JPH04103970A - Multi-type air conditioner - Google Patents

Multi-type air conditioner

Info

Publication number
JPH04103970A
JPH04103970A JP2220879A JP22087990A JPH04103970A JP H04103970 A JPH04103970 A JP H04103970A JP 2220879 A JP2220879 A JP 2220879A JP 22087990 A JP22087990 A JP 22087990A JP H04103970 A JPH04103970 A JP H04103970A
Authority
JP
Japan
Prior art keywords
pressure gas
branch pipe
gas refrigerant
bypass
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2220879A
Other languages
Japanese (ja)
Inventor
Toshiyuki Hojo
俊幸 北條
Fumihiko Kitani
文彦 木谷
Kenji Togusa
健治 戸草
Kensaku Kokuni
研作 小国
Susumu Nakayama
進 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2220879A priority Critical patent/JPH04103970A/en
Publication of JPH04103970A publication Critical patent/JPH04103970A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To discharge a flowing refrigerant condensed and staying in a high pressure gaseous refrigerant branch pipe into a low pressure gaseous refrigerant branch pipe by a method wherein a bypassing pressure reducing mechanism is connected between the high pressure gaseous refrigerant branch pipe and an indoor heat exchanger, and each of bypassing opening or closing valves is connected between each of connection points between the bypassing pressure reducing mechanisms and the low pressure gaseous refrigerant branch pipe. CONSTITUTION:In the event that an indoor device 2a is stopped and an indoor device 2b performs a heating operation, condensed liquid refrigerant is accumulated in a high pressure gaseous refrigerant pipe 18a from a branch part 18' of a high pressure gaseous refrigerant main pipe 18 to a heating changing-over solenoid opening or closing valve 10a being closed, so that a bypassing solenoid opening or closing valve 12a is opened at a proper time. With such an arrangement, liquid refrigerant is flowed in a low pressure gaseous refrigerant branch pipe 19a through a bypassing capirally 14a and further flowed in a low pressure gaseous refrigerant main pipe 19 and finally discharged out of the outdoor device 1. In addition, condensation and accumulation of the refrigerant flowed from the high pressure gaseous refrigerant branch pipe 18a through capirally tubes 14a, 15a are generated at an indoor heat exchanger 9a of the indoor device 2a being stopped. However, it is possible to flow the liquid refrigerant within the indoor heat exchanger 9a into the low pressure gaseous refrigerant branch pipe 19a through the capirally tube 15a under an opened state of the solenoid valve 12a.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、共通の室外機に接続された複数台の室内機の
冷房・暖房運転を同時に行うことのできるマルチ空気調
和機の冷凍サイクル配管や室内熱交換器に滞留・凝縮し
た液冷媒を排出するための手段に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to refrigeration cycle piping for a multi-air conditioner that can simultaneously perform cooling and heating operations for multiple indoor units connected to a common outdoor unit. It also relates to a means for discharging liquid refrigerant that has accumulated or condensed in an indoor heat exchanger.

[従来の技術] 1台の室外機に接続された配管に連なる1台もしくは複
数台の室内機を有する従来のマルチ空気調和では、これ
ら室内機は冷房運転(除湿も含む)または暖房運転のど
ちらか一方のみの運転しか行うことができなかった。
[Prior Art] In conventional multi-air conditioning systems that have one or more indoor units connected to piping connected to one outdoor unit, these indoor units are either in cooling operation (including dehumidification) or heating operation. I was only able to drive one or the other.

近年、共通の室外機に複数台の室内機を組合せ、任意の
室内機の成るものは冷房運転、他のものは暖房運転を自
由に選択できる冷暖房同時運転を可能とするマルチ空気
調和機の開発が進められている。かかるマルチ空気調和
機では、液冷媒主配管、高圧ガス冷媒主配管、低圧ガス
冷媒主配管から夫々分岐した分岐配管介して室外機に各
室内機が接続され、そのガス側分岐配管には冷房暖房切
換開閉弁が介装されている。
In recent years, we have developed a multi-air conditioner that combines multiple indoor units with a common outdoor unit, allowing simultaneous cooling and heating operation, allowing you to freely select between cooling operation for any indoor unit and heating operation for the others. is in progress. In such a multi-air conditioner, each indoor unit is connected to the outdoor unit through branch pipes branching from the liquid refrigerant main pipe, high-pressure gas refrigerant main pipe, and low-pressure gas refrigerant main pipe, respectively, and the gas side branch pipe is connected to the cooling/heating pipe. A switching on-off valve is installed.

[発明が解決しようとする課題ゴ かかる冷暖房同時運転可能なマルチ空調機においては、
高圧ガス冷媒主配管の分岐部から停止中の室内機の冷暖
切換開閉弁までの間の高圧ガス冷媒分岐配管内で冷媒が
凝縮して滞留することが起り得、その量は該分岐配管が
長いときは無視できないものとなるが、従来技術におい
ては、上記の凝縮滞留している液冷媒を排出するための
配慮がなされていないため、運転中の室内機に冷媒不足
が生じるという問題があった。
[Problems to be solved by the invention In such a multi-air conditioner capable of simultaneous cooling and heating operation,
Refrigerant may condense and accumulate in the high-pressure gas refrigerant branch pipe between the branch of the high-pressure gas refrigerant main pipe and the cooling/heating switching valve of the stopped indoor unit, and the amount of condensation is greater than the length of the branch pipe. However, in the conventional technology, no consideration was taken to discharge the condensed and accumulated liquid refrigerant, which caused the problem of a refrigerant shortage in the indoor unit during operation. .

また、従来技術は、停止中の室内機の室内熱交換器に滞
留した液冷媒を冷暖切換え開閉弁の開弁により排出する
際の、開閉弁前後の圧力差については配慮がなされてお
らず、該圧力差が大きいため、液冷媒が開閉弁を通る際
に冷媒流動音が生じるという問題があった。
In addition, the conventional technology does not take into account the pressure difference before and after the opening/closing valve when the liquid refrigerant accumulated in the indoor heat exchanger of the indoor unit that is stopped is discharged by opening the cooling/heating switching valve. Since the pressure difference is large, there is a problem in that refrigerant flow noise is generated when the liquid refrigerant passes through the on-off valve.

本発明の一目的は、高圧ガス冷媒分岐配管に凝縮・滞留
した流冷媒を低圧ガス冷媒分岐配管に排出すること、さ
らに、室内熱交換器からの流冷媒排出時の冷媒流動音を
低減することを目的とする。
One object of the present invention is to discharge the flowing refrigerant condensed and retained in the high-pressure gas refrigerant branch pipe to the low-pressure gas refrigerant branch pipe, and further to reduce the refrigerant flow noise when the flowing refrigerant is discharged from the indoor heat exchanger. With the goal.

本発明の他の目的は、これら流冷媒を排出する、ために
開弁する開閉弁の開弁時間を調節し、効率の良い冷媒循
環を行わせしめることにある。
Another object of the present invention is to adjust the opening time of the on-off valve that is opened to discharge these flowing refrigerants, thereby allowing efficient refrigerant circulation.

