JPH04104014A - Electromagnetic flowmeter - Google Patents

Electromagnetic flowmeter

Info

Publication number
JPH04104014A
JPH04104014A JP22271990A JP22271990A JPH04104014A JP H04104014 A JPH04104014 A JP H04104014A JP 22271990 A JP22271990 A JP 22271990A JP 22271990 A JP22271990 A JP 22271990A JP H04104014 A JPH04104014 A JP H04104014A
Authority
JP
Japan
Prior art keywords
frequency
zero
circuit
zero point
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22271990A
Other languages
Japanese (ja)
Other versions
JP2797673B2 (en
Inventor
Yoshinori Matsunaga
松永 義則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP22271990A priority Critical patent/JP2797673B2/en
Publication of JPH04104014A publication Critical patent/JPH04104014A/en
Application granted granted Critical
Publication of JP2797673B2 publication Critical patent/JP2797673B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To decrease the fluctuation of a zero point and to improve the accuracy in flow-rate measurement by computing a correcting value for the zero point corresponding to each frequency, and correcting the zero point by using the correcting value corresponding to the frequency with respect to each output signal. CONSTITUTION:The output signal of an exciting current If corresponding to each frequency is measured. The average values E1, E2 and E3 of the output signals for the individual frequencies are computed in average-value operating circuits 18 - 20. The average values E1, E2 and E3 are outputted into a zero- correction computing circuit 21. In the circuit 21, zero-correcting values DELTAe01, DELTAe02 and DELTAe03 are computed by using these data and outputted into a flow-rate operating circuit 22. In the circuit 22, correction is performed by using the zero correcting values DELTAe01, DELTAe02 and DELTAe03 with respect to the output signals corresponding to the frequencies of a sampling circuit 17. The flow rate signals without the zero-point errors are outputted through an output terminal 23. In this way, the fluctuation of the zero point at the high frequencies can be decreased, and the effect of the external noises can be made small.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は比較的高い周波数で励磁される電磁流量計に係
り、特に測定流体の流れを停止させることなく電磁流量
計のゼロ点を推定しこのゼロ点を用いてゼロ補正が出来
るように改良された電磁流量計に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an electromagnetic flowmeter that is excited at a relatively high frequency, and particularly to an electromagnetic flowmeter that estimates the zero point of the electromagnetic flowmeter without stopping the flow of the measured fluid. This invention relates to an improved electromagnetic flowmeter that can perform zero correction using this zero point.

〈従来の技術〉 商用周波数で励振する電磁流量計は励振周波数か比較的
高いので検出S極での直流電圧の変動に起因するゼロ点
の変動の影響を受は難く、また応答速度が速い利点を有
しているので、古くから用いられている。
<Prior art> Electromagnetic flowmeters that are excited at commercial frequencies have a relatively high excitation frequency, so they are less susceptible to zero point fluctuations caused by fluctuations in DC voltage at the detection south pole, and have the advantage of fast response speed. It has been used since ancient times.

しかし、逆に励振周波数が高いので測定流体或いは信号
回路にかなり大きな電磁誘導を起こし、このためゼロ点
が変動して流量測定の精度を低下させる原因になってい
た。
However, on the contrary, the high excitation frequency causes a considerably large electromagnetic induction in the fluid to be measured or in the signal circuit, which causes the zero point to fluctuate and reduce the accuracy of flow rate measurement.

そこで、この電磁誘導の影響を低減させるために、商用
周波数より低い低周波で励振する低周波励振形の電磁流
量計が開発され実用化されるに至った。
Therefore, in order to reduce the influence of this electromagnetic induction, a low frequency excitation type electromagnetic flowmeter that excites at a low frequency lower than the commercial frequency has been developed and put into practical use.

〈発明が解決しようとする課題〉 しかし、低周波で励振する低周波励振形の電磁流量計は
電磁誘導の影響が小さくなったので、長期に亘るゼロ点
の安定性は向上するメリットは生じたが、逆に励振周波
数がかなり低くなったので検出電極だ測定流体に接する
ことにより発生する直流電位の揺動によりゼロ点がふら
つきやすくなり、また測定流体の流量変化に対して出力
応答もおそくなるという問題が生じている。
<Problem to be solved by the invention> However, since the influence of electromagnetic induction is reduced in low-frequency excitation type electromagnetic flowmeters that are excited at low frequencies, the long-term stability of the zero point is improved. However, since the excitation frequency has become considerably lower, the zero point tends to fluctuate due to fluctuations in the DC potential caused by the detection electrode coming into contact with the fluid to be measured, and the output response to changes in the flow rate of the fluid to be measured becomes slower. This problem has arisen.

