JPH04104822A - Manufacture of inorganic porous body - Google Patents

Manufacture of inorganic porous body

Info

Publication number
JPH04104822A
JPH04104822A JP22221290A JP22221290A JPH04104822A JP H04104822 A JPH04104822 A JP H04104822A JP 22221290 A JP22221290 A JP 22221290A JP 22221290 A JP22221290 A JP 22221290A JP H04104822 A JPH04104822 A JP H04104822A
Authority
JP
Japan
Prior art keywords
porous
porous body
solid product
base material
cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22221290A
Other languages
Japanese (ja)
Inventor
Masanobu Aizawa
相沢 正信
Masahiro Kuroishi
正宏 黒石
Haruo Nishiyama
治男 西山
Chihiro Kobayashi
千尋 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP22221290A priority Critical patent/JPH04104822A/en
Publication of JPH04104822A publication Critical patent/JPH04104822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain an inorganic porous body having heat resistance and small in pore size by flowing either of gaseous materials to form a solid by CVD or plasma CVD on the primary side of a porous substrate and flowing the other on the secondary side to form the shape of the gaseous materials into a thin film on the surface of the substrate. CONSTITUTION:Either of gaseous materials such as a mixed gas of H2 and CO2 to be brought into reaction in high vacuum and to precipitate a solid product is flowed on the primary side of a porous substrate in which the inorganic particles 2 of alumina, zirconia or the like is used as a constituting material by pressure P1, and the other gaseous material such as a gas of zirconia chloride is flowed on the secondary side by pressure P2. Then, the thin film of a solid product 3 such as ZrO2 is precipitated on the surface of the particles 2 by CVD, and as a result, a porous body having fine pore size can be obtd. Thus, the inorganic porous body having heat resistance and excellent in the control of pare size is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は濾過、ガス分離等に使用される無機多孔体の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing an inorganic porous body used for filtration, gas separation, etc.

(従来の技術) 精密濾過や限外濾過に用いる孔径か50Å以下の微細多
孔質膜として、従来から特開平2−6829号に示され
るような有機材料からなる中空糸状膜、或いは特開平1
−299611号に示されるように、ゾル液を多孔質支
持体表面に塗布し、これを乾燥した後焼成するデイツプ
コート法により得られる無機多孔質膜か知られている。
(Prior Art) As microporous membranes with pore diameters of 50 Å or less used for precision filtration and ultrafiltration, hollow fiber membranes made of organic materials as shown in JP-A-2-6829, or JP-A-1
As shown in Japanese Patent Application No. 299611, an inorganic porous membrane is known which is obtained by a dip coating method in which a sol solution is applied to the surface of a porous support, dried and then fired.

(発明か解決しようとする課題) 上述した多孔質膜のうち有機材料からなる膜は薬品によ
る洗浄及び蒸気による高温洗浄かできないという本質的
な欠陥がある。
(Problems to be Solved by the Invention) Among the above-mentioned porous membranes, membranes made of organic materials have an essential defect in that they can only be cleaned with chemicals and high-temperature cleaning with steam.

また、デイツプコート法により得られる無機多孔質膜は
、高温で使用すると孔径か大きくなって微細膜としての
性能か低下し、更に製造の際の孔径のコントロールか難
しい。
Furthermore, when the inorganic porous membrane obtained by the dip coating method is used at high temperatures, the pore size becomes large and its performance as a fine membrane deteriorates, and furthermore, it is difficult to control the pore size during production.

(課題を解決するための手段) 上記課題を解決すべく本発明は、多孔質基材の1次側に
CV D (Chemical Vapor depo
sition)またはプラズマCVDにより固体を生成
する気体状物質の一方を、2次側に気体状物質の他方を
流すようにした。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides chemical vapor depot (CVD) on the primary side of a porous base material.
One of the gaseous substances that produce a solid by plasma CVD or plasma CVD was made to flow, and the other gaseous substance was made to flow to the secondary side.

