liのうちから選ばれた一種または二
種以上である。
M is one or more selected from K, Rb, and Li.

Nは、Pb、Cuのうちから選ばれた一種または二種で
ある。
N is one or two selected from Pb and Cu.

xwO〜0.5である。xwO~0.5.

y=o〜0.8である。y=o~0.8.

x、yがこの範囲外の場合には、優れた超伝導特性が得
られない。
If x and y are outside this range, excellent superconducting properties cannot be obtained.

なお、上記超伝導母体は、一種または二種以上を用いる
ことができる。
Note that the above-mentioned superconducting matrix may be used alone or in combination of two or more.

本発明では、上記超伝導母体に付着物質を付着し、熱処
理を行うことを一つの特徴とする。
One feature of the present invention is that an adhesion substance is attached to the superconducting matrix and heat treatment is performed.

ここで、付着物質としては次なる物質が用いられる。Here, the following substances are used as the adhesion substances.

■Cu、Bi、TfL、Mn、Fe、V、Ti。■Cu, Bi, TfL, Mn, Fe, V, Ti.

Sb、Cr、Sr、Ca、Ba、Ni、Zn。Sb, Cr, Sr, Ca, Ba, Ni, Zn.

Li、に、Na、Rb、Cs、Ag、Y、Re(Reは
レアアース金属)の単体 ■■の金属の酸化物 ■■の金属の炭酸化物 ■熱分解によって酸化物を生ずる化合物ここで、■のレ
アアース金属としては、La。
Elements of Li, Na, Rb, Cs, Ag, Y, Re (Re is a rare earth metal) ■■ Metal oxide ■■ Metal carbonate ■ Compound that produces oxides by thermal decomposition Here, ■ The rare earth metal is La.

Nd、Pr、Sm、Eu、Gd、Tb、Dy。Nd, Pr, Sm, Eu, Gd, Tb, Dy.

Ho、Er、Tm、Trがあげられる。Examples include Ho, Er, Tm, and Tr.

また、■の熱分解によフて酸化物を生ずる化合物として
は、例えば、K2Cr20y、 K、Mn204等があ
げられる。
Further, examples of compounds that produce oxides upon thermal decomposition of (2) include K2Cr20y, K, Mn204, and the like.

なお、これら各物質の一種または二種以上を用いること
ができる。
Note that one type or two or more types of each of these substances can be used.

本発明ではこれら付着物質を超伝導母体の表面に付着す
るが、付着物質の超伝導母体の表面への付着方法には特
に限定されない。ただ、付着物質を超伝導母体の表面に
均一に付着させるためには例えば次のように行えばよい
。すなわち、まず、付着物質が水溶性の場合には蒸留水
で希釈した水溶液を作製し、付着物質が不溶性の場合に
は、蒸留水に懸濁させた懸濁液を作製する。次いで、そ
の水溶液あるいは懸濁液を、へヶ(筆)塗り、あるいは
スピンコード法等により表面に塗付すればよい。
In the present invention, these substances are attached to the surface of the superconducting matrix, but there are no particular limitations on the method of attaching the substances to the surface of the superconducting matrix. However, in order to uniformly adhere the adhering substance to the surface of the superconducting matrix, the following may be performed, for example. That is, first, if the adhering substance is water-soluble, an aqueous solution is prepared by diluting it with distilled water, and if the adhering substance is insoluble, a suspension is prepared by suspending it in distilled water. Next, the aqueous solution or suspension may be applied to the surface by brush painting, spin cording, or the like.

付着物質を付着させた後に行う熱処理の温度は300〜
1000℃であるが、500〜1000℃が超伝導特性
のより一層の向上を図るうえから好ましい。
The temperature of the heat treatment after attaching the adhesion substance is 300~
Although the temperature is 1000°C, it is preferably 500 to 1000°C in order to further improve the superconducting properties.

この熱処理は、酸化性雰囲気で行う。酸化性雰囲気とし
ては、例えば大気雰囲気、酸素ガス雰囲気、酸素ガスと
不活性ガスとの混合ガス雰囲気、等があげられるが、酸
素ガス掌囲気が好ましく、さらに、酸素ガス気流雰囲気
がより好ましい。
This heat treatment is performed in an oxidizing atmosphere. Examples of the oxidizing atmosphere include an air atmosphere, an oxygen gas atmosphere, a mixed gas atmosphere of oxygen gas and an inert gas, etc., but an oxygen gas atmosphere is preferable, and an oxygen gas stream atmosphere is more preferable.