[課題を解決するための手段] 上記−目的は特許請求の範頭の請求項1ないし4のいず
れかに記載のマルチ空気調和機の構成により達成され、
また上記他の目的は請求項5又は6記載の構成により達
成される。
[Means for Solving the Problem] The above-mentioned object is achieved by the configuration of the multi-air conditioner according to any one of claims 1 to 4 at the head of the claims,
Further, the above-mentioned other objects are achieved by the structure according to claim 5 or 6.

[作   用] 高圧ガス冷媒分岐管内に凝縮・滞留した液冷媒は、請求
項1のマルチ空気調和機においては選択された1個又は
複数個のバイパス開閉弁の開弁、請求項2のマルチ空気
調和機においてはそのバイパス開閉弁の開弁、請求項3
のマルチ空気調和機においては第1のバイパス流路のバ
イパス開閉弁の開弁、請求項4のマルチ空気調和機にお
いてはその第1のバイパス流路の可変バイパス膨張弁の
開弁により、低圧ガス冷媒分岐配管へ徐々に排出される
。この液冷媒の排出後、万一、上記開弁している弁を通
じてガス冷媒が流れても、減圧装置によりガス冷媒を流
冷媒として排出する。
[Function] In the multi air conditioner of claim 1, the liquid refrigerant condensed and retained in the high pressure gas refrigerant branch pipe opens one or more selected bypass on-off valves, and the multi air conditioner of claim 2 In the harmonizer, the bypass opening/closing valve is opened, claim 3.
In the multi air conditioner according to claim 4, the bypass on-off valve of the first bypass flow path is opened, and in the multi air conditioner according to claim 4, the variable bypass expansion valve of the first bypass flow path is opened. The refrigerant is gradually discharged to the refrigerant branch pipe. After the liquid refrigerant is discharged, even if gas refrigerant flows through the open valve, the gas refrigerant is discharged as a flowing refrigerant by the pressure reducing device.

また、室内熱交換器内の滞留液冷媒は、請求項1又は2
のマルチ空気調和機においては上述と同様のバイパス開
閉弁の開弁、請求項3のマルチ空気調和機においては第
2のバイパス流路のバイパス開閉弁の開弁、請求項4の
マルチ空気調和機においては第2のバイパス流路の可変
バイパス膨張弁の開弁により、低圧ガス冷媒分岐配管に
徐々に排出される。それによって室内熱交換器内の圧力
は下降し、冷房切換開閉弁の前後圧力差も減少するので
、その後の該切#開閉弁の開弁時の冷媒流動音の発生を
低下することができる。
Furthermore, the retentive liquid refrigerant in the indoor heat exchanger is defined in claim 1 or 2.
In the multi-air conditioner of Claim 3, the bypass on-off valve is opened as described above; in the multi-air conditioner of Claim 3, the bypass on-off valve of the second bypass flow path is opened; In this case, by opening the variable bypass expansion valve of the second bypass passage, the low-pressure gas refrigerant is gradually discharged to the branch pipe. As a result, the pressure inside the indoor heat exchanger decreases, and the pressure difference between the front and rear of the cooling switching valve also decreases, so that the generation of refrigerant flow noise when the cooling switching valve is opened subsequently can be reduced.

更に、請求項5又は6のマルチ空気調和機においては1
以上の滞留液冷媒の排出に必要な時間だけ上記開弁が行
われる。
Furthermore, in the multi air conditioner according to claim 5 or 6, 1
The valve is opened only for the time necessary to discharge the accumulated liquid refrigerant.

[実 施 例] 以下本発明の一実施例を第1図により説明する。[Example] An embodiment of the present invention will be described below with reference to FIG.

第1図は室外iml、室内1112a、2bを組合せた
冷暖同時運転可能なマルチ空気調和機の冷凍サイクル系
統図である。室外機1は圧縮機3、四方弁4a、 4b
、室外熱交換器5a、 5b、室外膨張弁6a、 6c
、受液器7、アキュムレータ13.バイパス膨張弁16
、逆止弁17を有する。他方、室内機2a、2bは、夫
々、室内膨張弁8a、 8b、室内熱交換器9a、9b
を有し、そして各室内機には。
FIG. 1 is a refrigeration cycle system diagram of a multi-air conditioner capable of simultaneous cooling and heating operation, which combines an outdoor iml and an indoor air conditioner 1112a, 2b. The outdoor unit 1 has a compressor 3, four-way valves 4a and 4b.
, outdoor heat exchangers 5a, 5b, outdoor expansion valves 6a, 6c
, liquid receiver 7, accumulator 13. Bypass expansion valve 16
, has a check valve 17. On the other hand, the indoor units 2a and 2b have indoor expansion valves 8a and 8b, and indoor heat exchangers 9a and 9b, respectively.
and each indoor unit has a

夫々、暖房切換用電磁開閉弁10a、10b、冷房切換
用電磁開閉弁11a、llb、バイパス電磁開閉弁12
a、12b、キャピラリ14a、14b、キャピラリ1
5a、15bが備えられている。
Respectively, heating switching electromagnetic switching valves 10a, 10b, cooling switching electromagnetic switching valves 11a, llb, bypass electromagnetic switching valve 12.
a, 12b, capillary 14a, 14b, capillary 1
5a and 15b are provided.

室外機1に連なる高圧ガス冷媒主配管18、低圧ガス冷
媒主配管19、液冷媒主配管20から夫々分岐した高圧
ガス冷媒分岐配管18a、18b。
High-pressure gas refrigerant branch pipes 18a and 18b branch from a high-pressure gas refrigerant main pipe 18, a low-pressure gas refrigerant main pipe 19, and a liquid refrigerant main pipe 20 connected to the outdoor unit 1, respectively.

低圧ガス冷媒分岐配管19a、19b、液冷媒分岐配管
20a、20bが各室内機に接続されている。
Low pressure gas refrigerant branch pipes 19a, 19b and liquid refrigerant branch pipes 20a, 20b are connected to each indoor unit.

基本的冷凍サイクルは、圧縮機3、四方弁4a。The basic refrigeration cycle includes a compressor 3 and a four-way valve 4a.

4b、室外熱交換器5a、 5b、室外膨張弁6a、 
6b、受液器7、液冷媒主配管20、同分岐配管20a
4b, outdoor heat exchanger 5a, 5b, outdoor expansion valve 6a,
6b, liquid receiver 7, liquid refrigerant main pipe 20, same branch pipe 20a
.

20b、室内膨張弁8a、 8b、室内熱交換器9a。20b, indoor expansion valves 8a, 8b, indoor heat exchanger 9a.

9b、暖房切換用電磁開閉弁10a、10b、冷房切換
用電磁開閉弁11a、llb、高圧ガス冷媒分岐配管1
8a、18b、同主配管18、低圧ガス冷媒分岐配管1
9a、 19b、同主配管19、アキュムレータ13、
により構成される。
9b, heating switching electromagnetic switching valves 10a, 10b, cooling switching electromagnetic switching valves 11a, llb, high pressure gas refrigerant branch pipe 1
8a, 18b, main pipe 18, low pressure gas refrigerant branch pipe 1
9a, 19b, main piping 19, accumulator 13,
Consisted of.