く課題を解決するための手段〉 本発明は、以上の課題を解決するために、複数の周波数
が時系列的に配列された励磁電流を励磁コイルに送出す
る励磁手段と、各周波数に対応して発生した各出力信号
の平均値を各周波数ごとに算出する平均値演算手段と、
これ等の平均値を用いて各周波数に対応するゼロ点の補
正値を算出するゼロ補正算出手段と、各出力信号に対し
てこれ等の周波数に対応する補正値を用いてゼロ点の補
正をして流量信号を出力する流量演算手段とを具備する く作 用〉 励磁手段により複数の周波数が時系列的に配列された励
磁電流を励磁コイルに送出し、平均値演算手段により各
周波数に対応して発生した各出力信号の平均値を各周波
数ごとに算出する。
Means for Solving the Problems> In order to solve the above problems, the present invention provides an excitation means that sends an excitation current in which a plurality of frequencies are arranged in time series to an excitation coil, and an excitation current that corresponds to each frequency. average value calculation means for calculating the average value of each output signal generated at each frequency;
Zero correction calculation means for calculating a zero point correction value corresponding to each frequency using these average values, and zero point correction for each output signal using the correction value corresponding to these frequencies. and a flow rate calculation means for outputting a flow rate signal using the excitation means. The excitation means sends an excitation current in which a plurality of frequencies are arranged in time series to the excitation coil, and the average value calculation means calculates an excitation current corresponding to each frequency. The average value of each output signal generated is calculated for each frequency.

さらに、ゼロ補正算出手段によりこれ等の平均値を用い
て各周波数に対応するゼロ点の補正値を算出し、流量演
算手段により各出力信号に対してこれ等の周波数に対応
する補正値を用いてゼロ点の補正をして流量信号を出力
する。
Furthermore, the zero correction calculation means uses these average values to calculate the zero point correction value corresponding to each frequency, and the flow rate calculation means uses the correction values corresponding to these frequencies for each output signal. to correct the zero point and output the flow rate signal.

〈実施例〉 以下、本発明の実施例について図を用いて説明する。第
1図は本発明の1実施例の構成を示すブロック図である
<Examples> Examples of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of one embodiment of the present invention.

10はステンレススチールなどの非磁性の導管であり、
この内面には絶縁のためライニングが總されている。更
に、この導管10とは絶縁して一対の検出電極11.1
2が固定されている。
10 is a non-magnetic conduit such as stainless steel;
A lining is placed on this inner surface for insulation. Furthermore, a pair of detection electrodes 11.1 are insulated from this conduit 10.
2 is fixed.

また、測定流体Qを接地するために接液$極13が共通
電位点COMに接続されている。
In addition, in order to ground the measurement fluid Q, the wetted $ pole 13 is connected to the common potential point COM.

導管10の外部には励磁コイル14が固定されており、
ここに励磁電流量fが励磁回路15から供給されている
。この励磁電流量fは制御信号CT1により制御されて
第2図に示すようにピーク値は一定であるが、その周波
数は商用周波数より高い周波数としてfl、f2、f3
、・・・・・・のごとく時系列的に切り換えられて励磁
コイル14に供給されている。
An excitation coil 14 is fixed to the outside of the conduit 10,
The excitation current amount f is supplied here from the excitation circuit 15. The excitation current amount f is controlled by the control signal CT1, and the peak value is constant as shown in FIG.
, . . . are switched in time series and supplied to the excitation coil 14.

一方、検出電極11.12は、差動増幅器16(簡単な
ため、増幅度は1とする)の各入力端に接続されており
、検出電極11.12に発生した各周波数f1、f2、
f3に対応する出力信号e1 、ef 、e3はここで
コモンモードノイズなどが除去された後でサンプリング
回路17に出力される。
On the other hand, the detection electrodes 11.12 are connected to each input terminal of the differential amplifier 16 (for simplicity, the amplification degree is assumed to be 1), and each of the frequencies f1, f2 generated at the detection electrodes 11.12,
The output signals e1, ef, and e3 corresponding to f3 are outputted to the sampling circuit 17 after common mode noise and the like are removed here.