[作用] 以下に本発明の作用を本発明をなすに際して得た知見と
ともに説明する。
[Function] The function of the present invention will be explained below along with the findings obtained in making the present invention.

本発明者は、優れた超伝導特性を有する超伝導体を製造
し得る方法を開発するにあたり、従来の焼結法により製
造した場合、何故に優れた超伝導特性を有する超伝導体
が得られないのかの原因の解明を行った。
In developing a method for producing a superconductor with excellent superconducting properties, the present inventor wondered why a superconductor with excellent superconducting properties could not be obtained when produced by a conventional sintering method. We investigated the reason why this is not the case.

この原因は従来明らかでなかったが、本発明者の調査の
結果状のことが判明した。
The cause of this was not previously clear, but the inventor's investigation revealed the following.

すなわち、焼結法により製造した酸化物超伝導体におい
ては、結晶粒界に超伝導弱結合状態が生じていることを
見い出した。超伝導特性が劣化するのは、このように結
晶粒具に超伝導弱結合状態が生じているためと考えられ
る。
In other words, it has been found that in an oxide superconductor manufactured by a sintering method, a superconducting weak bond state occurs at grain boundaries. The deterioration of superconducting properties is thought to be due to the superconducting weak coupling state occurring in the crystal grains.

そこで、結晶粒界に生じている弱結合状態を少なくする
方法を鋭意探究したところ、何らかの物質を拡散せしめ
てはどうかとの着想を得た。
As a result, we earnestly searched for ways to reduce the weak bonds that occur at grain boundaries, and came up with the idea of diffusing some kind of substance.

しかし、いかなる物質を拡散せしめればよいかは全く不
明であり、また、超伝導母体の組成によっても変わって
くると考えられる。そこで、膨大な実験を重ねた結果、
超伝導母体が、上記した(Bad−xMx) (Bit
−yNy)O5よりなる場合には、本発明に掲げる付着
物質を用いて拡散を行えば超伝導特性が向上することを
つきとめた。
However, it is completely unclear what kind of substance should be diffused, and it is thought that it also depends on the composition of the superconducting matrix. So, as a result of numerous experiments,
The superconducting matrix has the above-mentioned (Bad-xMx) (Bit
-yNy)O5, it has been found that superconducting properties can be improved if diffusion is performed using the adhering substance according to the present invention.

ただ、拡散を行う際の熱処理温度にしても、必ずしも全
ての温度範囲について超伝導特性の向上が認められると
いうものではなく、300〜1000℃という限られた
温度範囲における熱処理によフてのみ超伝導特性の向上
が認められるということが判明した。
However, even with regard to the heat treatment temperature during diffusion, it is not necessarily the case that improvements in superconducting properties are observed over the entire temperature range, and only when heat treatment in a limited temperature range of 300 to 1000 degrees Celsius improves superconductivity. It was found that the conduction properties were improved.

本発明は以上の知見・着想に基づいてなされたものであ
る。
The present invention has been made based on the above knowledge and idea.

前記付着物質を、前記超伝導母体の表面に付着させて、
しかる後に300〜1000℃の温度で、酸化性雰囲気
中で熱処理を行うと、付着物質は前記超伝導母体内に拡
散し、結晶粒界の超伝導弱結合特性を小さくし、超伝導
特性が向上するものと考えられる。
The adhering substance is attached to the surface of the superconducting matrix,
When heat treatment is then performed at a temperature of 300 to 1000°C in an oxidizing atmosphere, the adhered substances diffuse into the superconducting matrix, reducing the superconducting weak bonding characteristics of the grain boundaries and improving the superconducting properties. It is considered that

本発明によって得られる超伝導体は、結晶粒界の超伝導
弱結合特性が小さく、超伝導特性が優れている。臨界電
流密度を例にとれば、従来10”A/cm2〜10’A
/cm2程度のものを得るのも非常に困難であったが、
この方法によれば、1×10’A/cm’以上の臨界を
流密度をも容易に実現でき、さらに磁場を印加した状態
でも高電流密度を得ることができる。
The superconductor obtained by the present invention has small superconducting weak coupling characteristics at grain boundaries and has excellent superconducting characteristics. Taking the critical current density as an example, conventionally it is 10"A/cm2~10'A
It was also very difficult to obtain something of the order of /cm2,
According to this method, a critical current density of 1×10'A/cm' or more can be easily achieved, and a high current density can also be obtained even when a magnetic field is applied.