(作用) 制御された雰囲気下で反応して固体生成物を析出する2
種類の気体状物質の一方を多孔質基材の1次側に、他方
の気体状物質を多孔質基材の2次側に流すと、これら2
種類の気体状物質が多孔質基材の内部に侵入して反応し
、この反応による固体生成物が多孔質基材を構成する粒
子表面に薄膜状に析出し、結果として多孔質基材の孔径
が小さくなる。
(Function) Precipitates a solid product by reacting under a controlled atmosphere 2
When one of the two types of gaseous substances is flowed into the primary side of the porous substrate and the other gaseous substance is caused to flow into the secondary side of the porous substrate, these two
Gaseous substances of various types enter the inside of the porous substrate and react, and the solid products of this reaction are deposited in a thin film on the surface of the particles that make up the porous substrate, resulting in a change in the pore size of the porous substrate. becomes smaller.

(実施例) 以下に本発明方法の一例を添付図面に基いて説明する。(Example) An example of the method of the present invention will be explained below based on the accompanying drawings.

先ず、本発明にあっては第1図に示すような多孔質基材
1を用意する。多孔質基材1としては円筒状のものに限
らず、平板状等任意である。また、多孔質基材1はアル
ミナ、ジルコニア等の無機粉、子2・・・を構成材料と
し、各粒子2・・・の間隔つまり多孔質基材1の平均孔
径d1は01μm程度とする。
First, in the present invention, a porous base material 1 as shown in FIG. 1 is prepared. The porous base material 1 is not limited to a cylindrical shape, but may be of any shape such as a flat plate. Further, the porous base material 1 is made of inorganic powder such as alumina, zirconia, etc., and particles 2..., and the interval between each particle 2..., that is, the average pore diameter d1 of the porous base material 1 is about 0.1 μm.

そして、上記の多孔質基材1の1次側に高温・高真空下
で反応して固体生成物を析出する2種類の気体状物質の
一方を圧力P1で、多孔質基材1の2次側に他方の気体
状物質を圧力P2で流す。
Then, one of the two types of gaseous substances that react at high temperature and high vacuum to precipitate a solid product is applied to the primary side of the porous base material 1 at a pressure P1, and the secondary side of the porous base material 1 is heated at a pressure of P1. The other gaseous substance is caused to flow to the side at a pressure P2.

ここで、気体状物質の一例を挙げれば、1次側に流すも
のとしては02ガス、H20ガス或いはH2とCO2と
の混合ガス等とし、2次側に流すものとしてはZrC1
,(塩化ジルコニウム)等とする。
Here, to give an example of gaseous substances, those flowing to the primary side are 02 gas, H20 gas, or a mixed gas of H2 and CO2, etc., and those flowing to the secondary side are ZrC1.
, (zirconium chloride), etc.

すると、粒子2表面にCVDにより固体生成物3(Zr
O2)の薄膜が析出し、その結果として微細な孔径を有
する多孔体か得られる。
Then, a solid product 3 (Zr
A thin film of O2) is deposited, resulting in a porous body with fine pore sizes.

また温度、圧力、原料ガスの種類等を変化させることに
より、固体生成物3の種類、厚みを制御することができ
、更に圧力P1、P2をコントロールすることで、1次
側又は2次側の一方の孔径か小さくなった所謂非対称膜
の製造も可能である。
In addition, by changing the temperature, pressure, type of raw material gas, etc., the type and thickness of the solid product 3 can be controlled.Furthermore, by controlling the pressures P1 and P2, the primary side or the secondary side can be controlled. It is also possible to manufacture so-called asymmetric membranes in which one of the pores has a smaller diameter.

また、多孔質基材の材料及び原料カスの種類については
任意であるか、多孔質基材の材料と原料ガスが反応して
生成する物質とか同種のものであれば、基材とのなじみ
の点で好ましい。例えば基材をジルコニアとし、原料ガ
スを塩化ンルコニウムとする組合せは好ましい。尚、1
次側、2/l11:側のガスを反応させ、多孔質基材に
蒸着させる際の駆動力として、一般に熱を用いるか、プ
ラズマや光を用いてもよい。プラズマや光を用いること
で低温での析出か可能となる。また温度条件としては、
100〜1300°C位とし圧力条件としては01〜7
60Torr位まで利用できる。
In addition, the material of the porous base material and the type of raw material waste are optional, or if they are of the same type, such as a substance generated by the reaction between the material of the porous base material and the raw material gas, it will be compatible with the base material. This is preferable in this respect. For example, a combination in which the base material is zirconia and the raw material gas is ruconium chloride is preferred. Furthermore, 1
As a driving force for reacting the gas on the next side, 2/l11: side, and depositing it on the porous substrate, heat is generally used, or plasma or light may be used. Deposition at low temperatures is possible by using plasma or light. In addition, as for temperature conditions,
The temperature is about 100 to 1300°C and the pressure condition is 01 to 7.
Can be used up to about 60 Torr.