各室内ユニット2a、2bの夫々の暖房切換用電磁開閉
弁10a、10bおよび冷房切換用電磁開閉弁11a、
llbの手前側において高圧ガス冷媒分岐配管18a、
18bから低圧ガス冷媒分岐配管19a、 19bへは
夫々キャピラリ14a、14bとバイパス電磁開閉弁1
2a、12bとが直列に接続されている。また、室内熱
交換器9a、9bからバイパス電磁開閉弁12a、 1
2bとキャビ51月4a、 14bとの接続点へは冷房
切換用電磁開閉弁11a、 llbと並列的にキャビ9
i月5a、 15bが接続されている。
Heating switching electromagnetic switching valves 10a, 10b and cooling switching electromagnetic switching valves 11a of each indoor unit 2a, 2b,
High pressure gas refrigerant branch pipe 18a on the front side of llb,
From 18b to low pressure gas refrigerant branch pipes 19a and 19b are capillaries 14a and 14b and bypass electromagnetic on-off valve 1, respectively.
2a and 12b are connected in series. In addition, bypass electromagnetic on-off valves 12a, 1 are connected to the indoor heat exchangers 9a, 9b.
2b and the cab 51 4a, 14b are connected to the cab 9 in parallel with the cooling switching electromagnetic on-off valve 11a, llb.
i month 5a and 15b are connected.

室外機1と室内機2a、2bとの間の各配管内の圧力は
、高圧ガス主配管18、同分岐配管18a。
The pressure in each pipe between the outdoor unit 1 and the indoor units 2a and 2b is determined by the high-pressure gas main pipe 18 and the branch pipe 18a.

18b内では圧縮機3の吐出圧力に近い圧力Pd、低圧
ガス主配管19、同分岐配管19a、19b内では圧縮
機3の吸入圧力に近い圧力Ps、高圧液冷媒配管20、
同分岐配管20a、 20b内では受液器7内の圧力に
近い圧力P1である。これらの圧力の間にはP d >
 P L > P sの関係がある。
In 18b, a pressure Pd close to the discharge pressure of the compressor 3, a low-pressure gas main pipe 19; in the same branch pipes 19a and 19b, a pressure Ps close to the suction pressure of the compressor 3, a high-pressure liquid refrigerant pipe 20,
Inside the branch pipes 20a and 20b, the pressure P1 is close to the pressure inside the liquid receiver 7. Between these pressures P d >
There is a relationship of P L > P s.

室内機2a、2bが共に冷房運転のとき、冷凍サイクル
は次の如くである。圧縮機3からの吐出ガス冷媒は、四
方弁4a、4bを経て室外熱交換器5a、5bで液化し
、室外膨張弁6a、6b(このとき全開)、受液器7、
高圧液冷媒主配管2o、同分岐配管20a、20bを通
り、室内膨張弁8a、8bで減圧後、室内熱交換器9a
When both indoor units 2a and 2b are in cooling operation, the refrigeration cycle is as follows. The gas refrigerant discharged from the compressor 3 passes through four-way valves 4a and 4b and is liquefied in outdoor heat exchangers 5a and 5b, and is then liquefied in outdoor expansion valves 6a and 6b (fully open at this time), liquid receiver 7,
The high-pressure liquid refrigerant passes through the main pipe 2o and the branch pipes 20a and 20b, and after being depressurized by the indoor expansion valves 8a and 8b, the indoor heat exchanger 9a
.

9bで気化し、冷房切換用電磁開閉弁11a。It is vaporized at 9b, and the cooling switching electromagnetic on-off valve 11a.

11bを通り(このとき暖房切換用電磁開閉弁10a、
40bは閉)、低圧ガス冷媒分岐配管19a、19b、
同主配管19、アキュムレータ13を通って圧縮機3に
戻り、再び吐比される。
11b (at this time, the heating switching electromagnetic on-off valve 10a,
40b is closed), low pressure gas refrigerant branch pipes 19a, 19b,
It passes through the main pipe 19 and the accumulator 13, returns to the compressor 3, and is again subjected to discharge ratio.

室内機2a、2bが共に暖房運転のとき、冷凍サイクル
は次の如くである。圧縮機3からの吐出ガス冷媒は、四
方弁4a、4bを通り(且つ一方は逆止弁17を通り)
、高圧ガス冷媒主配管18、同分岐配管18a、18b
、暖房切換用電磁開閉弁10a、10bを通って(この
とき冷房切換電磁開閉弁11a、llbは閉)、室内熱
交換器9a、9bで液化し、室内膨張弁8a、8b(こ
のとき全開)、高圧液冷媒分岐配管20a、 20b、
同主配管20、受液器7を通り、室外膨張弁6a。
When both indoor units 2a and 2b are in heating operation, the refrigeration cycle is as follows. The gas refrigerant discharged from the compressor 3 passes through four-way valves 4a and 4b (and one passes through a check valve 17).
, high-pressure gas refrigerant main pipe 18, branch pipes 18a, 18b
, passes through the heating switching electromagnetic on-off valves 10a and 10b (at this time, the cooling switching electromagnetic on-off valves 11a and llb are closed), liquefies in the indoor heat exchangers 9a and 9b, and indoor expansion valves 8a and 8b (fully opened at this time). , high pressure liquid refrigerant branch pipes 20a, 20b,
The main pipe 20 passes through the liquid receiver 7, and the outdoor expansion valve 6a.

6bで減圧されて室外熱交換器5a、5bで液化し、四
方弁4a、4b、アキュムレータ13を経て圧縮機3に
戻る。
It is depressurized at 6b, liquefied at outdoor heat exchangers 5a and 5b, and returns to compressor 3 via four-way valves 4a and 4b and accumulator 13.

室内機2aが冷房運転、室内機2bが暖房運転で、且つ
冷房負荷が暖房負荷より大きいときは、冷凍サイクルは
次の如くである。圧縮機3からの吐出ガス冷媒の一部は
、四方弁4bを通り、室外熱交換器5bで液化し、全開
の室外膨張弁6b。
When the indoor unit 2a is in the cooling operation and the indoor unit 2b is in the heating operation, and the cooling load is greater than the heating load, the refrigeration cycle is as follows. A part of the gas refrigerant discharged from the compressor 3 passes through the four-way valve 4b, is liquefied in the outdoor heat exchanger 5b, and is then fully opened to the outdoor expansion valve 6b.

受液器7、液冷媒主配管20を通り、ここで液冷媒分岐
管20bから来た後述の液冷媒と合流して液冷媒分岐配
管20aに入り、室内膨張弁8aで減圧し、室内熱交換
器9aで気化し、冷房切換用電磁開閉弁11a(このと
き暖房切換用電磁開閉弁10aは閉)、低圧ガス冷媒分
岐配管19a、同主配管19、アキュムレータ13を通
って圧縮機3に戻る。他方、圧縮機3からの吐呂ガス冷
媒の他部は、四方弁4a、高圧ガス冷媒主配管18、同
分岐配管18b、暖房切換用電磁開閉弁10b(このと
き冷房切換用電磁開閉弁11bは閉)を通り、室外熱交
換器9bで液化し、室内膨張弁8b(このとき全開)、
更に液冷媒分岐配管20bを通って、液冷媒主配管20
からの液冷媒と前記の如く合流して同分岐配管20aに
入る。
The liquid refrigerant passes through the liquid receiver 7 and the liquid refrigerant main pipe 20, joins with the liquid refrigerant described below coming from the liquid refrigerant branch pipe 20b, enters the liquid refrigerant branch pipe 20a, is depressurized by the indoor expansion valve 8a, and is used for indoor heat exchange. It is vaporized in the container 9a, and returns to the compressor 3 through the cooling switching electromagnetic switching valve 11a (at this time, the heating switching electromagnetic switching valve 10a is closed), the low-pressure gas refrigerant branch pipe 19a, the main pipe 19, and the accumulator 13. On the other hand, the other parts of the discharge gas refrigerant from the compressor 3 are connected to the four-way valve 4a, the high-pressure gas refrigerant main pipe 18, the same branch pipe 18b, and the heating switching electromagnetic on-off valve 10b (at this time, the cooling switching electromagnetic on-off valve 11b is closed), is liquefied in the outdoor heat exchanger 9b, and is liquefied by the indoor expansion valve 8b (fully open at this time).
Furthermore, the liquid refrigerant main pipe 20 passes through the liquid refrigerant branch pipe 20b.
As described above, the liquid refrigerant from the refrigerant flows into the branch pipe 20a.