サンプリング回路17はサンプリングスイッチ5Wo−
ホールドコンデンサC−バ・ソファ増幅器Qaなどで構
成され、サンプリング信号T1により差動増幅器16の
出力信号et 、ef 、e3をサンプリングしてホー
ルドコンデンサCにホールドする。
The sampling circuit 17 includes a sampling switch 5Wo-
It is composed of a hold capacitor C and a sofa amplifier Qa, etc., and the output signals et, ef, and e3 of the differential amplifier 16 are sampled and held in the hold capacitor C according to the sampling signal T1.

ホールドされた出力信号el 、ef 、e3はスイッ
チS W 1、S W a 、S W sの一端に印加
される。これ等のスイッチSW、−SW2 、SW3は
タイミング信号T2によって励磁電流量fの周波数f1
、f2、f3に対応して切り換えられて、スイッチS 
W 5、S W2 、S W)の他端から各周波数に対
応するホールド電圧がそれぞれ平均値演算回路18.1
つ、20に出力され、ここで各周波数に対応するホール
ド電圧の平均値E1、E2、E、が演算される。
The held output signals el, ef, and e3 are applied to one ends of the switches SW1, SWa, and SWs. These switches SW, -SW2, SW3 are operated at the frequency f1 of the excitation current amount f by the timing signal T2.
, f2, f3, and the switch S
The hold voltages corresponding to each frequency from the other ends of W 5 , SW 2 , SW are respectively average value calculation circuits 18.1.
The average values E1, E2, and E of the hold voltages corresponding to each frequency are calculated here.

演算された各ホールド電圧の平均値El、E2、E3は
ゼロ補正算出回路21に出力される。
The calculated average values El, E2, and E3 of each hold voltage are output to the zero correction calculation circuit 21.

ゼロ補正算出回路21では各周波数f1、f2、f3で
励磁されたときに発生する出力信号e1、e3−eコの
ゼロ点の補正値Δeo 、−Δe02、Δe03を推測
する演算を実行する。
The zero correction calculation circuit 21 executes calculations to estimate zero point correction values Δeo, -Δe02, and Δe03 of the output signals e1 and e3-e generated when excited at the respective frequencies f1, f2, and f3.

これ等のゼロ点の補正値ΔeO+、Δe02、Δe03
は、流量演算回路22に出力され、各周波fifl、f
2、f3に対応するサンプリング回路17の出力信号e
f + 、ef 2 、ef )に対してゼロ点の補正
をして流量出力端23に流量信号Qt 1、Qt 2、
Qt 3として出力する。
These zero point correction values ΔeO+, Δe02, Δe03
is output to the flow rate calculation circuit 22, and each frequency fifl, f
2, the output signal e of the sampling circuit 17 corresponding to f3
f + , ef 2 , ef ), the zero point is corrected, and the flow rate signals Qt 1 , Qt 2 ,
Output as Qt 3.

なお、24はタイミング発生回路であり、このタイミン
グ発生回路24は励磁回路15に対しては周波数で1、
f2、f3を切り換える順序を制御をする制御信号CT
Iを出力し、サンプリング回路17にはスイッチSW0
を各周波数f1、f2、f3に対応して発生した出力信
号をサンプリングするタイミング信号T1を出力し、ス
イッチSW+ 、SW2 、SW)にはサンプリング回
路17でサンプリングされた各周波数で1、f2、f3
に対応する出力信号をそれぞれ各平均値演算回路18.
19.20ごとに切り換えて出力するタイミング信号T
2を出力し、さらに流量演算回路22には各周波数で1
、f2、f3における出力信号に対してゼロ補正をする
タイミングを与えるタイミング信号T3を出力する。
Note that 24 is a timing generation circuit, and this timing generation circuit 24 has a frequency of 1,
Control signal CT that controls the order of switching f2 and f3
I, and the sampling circuit 17 has a switch SW0.
outputs a timing signal T1 that samples the output signals generated corresponding to each frequency f1, f2, f3, and outputs a timing signal T1 for sampling the output signal generated corresponding to each frequency f1, f2, f3, and switches SW+, SW2, SW) to output signals 1, f2, f3 at each frequency sampled by the sampling circuit 17.
The output signals corresponding to the respective average value calculation circuits 18.
Timing signal T that switches and outputs every 19.20
2 at each frequency, and further outputs 1 at each frequency to the flow rate calculation circuit 22.
, f2, and f3 are outputted with a timing signal T3 that provides timing for zero correction.