[実施例] 以下に本発明の詳細な説明するが、本発明の範囲はこの
実施例により限定されるものではない (実施例1) (Bat−xMx) (Bit−yNy)Osにおいて
、Mをに、xをx = 0.3、yをy=oとした化学
組成で配合し、配合物を圧縮成形した後、銀のチュウブ
に封入し、さらに石英管中に真空封入して、酸素の気流
中で650℃×70時間の焼成を行った。これにより表
1に示す組成の超伝導母体を得た。
[Example] The present invention will be described in detail below, but the scope of the present invention is not limited by this example. (Example 1) In (Bat-xMx) (Bit-yNy)Os, M is The mixture was compounded with a chemical composition in which x = 0.3 and y = 0. The mixture was compression molded, sealed in a silver tube, and then vacuum sealed in a quartz tube to remove oxygen. Firing was performed at 650° C. for 70 hours in an air stream. As a result, a superconducting matrix having the composition shown in Table 1 was obtained.

一方、付着物質として表1に示す物質を選択し、蒸留水
でこれら付着物質を希釈して、これら物質の水溶液ある
いは懸濁液を作製した。
On the other hand, the substances shown in Table 1 were selected as adherent substances, and these adherent substances were diluted with distilled water to prepare aqueous solutions or suspensions of these substances.

次いで、このようにして作製した水溶液あるいは懸濁液
を、前記作製した超伝導母体の表面に筆で塗布すること
により付着物質を超伝導母体表面に付着させた。付着量
は単位面積(c rn” )あたり3mgとした。
Next, the aqueous solution or suspension thus prepared was applied with a brush to the surface of the superconducting matrix prepared above, thereby causing the adhesion substance to adhere to the surface of the superconducting matrix. The amount of adhesion was 3 mg per unit area (c rn'').

次いで、付着物質を付着させた超伝導母体を、酸素気流
中で、500℃で5時間熱処理して酸化物超伝導体を作
製した。
Next, the superconducting base material to which the adhesion substance was attached was heat-treated at 500° C. for 5 hours in an oxygen stream to produce an oxide superconductor.

以上のようにして作製した酸化物超伝導体につき、臨界
温度と臨界電流密度の測定を行った。
The critical temperature and critical current density of the oxide superconductor produced as described above were measured.

臨界温度の測定は、四端子法により、73Hzの交流を
用いて電流500μAで行った。
The critical temperature was measured by a four-terminal method using an alternating current of 73 Hz and a current of 500 μA.

臨界電流密度の測定は、四端子法により発生電圧1μV
/cmの基準で行った。
The critical current density is measured using the four-terminal method at a generated voltage of 1 μV.
/cm standard.

表1に測定結果を示す。Table 1 shows the measurement results.

何れの場合でも付着物質がない時に比べて著しく超伝導
特性の優れた酸化物超伝導体を得ることができた。
In either case, it was possible to obtain an oxide superconductor with significantly superior superconducting properties compared to the case without the deposited material.

すなわち、超伝導母体に付着物質を付着させて熱処理を
行ったものは全て1 x 10’ A/am2以上の臨
界電流密度が得られた。それに対し付着物質を付着しな
いものは最も良好なもの(表1最下段)でも1 x 1
0 ’ A/cm2でしかなかった。
That is, in all cases in which a superconducting substance was attached to a superconducting matrix and heat treatment was performed, a critical current density of 1 x 10' A/am2 or more was obtained. On the other hand, the best one (bottom row of Table 1) that does not contain any adhesion substances is 1 x 1.
It was only 0' A/cm2.

この結果から明かなように、従来の技術に比べて、本発
明の実施例1は、著しく臨界電流の改善がなされた。
As is clear from the results, the critical current was significantly improved in Example 1 of the present invention compared to the conventional technology.