室内機2aが暖房運転、室内機2bが冷房運転で、且つ
暖房負荷が冷房負荷より大であるときは、冷凍サイクル
は次の如くである。圧縮機3からの吐出ガス冷媒は、四
方弁4a、高圧ガス冷媒主配管18、同分岐配管18a
、暖房切換用電磁開閉弁10a (このとき冷房切換用
電磁開閉弁11aは閉)を通って室内熱交換器9aで液
冷媒となり、室内膨張弁8a(このとき全開)、液冷媒
分岐配管20aを通り1次いで、この液冷媒は液冷媒主
配管20と同分岐配管20bとへ分流する。液冷媒主配
管20へ分流した液冷媒は、受液器7から室外膨張弁6
aを通って減圧し、室外熱交換器6aで気化し、四方弁
4aを通り、後述の低圧ガス冷媒主配管19から来たガ
ス冷媒と合流して〃アキュムレータ13を通り、圧縮I
13に戻る。他方、液冷媒分岐配管20bへ分流した液
冷媒は室内膨張弁8bで減圧して室内熱交換器9bで気
化し、冷房切換用電磁開閉弁11b(このとき暖房切換
用電磁開閉弁10bは閉)、低圧ガス冷媒分岐配管19
b、同主配管19を通って、前述の四方弁4aから来た
ガス冷媒と合流する。
When the indoor unit 2a is in heating operation, the indoor unit 2b is in cooling operation, and the heating load is greater than the cooling load, the refrigeration cycle is as follows. The gas refrigerant discharged from the compressor 3 is distributed through a four-way valve 4a, a high-pressure gas refrigerant main pipe 18, and a branch pipe 18a.
The refrigerant passes through the heating switching electromagnetic on-off valve 10a (at this time, the cooling switching electromagnetic on-off valve 11a is closed), becomes a liquid refrigerant in the indoor heat exchanger 9a, and passes through the indoor expansion valve 8a (fully open at this time) and the liquid refrigerant branch pipe 20a. The liquid refrigerant then branches into the liquid refrigerant main pipe 20 and the branch pipe 20b. The liquid refrigerant branched to the liquid refrigerant main pipe 20 is transferred from the liquid receiver 7 to the outdoor expansion valve 6
A, the pressure is reduced through the outdoor heat exchanger 6a, the gas refrigerant passes through the four-way valve 4a, merges with the gas refrigerant coming from the low-pressure gas refrigerant main pipe 19 (described later), passes through the accumulator 13, and is compressed by the compressor I.
Return to 13. On the other hand, the liquid refrigerant branched to the liquid refrigerant branch pipe 20b is depressurized by the indoor expansion valve 8b and vaporized by the indoor heat exchanger 9b, and the cooling switching electromagnetic on-off valve 11b (at this time, the heating switching electromagnetic on-off valve 10b is closed). , low pressure gas refrigerant branch pipe 19
b. It passes through the main pipe 19 and joins with the gas refrigerant coming from the four-way valve 4a described above.

以上説明した冷凍サイクルにおいて、いずれかの室内機
が停止中であるときは、その室内機の膨張弁(8a又は
8b)、冷房切換用および暖房切換用電磁開閉弁(10
a、lla又は10b、 11b)は閉とする。また、
所要熱負荷に応じ室外熱交換器5a、5bの両方または
片方を用い得る。
In the refrigeration cycle described above, when any of the indoor units is stopped, the expansion valve (8a or 8b) of that indoor unit, the electromagnetic on-off valve (10) for cooling switching and heating switching
a, lla or 10b, 11b) are closed. Also,
Depending on the required heat load, both or one of the outdoor heat exchangers 5a and 5b may be used.

さて、以下に、本発明の特徴をなす滞留液冷媒の排出に
関する動作につき説明する。
Now, the operation related to discharging the retained liquid refrigerant, which is a feature of the present invention, will be explained below.

第1図において、室内機2aが停止し、室内機2bが暖
房運転している場合、すなわち、暖房切開弁、冷房切換
用電磁開閉弁11a、llbはともに閉弁、室内膨張弁
8aは閉止、同膨張弁8bは開となでいる場合、高圧ガ
ス冷媒主配管18の分岐部18′から、閉弁している暖
房切換用電磁弁開閉10alまでの間の高圧ガス冷媒分
岐配管18a内には、凝縮した液冷媒が滞留すると考え
られる。そこで、本実施例では、適当な時期に。
In FIG. 1, when the indoor unit 2a is stopped and the indoor unit 2b is in heating operation, that is, the heating cut-off valve and the cooling switching electromagnetic on-off valves 11a and llb are both closed, and the indoor expansion valve 8a is closed. When the expansion valve 8b is open, the high-pressure gas refrigerant branch pipe 18a between the branch part 18' of the high-pressure gas refrigerant main pipe 18 and the closed heating switching solenoid valve 10al is It is thought that condensed liquid refrigerant stagnates. Therefore, in this embodiment, at an appropriate time.

バイパス電磁開閉弁12aを開弁する。これにより、バ
イパスキャピラリ14aを通じて、上記の液冷媒は圧力
がPsと低い低圧ガス冷媒分岐配管19aに流れ、更に
は、低圧ガス冷媒主配管19を流れて室外機1へ排出さ
れるので、凝縮冷媒の滞留を解消し得る。
The bypass electromagnetic on-off valve 12a is opened. As a result, the above liquid refrigerant flows through the bypass capillary 14a to the low pressure gas refrigerant branch pipe 19a whose pressure is as low as Ps, further flows through the low pressure gas refrigerant main pipe 19 and is discharged to the outdoor unit 1, so that the condensed refrigerant can eliminate the retention of

また、停止中の室内機2aの室内熱交換器9aにも、高
圧ガス冷媒分岐配管18aがらキャピラリ14a、15
aを通じて入った冷媒の凝縮・滞留が生じることが想定
されるが、本実施例では、バイパス電磁開閉弁12aの
開弁により、バイパスキャピラリ15aを通じて該室内
熱交換器9a内の液冷媒を圧力がPsと低い低圧ガス冷
媒分岐配管19aに流すことができる。
In addition, the indoor heat exchanger 9a of the indoor unit 2a that is stopped is also connected to the capillaries 14a, 15 along with the high pressure gas refrigerant branch pipe 18a.
It is assumed that condensation and stagnation of the refrigerant that entered the indoor heat exchanger 9a occurs through the bypass capillary 15a by opening the bypass electromagnetic on-off valve 12a. The low pressure gas refrigerant can flow into the branch pipe 19a having a low pressure of Ps.

従来は、冷房切換用電磁開閉弁11aの開弁により室内
熱交換器9a内の滞留液冷媒を低圧ガス冷媒分岐管19
aに流す様にしていたが、該弁11aの開弁時に該弁1
1aの前後での圧力差が大きいため冷媒流動音が発生す
るという問題があった。これに対して、本実施例では、
冷房切換用電磁開閉弁11aは閉じたままでバイパス電
磁開閉弁12aを開弁じ、室内熱交換器9aの液冷媒を
キャピラリ15aおよびバイパス電磁開閉弁12aを経
て低圧ガス冷媒分岐配管19aに流す。
Conventionally, the liquid refrigerant accumulated in the indoor heat exchanger 9a is transferred to the low-pressure gas refrigerant branch pipe 19 by opening the cooling switching electromagnetic on-off valve 11a.
a, but when the valve 11a is opened, the valve 1
There was a problem in that refrigerant flow noise was generated due to the large pressure difference before and after 1a. In contrast, in this example,
While the cooling switching electromagnetic on-off valve 11a remains closed, the bypass electromagnetic on-off valve 12a is opened, and the liquid refrigerant in the indoor heat exchanger 9a flows into the low-pressure gas refrigerant branch pipe 19a via the capillary 15a and the bypass electromagnetic on-off valve 12a.

このときキャピラリ15aでの圧力降下によりバイパス
開閉弁12aの前後圧力差が小さいので冷媒流動音の発
生は少ない。なお、バイパス電磁開閉弁12aを通して
液冷媒を流し終った後は、冷房切換用電磁開閉弁11a
を冷房に切換のため開けるときには、該弁11aの前後
の圧力差は小さくなっているので該11aによる冷媒流
動音の発生は少ない。
At this time, the difference in pressure across the bypass on-off valve 12a is small due to the pressure drop in the capillary 15a, so there is little refrigerant flow noise. Note that after the liquid refrigerant has finished flowing through the bypass electromagnetic on-off valve 12a, the cooling switching electromagnetic on-off valve 11a
When the valve 11a is opened to switch to cooling mode, the pressure difference across the valve 11a is small, so the refrigerant flow noise generated by the valve 11a is small.

また、第1図において、室内機2aが冷房運転している
場合、室内機2bの運転状態にかかわらず、冷房切換用
電磁開閉弁11aは開弁、暖房切換用電磁開閉弁10a
は閉弁、室内膨張弁8aは開かれている。この場合、バ
イパスキャピラリ14a、15aはともに、高圧ガス冷
媒分岐配管18aと通じているのでキャピラリ14a、
15aに高圧ガス冷媒が流れるが、冷房切換用電磁開閉
弁11aが開弁じているため、これらキャピラリ14a
、15aを流れた高圧ガス冷媒は、室内熱交換器9a内
の圧力Px□よりも低い低圧ガス冷媒分岐配管19a(
配管圧力Ps)へ流れるので、冷房運転中の室内機2a
の室内熱交換器9aに高温のガス冷媒が流れることは防
止され、冷房運転中の室内機の能力が低下することはな
い。
In addition, in FIG. 1, when the indoor unit 2a is in cooling operation, the cooling switching electromagnetic on-off valve 11a is open, and the heating switching electromagnetic on-off valve 10a is open, regardless of the operating state of the indoor unit 2b.
is closed, and the indoor expansion valve 8a is opened. In this case, both the bypass capillaries 14a and 15a communicate with the high-pressure gas refrigerant branch pipe 18a, so the capillary 14a,
High-pressure gas refrigerant flows through the capillaries 15a, but since the cooling switching electromagnetic on-off valve 11a is open, these capillaries 14a
, 15a, the high pressure gas refrigerant flows through the low pressure gas refrigerant branch pipe 19a (lower than the pressure Px□ in the indoor heat exchanger 9a
Since it flows to the pipe pressure Ps), the indoor unit 2a during cooling operation
High temperature gas refrigerant is prevented from flowing into the indoor heat exchanger 9a, and the performance of the indoor unit during cooling operation is not reduced.

同時に、バイパス電磁開閉弁12aも開弁じてあれば、
バイパスキャピラリ15aを流れる冷媒には圧力損失が
つくため、圧力損失の少ないバイパス電磁開閉弁12a
を流れる冷媒の方が多くなるので、上記と同様に、冷房
運転中の室内熱交換器9aに高温のガス冷媒が流れるこ
とが防止される。
At the same time, if the bypass solenoid on-off valve 12a is also open,
Since there is a pressure loss in the refrigerant flowing through the bypass capillary 15a, the bypass electromagnetic on-off valve 12a has a small pressure loss.
Since more refrigerant flows through the air conditioner, similarly to the above, high temperature gas refrigerant is prevented from flowing into the indoor heat exchanger 9a during cooling operation.

第2図は他の実施例を室内機2aまわりに関して示した
もので、室内機2bまわりに関しても同様である。その
他の冷凍サイクルの構成は第1図と相違はない。第3図
以下に示す他の実施例においても、この事は同様である
FIG. 2 shows another embodiment around the indoor unit 2a, and the same applies to the area around the indoor unit 2b. The rest of the configuration of the refrigeration cycle is the same as in FIG. This also applies to other embodiments shown in FIG. 3 and subsequent figures.

第2図において、室内It&2aが停止中で室内機2b
が暖房運転のとき、高圧ガス冷媒主配管18の分岐部1
8′と暖房切換用電磁開閉弁10aとの間の高圧ガス冷
媒分岐配管18aに滞留する液冷媒は、第1図と同様、
バイパス電磁開閉弁12aの開弁によりキャピラリ14
aを通って低圧ガス冷媒分岐配管19aに流れる。また
、室内機2aが冷房に切換られており他の室内機が暖房
に切換られている場合、本実施例では、バイパスキャピ
ラリ14aと15aは連結されていないので、室内機2
aが停止中に、室内熱交換器9aに高圧ガス冷媒が流入
することがない。
In Fig. 2, indoor unit It & 2a is stopped and indoor unit 2b
When in heating operation, branch part 1 of high pressure gas refrigerant main pipe 18
As in FIG.
The capillary 14 is opened by opening the bypass solenoid on-off valve 12a.
a to the low-pressure gas refrigerant branch pipe 19a. Furthermore, when the indoor unit 2a is switched to cooling and the other indoor units are switched to heating, in this embodiment, bypass capillaries 14a and 15a are not connected, so indoor unit 2a
High pressure gas refrigerant does not flow into the indoor heat exchanger 9a while the indoor heat exchanger 9a is stopped.

また、第2図において室内機2aを暖房運転から冷房運
転に切換えるために、冷房切換用電磁開閉弁11aを開
弁する前に、あらかじめバイパス電磁開閉弁21を開弁
することにより、冷房切換用電磁開閉弁11aの前後圧
力差を低減し、冷房切換用電磁開閉弁11a開弁時の冷
媒流動音を小さくすることができる効果がある。
In addition, in order to switch the indoor unit 2a from the heating operation to the cooling operation in FIG. This has the effect of reducing the pressure difference between the front and rear sides of the electromagnetic on-off valve 11a and reducing the refrigerant flow noise when the cooling switching electromagnetic on-off valve 11a is opened.

第3図は、第2図におけるバイパス電磁開閉弁12a、
21とこれに接続したバイパスキャピラリ14a、15
aどの代りに、可変バイパス膨張弁22.23を用いた
実施例を示す。本実施例によれば、第2図の実施例がバ
イパス電磁開閉弁12a、21の開弁により冷媒流量を
および圧カ一定としていたものを、温度条件等により可
変とすることができるという効果がある。
FIG. 3 shows the bypass electromagnetic on-off valve 12a in FIG.
21 and bypass capillaries 14a and 15 connected to this
An embodiment using variable bypass expansion valves 22 and 23 in place of a is shown. According to this embodiment, the refrigerant flow rate and pressure are kept constant by opening the bypass electromagnetic on-off valves 12a and 21 in the embodiment shown in FIG. 2, but this can be made variable depending on temperature conditions, etc. be.

第4図は、第1図において、バイパスキャピラリ14a
と15aとの間にバイパスキャピラリ24を追加し、キ
ャピラリ24と14aとの接続点と低圧ガス冷媒分岐配
管19aとの間にバイパス電磁開閉弁21を追加した実
施例を示す。本実施例によれば、バイパス切換開閉弁1
2a、21の切換えにより、滞留液冷媒を低圧ガス冷媒
分岐配管 19aに流す流量を可変とすることができる
FIG. 4 shows the bypass capillary 14a in FIG.
An embodiment is shown in which a bypass capillary 24 is added between the capillaries 24 and 15a, and a bypass electromagnetic on-off valve 21 is added between the connection point between the capillaries 24 and 14a and the low-pressure gas refrigerant branch pipe 19a. According to this embodiment, the bypass switching valve 1
By switching 2a and 21, the flow rate of the retained liquid refrigerant flowing into the low pressure gas refrigerant branch pipe 19a can be made variable.

第5図は、第1図の室内機2aにおいてバイパスキャピ
ラリ14a、15aの入口側に温度センサ25a、25
bを取付けた例であり、これにより、その中に存在する
液冷媒を温度により検知することが可能となり、液冷媒
排出用にバイパス電磁開閉弁12aを開弁じた後、温度
センサ25a、25bが液冷媒を検知しなくなった時に
該弁12aを閉じる様にすれば、バイパス電磁開閉弁1
2aの開弁時間を液冷媒が低圧ガス冷媒分岐配管19a
へ流れ終るまでの時間と同期させることができる。これ
により、滞留液冷媒の排出終了後にバイパス開閉弁12
aを通って高圧ガス冷媒が凝縮しないまま低圧ガス冷媒
量I′g19へ流れることを防止できる。上記バイパス
開閉弁12aの開弁時間を調整する他の手段は、滞留液
冷媒の排出に要する時間として経験的にわかっている時
間を設定したタイマーにより該バイパス開閉弁の開弁時
間を決定することであり、これによっても同様な効果が
得られる。
FIG. 5 shows temperature sensors 25a, 25 on the inlet side of the bypass capillaries 14a, 15a in the indoor unit 2a of FIG.
This is an example in which the liquid refrigerant existing in the refrigerant can be detected based on the temperature. If the valve 12a is closed when liquid refrigerant is no longer detected, the bypass electromagnetic on-off valve 1
2a, the liquid refrigerant is the low pressure gas refrigerant branch pipe 19a.
It can be synchronized with the time until the end of the flow. As a result, the bypass on-off valve 12
It is possible to prevent the high-pressure gas refrigerant from flowing to the low-pressure gas refrigerant amount I'g19 without being condensed through a. Another means for adjusting the opening time of the bypass opening/closing valve 12a is to determine the opening time of the bypass opening/closing valve using a timer set to a time that is empirically known as the time required for discharging the stagnant liquid refrigerant. , and the same effect can be obtained by this.

第2図、第3図、第4図の実施例においても、上記の如
き温度センサを第5図と対応する個所に設け、又は上記
の如きタイマを利用することにより、バイパス弁(12
a、21.22.23)の開弁時間を同様に調整し得る
In the embodiments shown in FIGS. 2, 3, and 4, the bypass valve (12
The opening times of a, 21.22.23) can be similarly adjusted.

第6図は、第1図の実施例、さらには第4図の実施例を
拡張したものに相当する実施例であり、高圧ガス冷媒分
岐配管18aの暖房切換用電磁開閉弁10aの手前から
室内熱交換器9aまでの間を直列のバイパスキャピラリ
30〜34で接続し。
FIG. 6 shows an embodiment corresponding to the embodiment shown in FIG. 1 and further expanded from the embodiment shown in FIG. 4. A series of bypass capillaries 30 to 34 are connected up to the heat exchanger 9a.

それら相互の各接続点と低圧ガス冷媒分岐配管19aと
の間に夫々バイパス電磁開閉弁26〜29を接続しであ
る。これらバイパス電磁開閉弁26〜29の開弁の組合
せの選択により、高圧ガス冷媒分岐配管18aおよび室
内熱交換m9a中の滞留液冷媒を低圧ガス冷媒分岐配管
19aへ流すことについて、減圧キャピラリ30〜34
による減圧量を可変に選択し得る。液冷媒排出のための
これらバイパス電磁開閉弁の開弁時間は、前述と同様、
温度センサ25a、25bで制御し得るし、または、タ
イマーで制御してもよい。
Bypass electromagnetic on-off valves 26 to 29 are connected between each of these mutual connection points and the low pressure gas refrigerant branch pipe 19a, respectively. By selecting the opening combinations of the bypass electromagnetic on-off valves 26 to 29, the decompression capillaries 30 to 34 are configured to flow the accumulated liquid refrigerant in the high pressure gas refrigerant branch pipe 18a and the indoor heat exchange m9a to the low pressure gas refrigerant branch pipe 19a.
The amount of pressure reduction can be variably selected. The opening time of these bypass solenoid on-off valves for discharging liquid refrigerant is as described above.
It can be controlled by temperature sensors 25a, 25b or by a timer.

第1図〜第6図に示されるバイパスキャピラリ14a、
14b、15a、15b、24.30〜34あるいはバ
イパス膨張弁22.23代りに、流量調整弁によりバイ
パスする冷媒量を調整する様に構成しても、上記夫々の
実施例と同様の効果が得られる。
Bypass capillary 14a shown in FIGS. 1 to 6,
Even if the bypass expansion valves 14b, 15a, 15b, 24.30-34 or the bypass expansion valves 22.23 are configured to adjust the amount of refrigerant bypassed by a flow rate adjustment valve, the same effects as in each of the above embodiments can be obtained. It will be done.

[9!、明の効果コ 本発明は、以上説明したように構成されているので以下
に記載されるような効果を奏する。
[9! , Bright Effects Since the present invention is configured as described above, it produces the effects as described below.

バイパスキャピラリとバイパス開閉弁により、高圧ガス
冷媒分岐配管内に凝縮滞留した液冷媒を低圧ガス冷媒分
岐配管に排出することができ、さらに、室内熱交換器内
に凝縮した滞留液冷媒も。
The bypass capillary and bypass on-off valve allow the liquid refrigerant condensed and accumulated in the high-pressure gas refrigerant branch pipe to be discharged to the low-pressure gas refrigerant branch pipe, as well as the liquid refrigerant condensed in the indoor heat exchanger.

冷房切換用開閉弁を開弁させることなく、低圧ガス冷媒
分岐配管に排出することができ、従って、運転中の冷凍
サイクルに冷媒不足を生ぜしめることが防止され、また
、開閉弁前後の圧カ差大による開閉弁の開弁時の冷媒流
動音を低減できる。
The low-pressure gas refrigerant can be discharged to the branch piping without opening the cooling switching on-off valve, which prevents refrigerant shortages in the operating refrigeration cycle, and also reduces the pressure before and after the on-off valve. The refrigerant flow noise when the on-off valve is opened due to the large difference can be reduced.

また、停止中または冷房運転中の室内機の室内熱交換器
内に高圧ガスが流入することを防止でき、特にバイパス
経路を高圧ガス冷媒分岐配管から低圧ガス冷媒分岐配管
へのバイパス経路と、熱内熱交換器から低圧ガス冷媒分
岐配管へのバイパス経路とに独立させて個別にすれば、
上記の防止はより確実になる。
In addition, it is possible to prevent high-pressure gas from flowing into the indoor heat exchanger of an indoor unit that is stopped or in cooling operation. If it is separated from the bypass route from the internal heat exchanger to the low pressure gas refrigerant branch pipe,
The above prevention becomes more reliable.

さらに、バイパス開閉弁とキャピラリの組合せの代りに
可変膨張弁にすることで、液冷媒排出の流量および圧力
を制御可能とすることができる。
Furthermore, by using a variable expansion valve instead of the combination of a bypass on-off valve and a capillary, the flow rate and pressure of liquid refrigerant discharge can be controlled.

同様に、バイパス開閉弁とキャピラリをそれぞれ2つ以
上を組合せることで液冷媒排出の流量および圧力を制御
可能とすることができる。
Similarly, by combining two or more bypass on-off valves and capillaries, the flow rate and pressure of liquid refrigerant discharge can be controlled.

また、温度センサを取付けて、液冷媒の存在を検出する
ことにより、又はタイマの使用により。
Also, by installing a temperature sensor to detect the presence of liquid refrigerant or by using a timer.

滞留液冷媒を排出するためのバイパス開閉弁の最適開弁
時間を決定でき、高圧ガス冷媒の低圧側への流入を防ぐ
ことができる。
The optimum opening time of the bypass on-off valve for discharging the accumulated liquid refrigerant can be determined, and it is possible to prevent the high-pressure gas refrigerant from flowing into the low-pressure side.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の冷凍サイクル系統図、第2
図は本発明の他の一実施例の部分図、第3図、第4図、
第5図、第6図も夫々本発明の他の異なる実施例を示す
部分図である。 1・・・室外機     2a、2b・・・室内機3・
・・圧縮機     4a、4b・・・四方弁5a、5
b・・・室外熱交換器 6a、6b・・・室外膨張弁 7・・・受液器     8a、8b・・・室内膨張弁
9a、9b・・・室内熱交換器 10a、10b・・・暖房切換用電磁開閉弁11a、l
lb・・・冷房切換用電磁開閉弁12a、12b・・・
バイパス電磁開閉弁13・・・アキュムレータ 14a、14b・・・バイパスキャピラリ15a、15
b・・・バイパスキャピラリ16・・・室外バイパス膨
張弁 17・・・逆止弁    18・・・高圧ガス冷媒主配
管19・・・低圧ガス冷媒主配管 20・・・高圧液冷媒主配管 18a、18b・・・高圧ガス冷媒分岐配管19a、1
9b・・・低圧ガス冷媒分岐配管20a、20b・・・
液冷媒分岐配管 21・・・バイパス電磁開閉弁 22.23・・・バイパス膨張弁 24・・・バイパスキャピラリ 25a、25b・・・温度検知センサ 26.27.28.29・・・バイパス電磁開閉弁30
.31.32.33.34.・・・バイパスキャピラリ
他1名 第1図 第3図 第4図
Fig. 1 is a refrigeration cycle system diagram according to an embodiment of the present invention;
The figures are partial views of another embodiment of the present invention, FIG. 3, FIG.
FIGS. 5 and 6 are also partial views showing other different embodiments of the present invention. 1...Outdoor unit 2a, 2b...Indoor unit 3.
...Compressor 4a, 4b...Four-way valve 5a, 5
b...Outdoor heat exchanger 6a, 6b...Outdoor expansion valve 7...Liquid receiver 8a, 8b...Indoor expansion valve 9a, 9b...Indoor heat exchanger 10a, 10b...Heating Switching electromagnetic on-off valve 11a, l
lb... Solenoid switching valve for cooling 12a, 12b...
Bypass electromagnetic on-off valve 13...Accumulator 14a, 14b...Bypass capillary 15a, 15
b...Bypass capillary 16...Outdoor bypass expansion valve 17...Check valve 18...High pressure gas refrigerant main pipe 19...Low pressure gas refrigerant main pipe 20...High pressure liquid refrigerant main pipe 18a, 18b...High pressure gas refrigerant branch pipe 19a, 1
9b...Low pressure gas refrigerant branch piping 20a, 20b...
Liquid refrigerant branch pipe 21... Bypass electromagnetic on-off valve 22.23... Bypass expansion valve 24... Bypass capillary 25a, 25b... Temperature detection sensor 26.27.28.29... Bypass electromagnetic on-off valve 30
.. 31.32.33.34. ...Bypass capillary and 1 other person Figure 1 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1 共通の室外機と複数台の室内機とを備え、各室内機
の室内熱交換器の一端は暖房・冷房切換用開閉弁を介し
て高圧ガス冷媒分岐配管および低圧ガス冷媒分岐配管に
接続され、該室内熱交換器の他端は室内膨張弁の介装さ
れた液冷媒分岐配管に接続され、これら各液冷媒分岐配
管、高圧ガス冷媒分岐配管および低圧ガス冷媒分岐配管
を室外機に連なる液冷媒主配管、高圧ガス冷媒主配管お
よび低圧ガス冷媒主配管に夫々接続してなるマルチ空気
調和機において、各室内機について、高圧ガス冷媒分岐
配管と室内熱交換器の前記一端との間には、直列接続さ
れた複数のバイパス減圧機構を接続すると共に、これら
バイパス減圧機構の相互間の各接続点と低圧ガス冷媒分
岐配管との間には、夫々バイパス開閉弁を接続したこと
を特徴とするマルチ空気調和機。 2 前記バイパス減圧機構は2個であり、前記バイパス
開閉弁は1個である請求項1記載のマルチ空気調和機。 3 共通の室外機と複数台の室内機とを備え、各室内機
の室内熱交換器の1端は暖房・冷房切換用開閉弁を介し
て高圧ガス冷媒分岐配管および低圧ガス冷媒分岐配管に
接続され、該室内熱交換器の他端は室内膨張弁の介装さ
れた液冷媒分岐配管に接続され、これら各液冷媒分岐配
管、高圧ガス冷媒分岐配管および低圧ガス冷媒分岐配管
を室外機に連なる液冷媒主配管、高圧ガス冷媒主配管お
よび低圧ガス冷媒主配管に夫々接続してなるマルチ空気
調和機において、各室内機について、高圧ガス冷媒分岐
配管と低圧ガス冷媒分岐配管との間、および、室内熱交
換器の前記一端と低圧ガス冷媒分岐配管との間には、夫
々、バイパス減圧機構とバイパス開閉弁との直列接続よ
り各々なる互に独立した第1のバイパス流路および第2
のバイパス流路を接続したことを特徴とするマルチ空気
調和機。 4 前記バイパス減圧機構とバイパス開閉弁との直列接
続の代りに可変バイパス膨張弁を用いた請求項3記載の
マルチ空気調和機。 5 高圧ガス冷媒分岐配管内の滞留液冷媒を低圧ガス冷
媒分岐配管へ排出するときのバイパス開閉弁または可変
バイパス膨張弁の開弁時間を、高圧ガス冷媒分岐配管内
の液冷媒の存在を検知するセンサ又は予め時間設定され
たタイマにより決定する様にした請求項1ないし4のい
ずれかに記載のマルチ空気調和機。 6 室内熱交換器内の滞留液冷媒を低圧ガス冷媒分岐配
管へ排出するときのバイパス開閉弁または可変バイパス
膨張弁の開弁時間を、室内熱交換器の前記一端における
液冷媒の存在を検知するセンサ又は予め時間設定された
タイマにより決定する様にした請求項1ないし5記載の
マルチ空気調和機。
[Claims] 1. A common outdoor unit and a plurality of indoor units are provided, and one end of the indoor heat exchanger of each indoor unit is connected to a high-pressure gas refrigerant branch pipe and a low-pressure gas refrigerant branch pipe through a heating/cooling switching valve. The other end of the indoor heat exchanger is connected to a liquid refrigerant branch pipe equipped with an indoor expansion valve, and each of these liquid refrigerant branch pipes, high pressure gas refrigerant branch pipe, and low pressure gas refrigerant branch pipe In a multi-air conditioner that is connected to the liquid refrigerant main piping, high-pressure gas refrigerant main piping, and low-pressure gas refrigerant main piping connected to the outdoor unit, respectively, for each indoor unit, the high-pressure gas refrigerant branch piping and indoor heat exchanger A plurality of bypass pressure reducing mechanisms connected in series are connected between one end and a bypass on-off valve is connected between each connection point between these bypass pressure reducing mechanisms and the low pressure gas refrigerant branch pipe. A multi-purpose air conditioner that is characterized by: 2. The multi air conditioner according to claim 1, wherein the number of the bypass pressure reducing mechanisms is two, and the number of the bypass opening/closing valve is one. 3 Equipped with a common outdoor unit and multiple indoor units, one end of the indoor heat exchanger of each indoor unit is connected to the high-pressure gas refrigerant branch pipe and the low-pressure gas refrigerant branch pipe via the heating/cooling switching valve. The other end of the indoor heat exchanger is connected to a liquid refrigerant branch pipe equipped with an indoor expansion valve, and these liquid refrigerant branch pipes, high-pressure gas refrigerant branch pipes, and low-pressure gas refrigerant branch pipes are connected to the outdoor unit. In a multi air conditioner that is connected to a liquid refrigerant main pipe, a high pressure gas refrigerant main pipe, and a low pressure gas refrigerant main pipe, for each indoor unit, between the high pressure gas refrigerant branch pipe and the low pressure gas refrigerant branch pipe, and, Between the one end of the indoor heat exchanger and the low-pressure gas refrigerant branch pipe, there are provided a first bypass flow path and a second bypass flow path, each of which is independent from the other, by series connection of a bypass pressure reduction mechanism and a bypass on-off valve.
A multi-air conditioner characterized by connecting a bypass flow path. 4. The multi-air conditioner according to claim 3, wherein a variable bypass expansion valve is used instead of the series connection of the bypass pressure reducing mechanism and the bypass opening/closing valve. 5. Detect the presence of liquid refrigerant in the high-pressure gas refrigerant branch pipe by checking the opening time of the bypass opening/closing valve or the variable bypass expansion valve when discharging the liquid refrigerant accumulated in the high-pressure gas refrigerant branch pipe to the low-pressure gas refrigerant branch pipe. 5. The multi-air conditioner according to claim 1, wherein the determination is made by a sensor or a preset timer. 6. The presence of liquid refrigerant at the one end of the indoor heat exchanger is detected by determining the opening time of the bypass on-off valve or the variable bypass expansion valve when discharging the liquid refrigerant accumulated in the indoor heat exchanger to the low-pressure gas refrigerant branch pipe. 6. The multi-air conditioner according to claim 1, wherein the determination is made by a sensor or a preset timer.
JP2220879A 1990-08-22 1990-08-22 Multi-type air conditioner Pending JPH04103970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2220879A JPH04103970A (en) 1990-08-22 1990-08-22 Multi-type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2220879A JPH04103970A (en) 1990-08-22 1990-08-22 Multi-type air conditioner

Publications (1)

Publication Number Publication Date
JPH04103970A true JPH04103970A (en) 1992-04-06

Family

ID=16757972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2220879A Pending JPH04103970A (en) 1990-08-22 1990-08-22 Multi-type air conditioner

Country Status (1)

Country Link
JP (1) JPH04103970A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062986A (en) * 1992-06-16 1994-01-11 Matsushita Electric Ind Co Ltd Multi-refrigerant cycle apparatus
JP2022534229A (en) * 2019-05-23 2022-07-28 エルジー エレクトロニクス インコーポレイティド air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062986A (en) * 1992-06-16 1994-01-11 Matsushita Electric Ind Co Ltd Multi-refrigerant cycle apparatus
JP2022534229A (en) * 2019-05-23 2022-07-28 エルジー エレクトロニクス インコーポレイティド air conditioner

Similar Documents

Publication Publication Date Title
AU2004267299B2 (en) Refrigeration system
JPH1068553A (en) Air conditioner
JP6223469B2 (en) Air conditioner
WO2017138108A1 (en) Air conditioning device
JPH04187954A (en) Air conditioning system
US20210341192A1 (en) Heat pump device
JP6246394B2 (en) Air conditioner
JP4578362B2 (en) Engine driven heat pump
GB2533042A (en) Air conditioner
JP3984250B2 (en) Multi-room air conditioner
JP4981411B2 (en) Air conditioner
JPH04103970A (en) Multi-type air conditioner
JPH08159621A (en) Air conditioner
GB2533041A (en) Air conditioner
JP3511161B2 (en) Air conditioner
JP2765970B2 (en) Air conditioner
JPH04340063A (en) Air conditioner and its operation control device
JPH10281566A (en) Outdoor device of heat pump type air conditioner
JPH08261572A (en) Freezing device
JPH03122460A (en) Operating controller for refrigerating machine
JPH04327770A (en) Defrosting device in multi-chamber type air conditioner
JPH0395359A (en) Air conditioner
JP3831541B2 (en) Air conditioner
JP2976905B2 (en) Air conditioner
JPH0571834A (en) Air-conditioning device