次に、以上のように構成された実施例の動作について第
3図を用いて説明する。
Next, the operation of the embodiment configured as above will be explained using FIG. 3.

まず、測定流量9が一定とみられる短い期間で励磁電流
量fの各周波数で1、f2、f3に対応して発生する出
力信号e+ 、e2 、e3を繰り返して測定しこれ等
を平均値演算回路18〜2oに格納する。
First, the output signals e+, e2, and e3 generated corresponding to 1, f2, and f3 at each frequency of the excitation current amount f are repeatedly measured during a short period when the measured flow rate 9 is considered to be constant, and these are sent to the average value calculation circuit. Stored in 18-2o.

平均値演算回路18〜20はこれ等の出力信号を用いて
所定期間の各周波数ごとの平均値l演算して出力信号の
平均値E+ −Ea 、Elを算出する。
The average value calculation circuits 18 to 20 use these output signals to calculate the average value l for each frequency for a predetermined period to calculate the average values E+ -Ea and El of the output signals.

これ等の平均値E+ 、E2 、Elはゼロ補正算出回
路21に出力されるので、第3図に示すような周波数f
に対する出力信号の平均値Eとの関係が得られる。
These average values E+, E2, and El are output to the zero correction calculation circuit 21, so that the frequency f as shown in FIG.
The relationship between the average value E of the output signal and the output signal is obtained.

ゼロ補正算出回路21はこれ等のデータ(fl、E+)
、(f2、E2 )、(f3、El )を用いて、例え
ば最小二乗法などにより第3図に点線で示すように周波
数fがゼロの点まで補正曲線Cvを外挿し、周波数でか
ゼロの点における出力信号の平均値Eが測定流量Qに対
応する信号電圧の平均値Sに対応し、その変動はゼロ点
の変動によるものとみなす判断をする。
The zero correction calculation circuit 21 uses these data (fl, E+)
, (f2, E2), (f3, El), the correction curve Cv is extrapolated to the point where the frequency f is zero, as shown by the dotted line in Figure 3, using the least squares method, for example, and the frequency f is zero. It is determined that the average value E of the output signal at the point corresponds to the average value S of the signal voltage corresponding to the measured flow rate Q, and that the fluctuation is considered to be due to the fluctuation of the zero point.

これは、高い周波数f1、f2、f3の範囲では応答が
良く直流電圧の影響もないので、出力信号Eに変動があ
るとすればそれはゼロ点の変動に起因すると想定され、
しかも、周波数fがゼロの点まで外挿すれば、f=oで
はセロ点の変動かないので、このゼロ周波数でのEの値
が信号電圧の平均値Sを示していることになる。
This is because the response is good in the high frequency range f1, f2, and f3 and there is no influence of DC voltage, so if there is a fluctuation in the output signal E, it is assumed that it is due to the fluctuation of the zero point.
Moreover, if the frequency f is extrapolated to the point where it is zero, since there is no change in the cello point when f=o, the value of E at this zero frequency indicates the average value S of the signal voltage.

したがって、周波数でかゼロの点から横に引いた線と補
正曲線Cvとの閤差Δe07、Δe02、Δe03は各
周波数f1、f2、f3におけるセロ点のズレを示して
いる。
Therefore, the deviations Δe07, Δe02, and Δe03 between the line drawn horizontally from the point of zero in frequency and the correction curve Cv indicate the deviation of the zero point at each frequency f1, f2, and f3.

ゼロ補正算出回路21はこのようにしてゼロ補正値Δe
01、Δeo2、Δe03を確定してこれを流量演算回
路22に出力する。
The zero correction calculation circuit 21 calculates the zero correction value Δe in this way.
01, Δeo2, and Δe03 are determined and outputted to the flow rate calculation circuit 22.