なお、組成物としてMかに以外のRb、Liあるいはこ
れらの二種以上の組合わせについても、さらに付着物質
として表1に示したAg以外の車体であるCu、Bi、
TI、Mn、Fe、V。
In addition, Rb, Li, or a combination of two or more of these other than M crab may be used as a composition, and Cu, Bi, Bi, which is a car body other than Ag shown in Table 1 as an adhesion substance, may also be used.
TI, Mn, Fe, V.

Ti、Sb、Cr、Sr、Ca、Ba、Ni。Ti, Sb, Cr, Sr, Ca, Ba, Ni.

Zn、Li、に、Na、Rb、Cs、Yまたは、La、
Nd以外のRe(レアアース金属)の単体であるPr、
Sm、Eu、Gd、Tb、DyHo、Er、Tm、Tr
あるいはこれらの酸化物(表1に示した酸化物を除く)
もしくは炭酸化物、さらには上記車体、酸化物、炭酸化
物の二種以上の組合わせについても同様の結果が得られ
た。
Zn, Li, Na, Rb, Cs, Y or La,
Pr, which is a simple substance of Re (rare earth metal) other than Nd,
Sm, Eu, Gd, Tb, DyHo, Er, Tm, Tr
Or these oxides (excluding the oxides shown in Table 1)
Similar results were also obtained for carbonates, and also for combinations of two or more of the above-mentioned car bodies, oxides, and carbonates.

表  ス(その1) 表  1(その2) (実施例2) 実施例1の結果の中で、付着物質をNa20゜K2Oと
した場合に最も臨界電流の改善に効果があったが、その
内、K2Oを選び、熱処理温度の効果について調査した
Table 1 (Part 1) Table 1 (Part 2) (Example 2) Among the results of Example 1, Na20°K2O was the most effective in improving the critical current; , K2O was selected and the effect of heat treatment temperature was investigated.

組成が、Baa、 、に。3BiOsとなる配合物を圧
縮成形した後、銀のチュウブに封入し、さらに石英管中
に真空封入して酸素の気流中で650tX 70時間の
焼成を行った。これにより表2に示す組成の超伝導母体
を得た。 一方、K2Oを蒸留水で希釈して、この希釈
液を、前記作製した超伝導母体の表面に筆で塗布するこ
とによりに20を超伝導母体表面に付着させた。付着量
は単位面積(Cゴ)あたり3mgとした。
The composition is Baa, . After compression molding the composition to become 3BiOs, it was sealed in a silver tube, then vacuum sealed in a quartz tube, and fired in an oxygen stream at 650 t for 70 hours. As a result, a superconducting matrix having the composition shown in Table 2 was obtained. On the other hand, K2O was diluted with distilled water, and the diluted solution was applied to the surface of the superconducting matrix prepared above with a brush, thereby making 20 adhere to the surface of the superconducting matrix. The amount of adhesion was 3 mg per unit area (Cgo).

次いで、K2Oを付着させた超伝導母体を、酸素気流中
で、250〜1200℃の範囲で熱処理温度を変化させ
、5時間熱処理して酸化物超伝導体を得た。
Next, the superconducting matrix to which K2O was attached was heat treated in an oxygen stream for 5 hours at varying heat treatment temperatures in the range of 250 to 1200 DEG C. to obtain an oxide superconductor.

以上のようにして作製した酸化物超伝導体につき、実施
例1の場合と同様の方法で臨界温度と臨界電流密度の測
定を行った。
The critical temperature and critical current density of the oxide superconductor produced as described above were measured in the same manner as in Example 1.

その結果を表2に示す。The results are shown in Table 2.

表2に示すように、熱処理温度が300〜1000℃の
場合、付着物質を付着しないときに比べて著しく超伝導
特性の優れた酸化物超電導体を得ることができたことが
わかる。特に、熱処理温度が500〜1000℃の場合
には一段と超伝導特性が向上していることがわかる。
As shown in Table 2, it can be seen that when the heat treatment temperature was 300 to 1000°C, an oxide superconductor with significantly superior superconducting properties could be obtained compared to when no deposited substance was attached. In particular, it can be seen that the superconducting properties are further improved when the heat treatment temperature is 500 to 1000°C.