次に具体的な数値を挙げた実施例を以下に示す。Examples with specific numerical values are shown below.

[実施例1] 多孔質基材としては孔径か01μmの多孔質アルミナチ
ューブを用意し、多孔質基材の1次側に流すガスとして
はH2とCO2との混合ガスとし、多孔質基材の2次側
に流す気体状物質としては、固体状ノZ rC14(塩
化ンルコニウム)をベーパライザ(圧力; 5 tor
r)により260°Cて気化させ、これをArをキャリ
ヤガスとして流す。
[Example 1] A porous alumina tube with a pore diameter of 01 μm was prepared as the porous base material, and a mixed gas of H2 and CO2 was used as the gas flowing on the primary side of the porous base material. As the gaseous substance flowing to the secondary side, solid ZrC14 (ruconium chloride) was used in a vaporizer (pressure: 5 torr).
r) at 260°C, and flowed with Ar as a carrier gas.

また、流す圧力は1次側P1,2次側P2とも1tor
rとし、蒸着温度は10000C,蒸着時間は1〜10
時間とする。
In addition, the pressure to flow is 1torr on both the primary side P1 and the secondary side P2.
r, the deposition temperature is 10000C, and the deposition time is 1 to 10
Time.

(効果) 第4図は上記した[実施例1]の蒸着時間を2時間とし
た場合の分画分子量のデータを示し、このデータより阻
止率90%に相当する孔径か約50人であるので、本発
明方法により超微細膜か作成できることを確認すること
かできる。
(Effect) Figure 4 shows data on the molecular weight fraction when the vapor deposition time in Example 1 is set to 2 hours, and from this data, the pore size corresponding to a rejection rate of 90% is approximately 50. It can be confirmed that ultrafine films can be produced by the method of the present invention.

即ち本発明によれば、高温・高真空下で反応して固体生
成物を析出する2種類の気体状物質の一方を所定の圧力
で多孔質基材の1次側に、他力の気体状物質を所定の圧
力で多孔質基材の2次側に流すようにしたので、これら
2種類の気体状物質が多孔質基材の内部で反応して固体
生成物か多孔質基材を構成する粒子表面に薄膜状に析出
し、結果として多孔質基材の孔径か小さくなり、平均孔
径か50A以下の孔径て、しかも耐熱性と孔径のコント
ロールに優れた無機多孔体を得る二とができる。
That is, according to the present invention, one of two types of gaseous substances that react at high temperature and high vacuum to precipitate a solid product is applied to the primary side of a porous substrate at a predetermined pressure, and the gaseous substance is Since the substances are allowed to flow to the secondary side of the porous substrate at a predetermined pressure, these two gaseous substances react inside the porous substrate to form a solid product or the porous substrate. It precipitates in the form of a thin film on the particle surface, and as a result, the pore size of the porous substrate becomes small, making it possible to obtain an inorganic porous body with an average pore size of 50A or less, and excellent heat resistance and pore size control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明により製造される無機多孔体の一例の断
面図、第2図は同無機多孔体を構成する粒子の表面にC
VDにより固体生成物を析出せしめる前の状態を示す拡
大図、第3図は同無機多孔体を構成する粒子の表面にC
〜′Dにより固体生成物を析出せしめた状態を示す拡大
図、第4図はエチレングリコール分子量と阻止率との関
係(分画分子量)を示すグラフである。 尚、図面中1は多孔質基材、2は多孔質基材の構成粒子
、3は固体生成物である。 願  人
FIG. 1 is a cross-sectional view of an example of an inorganic porous material produced according to the present invention, and FIG.
Figure 3 is an enlarged view showing the state before the solid product is precipitated by VD.
An enlarged view showing the state in which the solid product was precipitated by ~'D, and FIG. 4 is a graph showing the relationship between ethylene glycol molecular weight and rejection rate (molecular weight cutoff). In the drawings, 1 is a porous base material, 2 is a constituent particle of the porous base material, and 3 is a solid product. wish person

Claims (1)

【特許請求の範囲】[Claims] CVD(Chemical Vapor deposi
tion)またはプラズマCVDによって固体生成物を
析出する2種類の気体状物質の一方を多孔質基材の1次
側に、他方の気体状物質を多孔質基材の2次側に流し、
これら2種類の気体状物質を多孔質基材の内部で反応せ
しめ、この反応による固体生成物を多孔質基材を構成す
る粒子表面に薄膜状に析出せしめることを特徴とする無
機多孔体の製造方法。
CVD (Chemical vapor deposition)
tion) or plasma CVD to deposit a solid product, one of the two gaseous substances is flowed on the primary side of the porous substrate, and the other gaseous substance is flowed on the secondary side of the porous substrate,
Production of an inorganic porous body characterized by reacting these two types of gaseous substances inside a porous base material, and depositing a solid product from this reaction in the form of a thin film on the surface of particles constituting the porous base material. Method.
JP22221290A 1990-08-23 1990-08-23 Manufacture of inorganic porous body Pending JPH04104822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22221290A JPH04104822A (en) 1990-08-23 1990-08-23 Manufacture of inorganic porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22221290A JPH04104822A (en) 1990-08-23 1990-08-23 Manufacture of inorganic porous body

Publications (1)

Publication Number Publication Date
JPH04104822A true JPH04104822A (en) 1992-04-07

Family

ID=16778892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22221290A Pending JPH04104822A (en) 1990-08-23 1990-08-23 Manufacture of inorganic porous body

Country Status (1)

Country Link
JP (1) JPH04104822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239663A (en) * 2005-03-07 2006-09-14 Noritake Co Ltd Production method of hydrogen gas separation membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239663A (en) * 2005-03-07 2006-09-14 Noritake Co Ltd Production method of hydrogen gas separation membrane

Similar Documents

Publication Publication Date Title
JP2554434B2 (en) Method for producing inorganic ultra-thin film
US6854602B2 (en) Hydrogen-selective silica-based membrane
Xomeritakis et al. CVD synthesis and gas permeation properties of thin palladium/alumina membranes
Ha et al. Properties of the TiO2 membranes prepared by CVD of titanium tetraisopropoxide
US6649255B1 (en) Article and method for producing extremely small pore inorganic membranes
Chen et al. Atomic layer deposition fabricating of ceramic nanofiltration membranes for efficient separation of dyes from water
US6613384B1 (en) Method for manufacturing a membrane
JP3971546B2 (en) Porous ceramic laminate and method for producing the same
AU2005287770B2 (en) Device for gas separation and method for producing one such device
JP2502250B2 (en) Preparation of Inorganic Membrane by Metalorganic Chemical Vapor Infiltration
Yamaguchi et al. Reaction control of tetraethyl orthosilicate (TEOS)/O 3 and tetramethyl orthosilicate (TMOS)/O 3 counter diffusion chemical vapour deposition for preparation of molecular-sieve membranes
JPH08103640A (en) Nonporous high-molecular film on porous inorganic substrate
JPH04104822A (en) Manufacture of inorganic porous body
JP2000157853A (en) Gas separating filter and its manufacture
JP2000189772A (en) Separation filter of hydrogen gas and its production
Xomeritakis et al. Evolution of pore size distribution and average pore size of porous ceramic membranes during modification by counter-diffusion chemical vapor deposition
JPH04180822A (en) Method for forming membrane to porous base material
JP2003135943A (en) Hydrogen separating membrane and method for manufacturing the same
JP2002274967A (en) Gamma alumina porous body, method for manufacturing the same and fluid separation filter by using the same
JP4065732B2 (en) Fluid separation module
Pati Ceramic coatings for membranes
JP2008246295A (en) Manufacturing method of hydrogen separation membrane
JPH0717780A (en) Production of porous ceramic film
JPH1085567A (en) Composite separating membrane and its manufacture
JPH0231822A (en) Production of inorganic porous film