次に、流を演算回路22はサンプリング回路17の各周
波数flf2、f3に対応する出力信号に対してこれ等
のゼロ補正値Δe07、Δe02、Δe03を用いて補
正をしてゼロ点誤差のない流量信号Qi+、Qf2−Q
f:+として出力端23に出力する。
Next, the flow calculation circuit 22 corrects the output signals corresponding to the respective frequencies flf2 and f3 of the sampling circuit 17 using these zero correction values Δe07, Δe02, and Δe03, so that the flow rate is free from zero point error. Signal Qi+, Qf2-Q
f: Output to the output terminal 23 as +.

なお、励磁電流における周波数の配列は周波数の高い順
或いは低い順に規則正しく配列する必要はなくランダム
な配列でも良く、また各周波数の励磁期間は一定である
必要はなく、ランダムでも良い。
Note that the frequencies in the excitation current do not need to be arranged regularly in order of high frequency or low frequency, but may be a random arrangement, and the excitation period of each frequency does not need to be constant, but may be random.

さらに、補正曲線CVは線形の最小二乗法で算出する必
要はなく、任意の方法、例えば指数間数を用いる多項式
による算定でも良い。
Further, the correction curve CV does not need to be calculated by the linear least squares method, and may be calculated by any arbitrary method, for example, by a polynomial using an exponential number.

〈発明の効果〉 以上、実施例と共に具体的に説明したように本発明によ
れば、複数の高周波で励磁している状態でゼロ点の補正
値を各励磁周波数ごとに算定しこれを用いて各周波数に
対応する出力信号を補正するようにしたので、高周波で
のゼロ点の変動を低減することかでき、さらに外部ノイ
ズの影響が小さくなることから励磁電流の小さい低消費
電力の電磁流量計が実現可能となる。
<Effects of the Invention> As specifically explained above in conjunction with the embodiments, according to the present invention, a zero point correction value is calculated for each excitation frequency in a state of excitation with a plurality of high frequencies, and this is used to calculate the zero point correction value for each excitation frequency. Since the output signal corresponding to each frequency is corrected, it is possible to reduce the fluctuation of the zero point at high frequencies. Furthermore, the influence of external noise is reduced, so it is a low power consumption electromagnetic flowmeter with a small excitation current. becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例の構成を示すブロック図、第
2図は第1図に示す励磁@流の波形を示す波形図、第3
図は第1図に示す上口補正産出回路の動作を説明する特
性曲線図である。 10・・・導管、11.12・・・検出電極、14・・
・励磁コイル、15・・・励磁回路、17・・・サンプ
リング回路、 18〜20・・・平均値演算回路、 21・・・ゼロ 補正算出回路、 22・・・流量演算回路、 24・・・タイ ミング発生回路。 第2 図 第3 図
FIG. 1 is a block diagram showing the configuration of one embodiment of the present invention, FIG. 2 is a waveform diagram showing the waveform of the excitation@flow shown in FIG. 1, and FIG.
FIG. 1 is a characteristic curve diagram illustrating the operation of the upper end correction production circuit shown in FIG. 10... Conduit, 11.12... Detection electrode, 14...
- Excitation coil, 15... Excitation circuit, 17... Sampling circuit, 18-20... Average value calculation circuit, 21... Zero correction calculation circuit, 22... Flow rate calculation circuit, 24... Timing generation circuit. Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims]  複数の周波数が時系列的に配列された励磁電流を励磁
コイルに送出する励磁手段と、各周波数に対応して発生
した各出力信号の平均値を各周波数ごとに算出する平均
値演算手段と、これ等の平均値を用いて前記各周波数に
対応するゼロ点の補正値を算出するゼロ補正算出手段と
、前記各出力信号に対してこれ等の周波数に対応する前
記補正値を用いてゼロ点の補正をして流量信号を出力す
る流量演算手段とを具備することを特徴とする電磁流量
計。
excitation means for sending an excitation current in which a plurality of frequencies are arranged in time series to an excitation coil; an average value calculation means for calculating an average value of each output signal generated corresponding to each frequency for each frequency; zero correction calculating means for calculating a zero point correction value corresponding to each frequency using these average values; and zero correction calculating means for calculating a zero point correction value corresponding to each frequency using these average values; An electromagnetic flowmeter characterized by comprising: a flow rate calculation means for correcting and outputting a flow rate signal.
JP22271990A 1990-08-24 1990-08-24 Electromagnetic flow meter Expired - Fee Related JP2797673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22271990A JP2797673B2 (en) 1990-08-24 1990-08-24 Electromagnetic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22271990A JP2797673B2 (en) 1990-08-24 1990-08-24 Electromagnetic flow meter