この結果から明かなように、従来の技術に比べて、粒騨
の弱結合の減少により、著しく臨界電流の改善がなされ
た。
As is clear from this result, compared to the conventional technology, the critical current was significantly improved due to the reduction in the weak bonding of the grain anchors.

なお、このような熱処理温度の効果については、組成物
としてのMやNおよび付着物質を実施例1で述べた、各
種材料とした場合についても同様の結果が得られている
Regarding the effect of the heat treatment temperature, similar results were obtained when the various materials described in Example 1 were used as M and N as the composition and the attached substances.

表 母体組成: Baa、 tKo、 3BiO5付着物貢
:に20 (実施例3) (Bat −11Mx) (Bit−yNy)Osにお
いて、NをPb、x=O,y=o、7とした化学組成で
配合し、配合物を圧縮成形した後、銀のチュクプに封久
しさらに石英管中に真空封入して酸素の気流中で6ぢO
℃X70時間の焼成を行フな。これにより表3に示す組
成の超伝導母体を得た。
Table matrix composition: Baa, tKo, 3BiO5 deposits: 20 (Example 3) (Bat -11Mx) (Bit-yNy) Chemical composition in which N is Pb, x=O, y=o, and 7 After compression-molding the mixture, it was sealed in a silver tube, vacuum-sealed in a quartz tube, and heated to 6 ℃ in an oxygen stream.
Bake at ℃ for 70 hours. As a result, a superconducting matrix having the composition shown in Table 3 was obtained.

一方、付着物質として表3に示す物質を選択し、蒸留水
でこれら付着物質を希釈して、これら物質の水溶液ある
いは懸濁液を作製した。
On the other hand, the substances shown in Table 3 were selected as adherent substances, and these adherent substances were diluted with distilled water to prepare aqueous solutions or suspensions of these substances.

次いで、このようにして作製した水溶液あるいは懸濁液
を、前記作製した超伝導母体の表面に筆で塗布すること
により付着物質を超伝導母体表面に付着させた。付着量
は単位面積(c m’ )あたり3mgとした。
Next, the aqueous solution or suspension thus prepared was applied with a brush to the surface of the superconducting matrix prepared above, thereby causing the adhesion substance to adhere to the surface of the superconducting matrix. The amount of adhesion was 3 mg per unit area (cm').

次いで、付着物質を付着させた超伝導母体を、酸素気流
中で、500℃で5時間熱処理して酸化物超伝導体を作
製した。
Next, the superconducting base material to which the adhesion substance was attached was heat-treated at 500° C. for 5 hours in an oxygen stream to produce an oxide superconductor.

以上のようにして作製した酸化物超伝導体につき、実施
例1と同様に臨界温度と臨界電流密度の測定を行った。
The critical temperature and critical current density of the oxide superconductor produced as described above were measured in the same manner as in Example 1.

表3に測定結果を示す。Table 3 shows the measurement results.

何れの場合でも付着物質がない時に比べて著しく超伝導
特性の優れた酸化物超伝導体を得ることができた。
In either case, it was possible to obtain an oxide superconductor with significantly superior superconducting properties compared to the case without the deposited material.

この結果から明かなように、従来の技術に比べて本発明
の実施例3は実施例1と同様、著しく臨界電流の改善が
なされた。
As is clear from the results, as with Example 1, Example 3 of the present invention significantly improved the critical current compared to the conventional technology.

なお、組成物としてNがCuについても、さらに付着物
質として表3に示したAg以外の単体であるCu、Bi
、Tl、Mn、Fe、V、Ti。
Note that even when N is Cu as a composition, Cu and Bi, which are simple substances other than Ag shown in Table 3, are added as adhering substances.
, Tl, Mn, Fe, V, Ti.

Sb、Cr、Sr、Ca、Ba、Ni、Zn。Sb, Cr, Sr, Ca, Ba, Ni, Zn.

Li、に、Na、Rb、Cs、Yまたは、La。Li, Na, Rb, Cs, Y or La.

Nd以外のRe(レアアース金属)の車体であるPr、
Sm、Eu、Gd、Tb、Dy、Ho。
Pr, which is a vehicle body made of Re (rare earth metal) other than Nd;
Sm, Eu, Gd, Tb, Dy, Ho.

Er、Tm、Trあるいはこれらの酸化物(表3に示し
た酸化物を除く)もしくは炭酸化物、さらには上記単体
、酸化物、炭酸化物の二種以上の組合わせについても同
様の結果が得られた。
Similar results were obtained for Er, Tm, Tr, or their oxides (excluding the oxides shown in Table 3) or carbonates, and also for combinations of two or more of the above single substances, oxides, and carbonates. Ta.

表 (その1) 表 3(その2) (実施例4) Ba (Bio、 1Pbo、 5cuo、 s) O
sとした化学組成で配合し、配合物を圧縮成形した後、
銀のチュウブに封入しさらに石英管中に真空封入して6
50℃×70時間焼成を行った。一方、付着物質として
表4に示す物質を選択し、蒸留水で希釈して、この希釈
液を、前記作成した超伝導母体表面に筆で塗布すること
により付着させた。付着量は単位面積(cm”)あたり
3mgとした0次いで、付着物質を付着させた超伝導母
体を、酸素気流中で、500℃で5時間熱処理して酸化
物超伝導体を作成した。
Table (Part 1) Table 3 (Part 2) (Example 4) Ba (Bio, 1Pbo, 5cuo, s) O
After compounding with a chemical composition of s and compression molding the compound,
It is sealed in a silver tube and then vacuum sealed in a quartz tube.6
Firing was performed at 50°C for 70 hours. On the other hand, the substances shown in Table 4 were selected as adhering substances, diluted with distilled water, and the diluted liquid was applied to the surface of the superconducting matrix prepared above with a brush to adhere. The amount of adhesion was 3 mg per unit area (cm'').Next, the superconducting matrix to which the adhering substance was attached was heat-treated at 500° C. for 5 hours in an oxygen stream to produce an oxide superconductor.

以上のようにして作成した酸化物超伝導体につき、実施
例1と同様に臨界温度と臨界電流密度の測定を行った0
表4に測定結果を示す。
The critical temperature and critical current density of the oxide superconductor prepared as described above were measured in the same manner as in Example 1.
Table 4 shows the measurement results.

何れの場合でも付着物質がない時に比べて著しく超伝導
特性の優れた酸化物超伝導体を得ることができた。この
結果から明かなように、従来の技術に比べて、本発明の
実施例4は、実施例1および実施例3と同様、著しく臨
界電流の改善がなされた。
In either case, it was possible to obtain an oxide superconductor with significantly superior superconducting properties compared to the case without the deposited material. As is clear from this result, compared to the conventional technology, Example 4 of the present invention, like Example 1 and Example 3, significantly improved the critical current.

なお、付着物質として、表4で示したLaNd以外のR
e(レアアース金属)であるPr。
Note that R other than LaNd shown in Table 4 was used as the adherent substance.
e (rare earth metal) Pr.

Sm、Eu、Gd、Tb、Dy、Ho、Er。Sm, Eu, Gd, Tb, Dy, Ho, Er.

Tm、Trの車体あるいはその酸化物もしくは炭酸化物
を用いた場合であっても同様の結果が得られた。
Similar results were obtained even when Tm or Tr car bodies or their oxides or carbonates were used.

表 4(その1) 表 4(その2) (実施例5) (Bal−Xuり (BL−yNy) 03においてM
をに、Nをpbとし、x、yの値を変化させた化学組成
となる配合物を、圧縮成形した後、銀のチュウブに封入
しさらに石英管中に真空封入して650℃×70時間焼
成を行うことにより複数の超伝導母体を得た。
Table 4 (Part 1) Table 4 (Part 2) (Example 5) (Bal-Xuri (BL-yNy) M in 03
Then, a compound with a chemical composition in which N was set to PB and the values of x and y were changed was compression molded, sealed in a silver tube, and then vacuum sealed in a quartz tube at 650°C for 70 hours. Multiple superconducting matrices were obtained by firing.

一方、付着物質としてCuOを選択し、蒸留水で希釈し
て、この希釈液を、前記作成した複数の超伝導母体の表
面に筆で塗布することによりCuOを超伝導母体表面に
付着させた。付着量は単位面積(am”)あたり3mg
とした。
On the other hand, CuO was selected as the adhesion substance, diluted with distilled water, and the diluted solution was applied with a brush to the surfaces of the plurality of superconducting matrices prepared above, thereby making CuO adhere to the surfaces of the superconducting matrices. Adhering amount is 3mg per unit area (am”)
And so.

次いで、CuOを付着させた超伝導母体を、酸素気流中
で、500℃で5時間熱処理して酸化物超伝導体を得た
Next, the superconducting matrix to which CuO was attached was heat-treated at 500° C. for 5 hours in an oxygen stream to obtain an oxide superconductor.

以上のようにして作成した酸化物超伝導体につき、実施
例1の場合と同様の方法で臨界温度と臨界電流密度の測
定を行フた。
The critical temperature and critical current density of the oxide superconductor produced as described above were measured in the same manner as in Example 1.

その結果を表5に示す。The results are shown in Table 5.

表5に示すように、Xが0.5以下および、yが0.8
以下の固溶領域の超伝導母体の場合、何れの場合でも付
着物質を付着しないときに比べて著しく超伝導特性の優
れた酸化物超伝導体を得ることができた。
As shown in Table 5, X is 0.5 or less and y is 0.8
In the case of the following superconducting base materials in the solid solution region, it was possible to obtain oxide superconductors with significantly superior superconducting properties compared to when no adhering substance was attached.

なお、Mかに以外のRb、Liおよびこれらの二種以上
の組合わせについても、NがPb以外のCuあるいはこ
れらの混合物についても、さらには付着物質として、C
u、Bi、TI、Mn。
Furthermore, regarding Rb, Li and combinations of two or more of these other than M, N is also applicable to Cu other than Pb or a mixture thereof, and furthermore, C as an adhesion substance.
u, Bi, TI, Mn.

Fe、V、Ti、Cr、Sb、Sr、Ca。Fe, V, Ti, Cr, Sb, Sr, Ca.

Ba、Ni、Zn、Li、に、Na、Rb。Ba, Ni, Zn, Li, Na, Rb.

Cs、Ag、Y、Re (レアアース金属)の単体、C
uO以外の酸化物もしくは炭酸化物、あるいはに2Cr
207 K2Mn204の如き熱分解によって酸化物を
生ずる化合物を用いた場合の結果も表5と同様の結果が
得られ、いずれの場合でも付着物質がないときに比べて
著しく超伝導特性の優れた酸化物超伝導体を得ることが
できた。
Cs, Ag, Y, Re (rare earth metals), C
Oxides or carbonates other than uO, or 2Cr
Results similar to those shown in Table 5 were obtained when using a compound such as 207K2Mn204 that produces oxides through thermal decomposition, and in both cases, the oxides had significantly superior superconducting properties compared to when there was no attached material. We were able to obtain a superconductor.

また、これまで超伝導母体が焼結体の場合について述べ
たが、単結晶や薄膜についても実施例1〜5と同様の結
果が得られた。
Moreover, although the case where the superconducting matrix is a sintered body has been described so far, the same results as in Examples 1 to 5 were obtained also for single crystals and thin films.

[発明の効果] 以上説明したように、本発明によれば、高温超伝導体の
欠点である粒界や欠陥部分に存在する超伝導弱結合を制
御することが可能であり、著しく特性の優れた(例えば
、臨界電流密度1×10 ’A/cm”以上の特性を有
する)酸化物超伝導体を得ることができる利点がある。
[Effects of the Invention] As explained above, according to the present invention, it is possible to control the weak superconducting bonds that exist in grain boundaries and defective areas, which are the drawbacks of high-temperature superconductors, and it is possible to control the superconducting weak bonds that exist in grain boundaries and defective areas, which are the drawbacks of high-temperature superconductors. Another advantage is that an oxide superconductor (for example, having a critical current density of 1×10'A/cm" or more) can be obtained.

これらの改善がなされた酸化物超伝導体は、超伝導マグ
ネットや超伝導モータ等に用いられるバルク材料として
充分な性能を有し、超伝導応用分野の大きな貢献をなす
ものである。
Oxide superconductors with these improvements have sufficient performance as bulk materials used in superconducting magnets, superconducting motors, etc., and will make a major contribution to the field of superconducting applications.

Claims (1)

【特許請求の範囲】[Claims]  (Ba_1_−_xM_x)(Bi_1_−_yN_
y)O_3(MはK,Rb,Liのうちから選ばれた一
種または二種以上、x=0〜0.5、NはPb,Cuの
うちから選ばれた一種または二種、y=0〜0.8)な
る組成の超伝導母体を作製し、しかるのち、Cu,Bi
,Tl,Mn,Fe,V,Ti,Sb,Cr,Sr,C
a,Ba,Ni,Zn,Li,K,Na,Rb,Cs,
Ag,Y,Re(ただし、Reはレアアース金属)の単
体、これらの酸化物もしくは炭酸化物または熱分解によ
って酸化物を生ずる化合物の一種もしくは二種以上の物
質を、前記超伝導母体の表面に付着させ、次いで300
〜1000℃の温度で、酸化性雰囲気中で熱処理を行う
ことを特徴とする酸化物超伝導体の製造法。
(Ba_1_-_xM_x) (Bi_1_-_yN_
y) O_3 (M is one or more selected from K, Rb, Li, x = 0 to 0.5, N is one or two selected from Pb, Cu, y = 0 A superconducting matrix with a composition of ~0.8) was prepared, and then Cu, Bi
, Tl, Mn, Fe, V, Ti, Sb, Cr, Sr, C
a, Ba, Ni, Zn, Li, K, Na, Rb, Cs,
One or more substances of Ag, Y, Re (where Re is a rare earth metal), their oxides or carbonates, or compounds that produce oxides through thermal decomposition are attached to the surface of the superconducting matrix. then 300
1. A method for producing an oxide superconductor, which comprises performing heat treatment in an oxidizing atmosphere at a temperature of ~1000°C.
JP2219389A 1990-08-21 1990-08-21 Production of oxide superconductor Pending JPH04104984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2219389A JPH04104984A (en) 1990-08-21 1990-08-21 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2219389A JPH04104984A (en) 1990-08-21 1990-08-21 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH04104984A true JPH04104984A (en) 1992-04-07

Family

ID=16734655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2219389A Pending JPH04104984A (en) 1990-08-21 1990-08-21 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH04104984A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113113184A (en) * 2021-03-29 2021-07-13 深圳先进技术研究院 Carbon-based superconducting material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113113184A (en) * 2021-03-29 2021-07-13 深圳先进技术研究院 Carbon-based superconducting material and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH029719A (en) Superconductive material
US5786304A (en) Joining product of oxide superconducting material and process for producing the same
JPH0640775A (en) Joined body of oxide superconducting material and its production
JPH04104984A (en) Production of oxide superconductor
US6506709B1 (en) Devices utilizing oriented superconducting ceramics
JPH06111862A (en) Solid substance composed of ceramic high- temperature superconducting material connected to metal conductor and its manufacture
AU600156B2 (en) Meltable high temperature superconductor
JPH04104985A (en) Production of oxide superconductor
JPH1087328A (en) Method for annealing bulk superconductor with oxygen
JPH0483780A (en) Production of oxide superconductor
JP2501281B2 (en) Method for producing superconductor with high critical current density
JPH0421521A (en) Production of bi-based superconductor having ni base material
JPH0238359A (en) Production of superconductor
JPH04124032A (en) Superconductor and its synthesis
JPH05208898A (en) Production of high-temperature superconductive component
JPH0717380B2 (en) Method for producing superconducting fibrous crystal
JPH01212225A (en) Oxide superconducting material
JPH012212A (en) Method for manufacturing superconducting composite oxide thin film
JPH054899A (en) Production of bi-based oxide superconductor single crystal
JPH02252621A (en) Superconducting fibrous crystal and production thereof
JPH03271156A (en) Production of oxide superconductor bulk
JPS63310760A (en) Ceramic substrate to be used for oxide superconducting film
JPH02239174A (en) Metal coated superconducting ceramics molded body and metal coated superconducting ceramics-metal joined body obtained by using the molded body
JPH01160826A (en) Preparation of oxide superconducting thin film
JPS63274019A (en) Structure of superconductor and its manufacture