JPH04103795A - Electroplating method - Google Patents

Electroplating method

Info

Publication number
JPH04103795A
JPH04103795A JP21950090A JP21950090A JPH04103795A JP H04103795 A JPH04103795 A JP H04103795A JP 21950090 A JP21950090 A JP 21950090A JP 21950090 A JP21950090 A JP 21950090A JP H04103795 A JPH04103795 A JP H04103795A
Authority
JP
Japan
Prior art keywords
anode
electrolyte
plating
electrolytic
plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21950090A
Other languages
Japanese (ja)
Inventor
Yoshimi Sugimoto
義己 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21950090A priority Critical patent/JPH04103795A/en
Publication of JPH04103795A publication Critical patent/JPH04103795A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To stabilize an electroplating process by forming the anode with a material insoluble in an electrolytic soln. and replenishing a replenishing electrolytic soln. contg. cations in the electrolytic soln. from the outside of a plating tank when the cations in the electrolytic soln. are deposited on a body to be plated. CONSTITUTION:An electrolytic soln. 12 contg. CuSO4 and H2SO4 is filled into a plating tank 11 and the anode 13 formed with Ti insoluble in the soln. 12 and surface-coated with Pt, and a printed board coated with a resist film except a part to be electroplated with Cu as a body 14 to be plated are set in the soln. 12. An auxiliary tank 16 is connected to the plating tank 11 with a communicating pipe 15 and a replenishing electrolytic soln. 17 prepd. by dissolving cupric oxide (CuO) in the electrolytic soln. 12 is filled into the tank 16. When DC voltage is impressed between the anode 13 and the body 14 to be plated, stable electroplating conditions are always obtd. without consuming the anode 13 and a plating layer can be formed in a desired thickness with high controllability.

Description

【発明の詳細な説明】 〔概 要〕 プリント基板の電解銅メッキ方法に関し、プリント基板
の所定領域に均一な厚さで、かつメッキ速度を高めた状
態で電解銅メッキを形成するのを目的とし、 メッキ槽内に収容した電解液中に陽極と被メ・2キ物を
設置し、該陽極と被メッキ物間に電圧を印加することで
、電解液中の陽イオンを被メッキ物に被着させる方法に
於いて、 前記陽極を前記電解液に対して溶解しない材料で形成す
るとともに、前記メッキ槽の外部より電解液中の陽イオ
ンを含む補充電解液を、前記被メッキ物のメッキ過程中
に補充するようにしたことで構成する。
[Detailed Description of the Invention] [Summary] Regarding an electrolytic copper plating method for a printed circuit board, the purpose is to form electrolytic copper plating on a predetermined area of a printed circuit board with a uniform thickness and at an increased plating speed. , By placing an anode and two objects to be plated in an electrolytic solution contained in a plating tank, and applying a voltage between the anode and the object to be plated, the cations in the electrolyte are transferred to the object to be plated. In the plating method, the anode is formed of a material that does not dissolve in the electrolyte, and a supplementary electrolyte containing cations in the electrolyte is supplied from outside the plating tank during the plating process of the object to be plated. It is configured by refilling the inside.

〔産業上の利用分野〕[Industrial application field]

本発明はプリント基板の電解銅メッキ方法に関する。 The present invention relates to a method for electrolytic copper plating of printed circuit boards.

プリント基板を製造する際、エポキシ樹脂等より成る基
材の両面に所定の銅箔パターンを形成した中間層を、半
硬化性のエポキシ樹脂より成るプリプレグを介して銅箔
で挟んで加圧積層して多層基板とした後、該多層基板を
孔開けし、無電解銅メッキおよび電解銅メッキより成る
パネルメッキを施す。
When manufacturing printed circuit boards, an intermediate layer with a predetermined copper foil pattern formed on both sides of a base material made of epoxy resin, etc. is sandwiched between copper foils and laminated under pressure, with a prepreg made of semi-hardening epoxy resin interposed therebetween. After forming a multilayer board, holes are formed in the multilayer board, and panel plating consisting of electroless copper plating and electrolytic copper plating is applied.

次いで該多層基板に所定パターンのメッキ用レジスト膜
を形成した後、該レジスト膜をマスクとして電解銅メッ
キを行うような工程が採られている。
Next, a process is adopted in which a plating resist film of a predetermined pattern is formed on the multilayer substrate, and then electrolytic copper plating is performed using the resist film as a mask.

〔従来の技術〕[Conventional technology]

従来、このようなプリント基板の所定位置に銅の電解メ
ッキを施す方法として、第2図に示すようにメッキ槽1
に収容した硫酸銅(CLISO4)と硫酸(H2SO4
)を主成分とする電解液2中にメ・7シユ状のチタン(
Ti)金属で形成された容器3を設置し、その容器3の
内部に球状の銅4を収容して陽極5とする。
Conventionally, as a method of electrolytically plating copper on predetermined positions of such a printed circuit board, a plating bath 1 is used as shown in FIG.
Copper sulfate (CLISO4) and sulfuric acid (H2SO4
) in the electrolyte 2 whose main component is titanium (
Ti) A container 3 made of metal is installed, and a spherical copper 4 is housed inside the container 3 to form an anode 5.

またこの陽極5に対向してメッキ用レジスト膜を形成し
たプリント基板6を設置し、この陽極5とプリント基板
6間に直流電圧を印加して、銅の陽極5が電解液中に溶
けて形成された銅イオン(Cu” )をプリント基板6
の所定位置に被着して銅の電解メッキを行っている。
Further, a printed circuit board 6 on which a resist film for plating is formed is placed opposite to this anode 5, and a DC voltage is applied between this anode 5 and the printed circuit board 6, so that the copper anode 5 is dissolved in the electrolytic solution and formed. The copper ions (Cu”)
Copper is electrolytically plated by depositing it on a predetermined position.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

然し、このような方法であると前記陽極の球状の銅が電
解液中に溶解してその重量が減少するため、電解メッキ
の過程でその減少した球状の銅を常に補充する必要があ
り、電解メッキの作業が煩雑である。
However, with this method, the spherical copper of the anode dissolves in the electrolyte and its weight decreases, so it is necessary to constantly replenish the reduced spherical copper during the electrolytic plating process. Plating work is complicated.

また前記球状の銅が電解液に完全に溶解せずにアノード
スライムが発生し、不溶化した銅によって被メッキ物の
表面が粗面状にメッキされる恐れがある。
Furthermore, the spherical copper is not completely dissolved in the electrolytic solution and anode slime is generated, and the insolubilized copper may cause the surface of the object to be plated to become rough.

また前記陽極の球状の銅がメッキの過程で、常に溶解し
て減少しているので、電解液中の銅イオンの量が安定せ
ず、均一な厚さのメッキ層が形成されない問題がある。
In addition, since the spherical copper of the anode is constantly dissolved and reduced during the plating process, the amount of copper ions in the electrolyte is unstable and a plated layer of uniform thickness cannot be formed.

また電流密度は1〜2A程度に保たないと、陽極の銅が
電解液中に激しく溶解して銅イオンの量が過剰になり、
電解メッキされた銅層が黒く焼けるような現象が起こり
、そのため低電流密度で電解メッキを行う必要があるた
めに、メッキ速度が低下して電解メッキに要する時間が
長くかかる問題がある。
In addition, unless the current density is maintained at about 1 to 2 A, the copper of the anode will be violently dissolved in the electrolyte, resulting in an excessive amount of copper ions.
A phenomenon in which the electrolytically plated copper layer is burnt black occurs, and therefore electrolytic plating must be performed at a low current density, resulting in a problem that the plating speed decreases and the time required for electrolytic plating becomes longer.

本発明は上記した問題点を解決し、電解液中の減少した
陽イオンを外部より供給するようにし、陽極が電解メッ
キの過程で電解液中に溶解しないようにして安定したメ
ッキ条件が得られるようにした電解メッキ方法の提供を
目的とする。
The present invention solves the above-mentioned problems, supplies the reduced cations in the electrolyte from the outside, prevents the anode from dissolving in the electrolyte during the electrolytic plating process, and provides stable plating conditions. The purpose of the present invention is to provide an electrolytic plating method.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成する本発明の電解メッキ方法は、メッキ
槽内に収容した電解液中に陽極と被メッキ物を設置し、
該陽極と被メッキ物間に電圧を印加することで、電解液
中の陽イオンを被メッキ物に被着させる方法に於いて、 前記陽極を前記電解液に対して溶解しない材料で形成す
るとともに、前記メッキ槽の外部より電解液中の陽イオ
ンを含む補充電解液を、前記被メッキ物のメッキ過程中
に補充するようにしたことを特徴とする。
The electrolytic plating method of the present invention that achieves the above object includes placing an anode and an object to be plated in an electrolytic solution contained in a plating tank,
In the method of depositing cations in an electrolyte onto the object to be plated by applying a voltage between the anode and the object to be plated, the anode is formed of a material that does not dissolve in the electrolyte; A replenishing electrolyte containing cations in the electrolyte is replenished from outside the plating bath during the plating process of the object to be plated.

また前記陽極を、白金で被覆したチタンにて形成し、前
記電解液を銅イオンを含む電解液とし、前記補充電解液
が銅の化合物を前記電解液に溶解した溶液であることを
特徴とする。
Further, the anode is formed of titanium coated with platinum, the electrolyte is an electrolyte containing copper ions, and the replenishing electrolyte is a solution in which a copper compound is dissolved in the electrolyte. .

〔作 用〕[For production]

本発明の方法は電解液に対して不溶解性のチタンを白金
にて被覆することで、陽極を形成する。
The method of the present invention forms an anode by coating titanium, which is insoluble in an electrolytic solution, with platinum.

また電解メッキの過程で減少した電解液中の銅イオンは
、外部より銅の化合物の内で第二酸化銅(Cub)等の
銅の酸化物、或いは炭酸fl(CuCO+)、水酸化銅
(Cu (OH) 3)等の銅の化合物を電解液(Cu
So4+ H2S04)に溶解した補充電解液を外部よ
り補充して補う。
In addition, the copper ions in the electrolyte solution reduced during the electrolytic plating process can be removed from the outside by using copper oxides such as cupric oxide (Cub), carbonate fl (CuCO+), copper hydroxide (Cu( OH) 3) etc. in an electrolytic solution (Cu
A replenishing electrolyte dissolved in So4+ H2S04) is replenished from the outside.

このようにすれば、陽極の金属が電解液に溶解しないの
で、電解メッキの過程で補充する煩雑な作業の必要が無
く、また電解液中の銅イオンの濃度は、外部より電解液
に銅の化合物を溶解した補充電解液を供給して補充する
ことで、常に一定の値に制御されるので電解メッキ条件
が安定する。
In this way, since the metal of the anode does not dissolve in the electrolyte, there is no need for troublesome replenishment during the electrolytic plating process, and the concentration of copper ions in the electrolyte can be reduced by adding copper to the electrolyte from the outside. By supplying and replenishing the replenishing electrolyte in which the compound is dissolved, the electrolytic plating conditions are stabilized because it is always controlled to a constant value.

また陽極が電解液中に溶解しないので、前記したアノー
ドスライムの発生も無く、陽極と被メッキ物との間に印
加する電流を高電流密度とすることができるので電解メ
ッキに要する時間も短縮される。
In addition, since the anode does not dissolve in the electrolyte, there is no generation of anode slime, and the current applied between the anode and the object to be plated can be applied at a high current density, reducing the time required for electrolytic plating. Ru.

〔実 施 例〕〔Example〕

以下、図面を用いて本発明の一実施例につき詳細に説明
する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の説明図である。FIG. 1 is an explanatory diagram of an embodiment of the present invention.

図示するようにメッキ槽11の電解液(CuSOt +
 H2SO4)12内には、表面が白金で被覆され、電
解液に不溶解性のTiより成る陽極13と、電解銅メッ
キを施すべき箇所以外の領域をレジスト膜で被覆したプ
リント基板より成る被メッキ物14が設置されている。
As shown in the figure, the electrolyte (CuSOt +
Inside the H2SO4) 12, there is an anode 13 whose surface is coated with platinum and is made of Ti which is insoluble in the electrolytic solution, and a plated substrate which is made of a printed circuit board whose area other than the area where electrolytic copper plating is to be applied is covered with a resist film. Object 14 is installed.

またこのメッキ槽11には連通管15で接続された補助
槽16が設置され、この補助槽16の内部には、電解液
12で第二酸化銅(Cub)を溶解した補充電解液17
が収容されている。
Further, an auxiliary tank 16 connected to this plating tank 11 through a communication pipe 15 is installed, and inside this auxiliary tank 16, a replenishing electrolyte 17 in which cupric oxide (Cub) is dissolved in the electrolyte 12 is installed.
is accommodated.

このような状態にして陽極13と被メッキ物14との間
に直流電圧を印加する。すると前記陽極13は電解液1
2に不溶解であるので、消耗することは無く常に安定し
た電解メッキ条件が得られるので、電解メッキ層が所望
の厚さに制御性良く被着できる。また従来のように電解
メッキの過程で消耗した陽極を補充するような煩雑な工
程は必要としない。
In this state, a DC voltage is applied between the anode 13 and the object to be plated 14. Then, the anode 13 is exposed to the electrolyte 1
Since it is insoluble in No. 2, it is not consumed and stable electrolytic plating conditions can be obtained at all times, so that the electrolytic plating layer can be deposited to a desired thickness with good controllability. Further, there is no need for a complicated process of replenishing the anode consumed during the electrolytic plating process as in the conventional method.

また電解液中でメッキ過程中に消費された銅イオンは、
前記補助槽16内の補充電解液17により補充されるの
で減少することは無く、常に安定した銅イオンの濃度の
電解液が得られるので、電解メッキが安定して行われる
In addition, the copper ions consumed during the plating process in the electrolyte are
Since it is replenished by the replenishing electrolytic solution 17 in the auxiliary tank 16, it does not decrease and an electrolytic solution with a stable copper ion concentration is always obtained, so that electrolytic plating can be performed stably.

更に図示しないが、メッキ槽11と補助槽16との間に
連通管15を更にもう一本追加して設け、この各々の連
通管にポンプを配置し、補助槽に酸化銅球を溶解した補
充電解液17を補充しながら、電解液12と補充電解液
17とを循環させるような方法を採っても良い。
Although not shown, one more communication pipe 15 is additionally provided between the plating tank 11 and the auxiliary tank 16, and a pump is installed in each of the communication pipes to replenish the auxiliary tank with dissolved copper oxide balls. A method may be adopted in which the electrolytic solution 12 and the supplementary electrolytic solution 17 are circulated while the electrolytic solution 17 is being replenished.

このようにすると、陽極13が電解液12中に溶解する
ことがないのでアノードスライムの発生が無く、電解液
中の電流密度を大にでき、メッキ速度を向上させること
ができる。
In this way, since the anode 13 does not dissolve in the electrolytic solution 12, no anode slime is generated, the current density in the electrolytic solution can be increased, and the plating speed can be improved.

また陽極が電解メッキ過程で消耗することが無いので、
従来のように煩雑な陽極の銅の金属球の補充作業を行わ
なくても良く、電解メッキの工程に於ける手間が省け、
省力化が図れる。
Also, since the anode is not consumed during the electrolytic plating process,
There is no need to replenish the copper metal balls of the anode, which is a complicated process as in the past, and the time and effort in the electrolytic plating process is saved.
Labor saving can be achieved.

なお、本実施例では補充電解液として電解液に第2酸化
銅(Cub)を溶解したが、その他電解液に他の銅の酸
化物を溶解して用いても良く、その池水酸化銅(Cu 
(OH) z)、炭酸銅(CuzCO3)等の他の銅の
化合物を電解液に溶解して用いても良い。
In this example, copper oxide (Cub) was dissolved in the electrolyte as a replenishing electrolyte, but other copper oxides may be dissolved in the electrolyte, and copper oxide (Cu
Other copper compounds such as (OH) z) and copper carbonate (CuzCO3) may be dissolved in the electrolyte and used.

また本実施例では陽極に白金で被覆したチタンを用いた
が、その他、電解メッキ時に溶解しない材料、または溶
解しても電解メッキに対して悪影響の無い材料、例えば
金、カーボン、或いは金属酸化物電極等を用いることも
熱論可能である。
Furthermore, although titanium coated with platinum was used for the anode in this example, other materials that do not dissolve during electrolytic plating, or materials that do not adversely affect electrolytic plating even if dissolved, such as gold, carbon, or metal oxides, may be used. It is also theoretically possible to use electrodes or the like.

また本実施例では被メッキ物としてプリント基板を用い
たが、その他の部材に銅メッキを施す場合に適用できる
Further, in this embodiment, a printed circuit board was used as the object to be plated, but the present invention can be applied to the case where copper plating is applied to other members.

また陽極を、銅以外の金属イオンを有する電解液に対し
て不溶解の部材で形成し、銅イオン以外の金属イオンを
有する電解液に浸漬することで、銅以外の金属の電解メ
ッキにも本発明の方法は適用できるのは熱論である。
In addition, by forming the anode with a material that is insoluble in an electrolytic solution containing metal ions other than copper ions and immersing it in an electrolytic solution containing metal ions other than copper ions, it is also possible to electrolytically plate metals other than copper. It is a hot theory that the method of invention can be applied.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば、電解メ
ッキ液中の銅イオンの濃度が安定して得られるので電解
メッキの工程が安定し、メッキ層の厚さが所望の厚さに
制御性良く形成できる。
As is clear from the above description, according to the present invention, the concentration of copper ions in the electrolytic plating solution can be stably obtained, so the electrolytic plating process can be stabilized, and the thickness of the plating layer can be controlled to the desired thickness. Can be formed easily.

またメッキ工程中に煩雑な陽極の補充作業を必要とせず
、また陽極が電解液に不溶解性であるので電流密度を大
きく採ることができ、電解メッキの速度が向上し、電解
メッキに要する時間が短縮できる効果がある。
In addition, there is no need for complicated anode replenishment during the plating process, and since the anode is insoluble in the electrolyte, a large current density can be used, increasing the speed of electrolytic plating and reducing the time required for electrolytic plating. This has the effect of shortening the time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法の一実施例の説明図、第2図は従
来の方法の説明図である。 図において、 11はメッキ槽、12は電解液、13は陽極、14は被
メッキ物、15は連通管、16は補助槽、17は補充電
解液を示す。
FIG. 1 is an explanatory diagram of an embodiment of the method of the present invention, and FIG. 2 is an explanatory diagram of a conventional method. In the figure, 11 is a plating tank, 12 is an electrolytic solution, 13 is an anode, 14 is an object to be plated, 15 is a communicating tube, 16 is an auxiliary tank, and 17 is a supplementary electrolytic solution.

Claims (2)

【特許請求の範囲】[Claims] (1)メッキ槽(11)内に収容した電解液(12)中
に陽極(13)と被メッキ物(14)を設置し、該陽極
(13)と被メッキ物(14)間に電圧を印加すること
で、電解液(12)中の陽イオンを被メッキ物(14)
に被着させる方法に於いて、 前記陽極(13)を前記電解液(12)に対して溶解し
ない材料で形成するとともに、前記メッキ槽(11)の
外部より電解液中の陽イオンを含む補充電解液(17)
を、前記被メッキ物のメッキ過程中に補充するようにし
たことを特徴とする電解メッキ方法。
(1) An anode (13) and an object to be plated (14) are placed in an electrolytic solution (12) contained in a plating tank (11), and a voltage is applied between the anode (13) and the object to be plated (14). By applying the voltage, the cations in the electrolyte (12) are transferred to the object to be plated (14).
In the method, the anode (13) is formed of a material that does not dissolve in the electrolyte (12), and the plating tank (11) is supplied with replenishment containing cations in the electrolyte from outside the plating bath (11). Electrolyte (17)
An electrolytic plating method characterized in that: is replenished during the plating process of the object to be plated.
(2)前記陽極(13)を、白金で被覆したチタンで形
成し、前記電解液(12)を銅イオンを含む電解液とし
、前記補充電解液(17)が銅の化合物を前記電解液(
12)に溶解した溶液であることを特徴とする請求項(
1)記載の電解メッキ方法。
(2) The anode (13) is formed of titanium coated with platinum, the electrolyte (12) is an electrolyte containing copper ions, and the supplementary electrolyte (17) is an electrolyte containing a copper compound (
Claim (12) characterized in that it is a solution dissolved in
1) Electrolytic plating method described.
JP21950090A 1990-08-20 1990-08-20 Electroplating method Pending JPH04103795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21950090A JPH04103795A (en) 1990-08-20 1990-08-20 Electroplating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21950090A JPH04103795A (en) 1990-08-20 1990-08-20 Electroplating method

Publications (1)

Publication Number Publication Date
JPH04103795A true JPH04103795A (en) 1992-04-06

Family

ID=16736430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21950090A Pending JPH04103795A (en) 1990-08-20 1990-08-20 Electroplating method

Country Status (1)

Country Link
JP (1) JPH04103795A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108546935A (en) * 2018-05-29 2018-09-18 江阴安诺电极有限公司 The preparation method of platinum coated anode plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108546935A (en) * 2018-05-29 2018-09-18 江阴安诺电极有限公司 The preparation method of platinum coated anode plate

Similar Documents

Publication Publication Date Title
US4790902A (en) Method of producing conductor circuit boards
EP0227857B1 (en) Process for making printed circuits
US6521328B1 (en) Copper etching compositions and products derived therefrom
US6839219B2 (en) Laminate for forming capacitor layer and method for manufacturing the same
KR100386146B1 (en) Electrolytic coating method for circuited board and electrolytic coating apparatus for the same
US6777108B1 (en) Electrolytic copper foil with carrier foil and method for manufacturing the same and copper-clad laminate using the electrolytic copper foil with carrier foil
US6902824B2 (en) Copper foil and metal foil with carrier foil for printed wiring board, and semi-additive process for producing printed wiring board using the same
JP2001308477A (en) Surface treated copper foil, electrolytic copper foil with carrier foil and method of production, and copper clad laminate plate
GB2123036A (en) Electroplating non-metallic surfaces
JPH06318783A (en) Manufacturing method of multilayered circuit substrate
US6716572B2 (en) Manufacturing process for printed wiring board
US4678545A (en) Printed circuit board fine line plating
JPS6252480B2 (en)
CN115142100A (en) Acidic sulfate electronic copper electroplating combined additive for metal dense filling of PCB (printed circuit board) through hole
TWI683931B (en) Anode for electrolytic copper plating and electrolytic copper plating device using the same
JPS6257120B2 (en)
US5770032A (en) Metallizing process
JPH04103795A (en) Electroplating method
JP2005187869A (en) Plating method and plating apparatus
US5792248A (en) Sensitizing solution
JP2654126B2 (en) Manufacturing method of printed wiring board
JP3475962B2 (en) Manufacturing method of printed circuit board
JP2004006611A (en) Method for producing printed wiring board
JP3185516B2 (en) Method for manufacturing multilayer wiring board
JPH0598491A (en) Electro-copper plating method