Publications (2)

Publication Number Publication Date
JPH04104014A true JPH04104014A (en) 1992-04-06
JP2797673B2 JP2797673B2 (en) 1998-09-17

Family

ID=16786838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22271990A Expired - Fee Related JP2797673B2 (en) 1990-08-24 1990-08-24 Electromagnetic flow meter

Country Status (1)

Country Link
JP (1) JP2797673B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042821A (en) * 2001-07-27 2003-02-13 Yokogawa Electric Corp Electromagnetic flowmeter and signal processing method thereof
CN102853869A (en) * 2011-06-28 2013-01-02 罗斯蒙德公司 Variable frequency magnetic flowmeter
JP2022548016A (en) * 2019-09-13 2022-11-16 マイクロ・モーション・インコーポレーテッド Magnetic flowmeter with flow-independent automatic zero estimation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042821A (en) * 2001-07-27 2003-02-13 Yokogawa Electric Corp Electromagnetic flowmeter and signal processing method thereof
CN102853869A (en) * 2011-06-28 2013-01-02 罗斯蒙德公司 Variable frequency magnetic flowmeter
EP2726826A1 (en) * 2011-06-28 2014-05-07 Rosemount Inc. Variable frequency magnetic flowmeter
JP2014518392A (en) * 2011-06-28 2014-07-28 ローズマウント インコーポレイテッド Variable frequency electromagnetic flow meter
EP2726826A4 (en) * 2011-06-28 2015-04-01 Rosemount Inc Variable frequency magnetic flowmeter
US9182258B2 (en) 2011-06-28 2015-11-10 Rosemount Inc. Variable frequency magnetic flowmeter
JP2022548016A (en) * 2019-09-13 2022-11-16 マイクロ・モーション・インコーポレーテッド Magnetic flowmeter with flow-independent automatic zero estimation

Also Published As

Publication number Publication date
JP2797673B2 (en) 1998-09-17

Similar Documents

Publication Publication Date Title
US20170115147A1 (en) Method for sensing conductivity and flow rate of a liquid in a tube
US20110267078A1 (en) Current Sensor Capacity Measuring System
JPS61204521A (en) Electromagnetic flowmeter
JP3117327B2 (en) Electromagnetic flow meter
JPH04104014A (en) Electromagnetic flowmeter
JPH10170317A (en) Electromagnetic flowmeter
JP3334995B2 (en) Electromagnetic flow meter
JP4446223B2 (en) Electromagnetic flow meter
JP4180702B2 (en) Non-full water electromagnetic flow meter
JP2020186934A (en) Capacitive electromagnetic flow meter and measurement control method
JP6937672B2 (en) 2-wire electromagnetic flowmeter
JP3204066B2 (en) Capacitive electromagnetic flowmeter
JPH06258113A (en) Electromagnetic flowmeter
JP5973897B2 (en) Electromagnetic flow meter
JP3244341B2 (en) Electromagnetic flow meter
JPH07321557A (en) High frequency signal level detection circuit and high frequency signal level detection method
JP3018308B2 (en) Empty detection method of electromagnetic flow meter
RU2720712C1 (en) Magnetic-inductive flow meter control method and magnetic-inductive flow meter
JPH0466818A (en) Electromagnetic flow meter
JP2019184544A (en) Converter for electromagnetic flow meter, electromagnetic flow meter, and method for operating flow rate
JP2936843B2 (en) Electromagnetic flow meter
JP3244361B2 (en) Noise removal method and converter in electromagnetic flowmeter
JPH0552619A (en) Electromagnetic flow meter
JPH0450503Y2 (en)
JP2003014512A (en) Electromagnetic flowmeter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees