JPH04103769A - Laser cvd device - Google Patents

Laser cvd device

Info

Publication number
JPH04103769A
JPH04103769A JP22107790A JP22107790A JPH04103769A JP H04103769 A JPH04103769 A JP H04103769A JP 22107790 A JP22107790 A JP 22107790A JP 22107790 A JP22107790 A JP 22107790A JP H04103769 A JPH04103769 A JP H04103769A
Authority
JP
Japan
Prior art keywords
chamber
sample
stage
laser beam
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22107790A
Other languages
Japanese (ja)
Other versions
JP2546419B2 (en
Inventor
Shingo Murakami
進午 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2221077A priority Critical patent/JP2546419B2/en
Publication of JPH04103769A publication Critical patent/JPH04103769A/en
Application granted granted Critical
Publication of JP2546419B2 publication Critical patent/JP2546419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To make a laser beam inlet glass window relatively thin and to miniaturize a chamber itself by setting one between the two shafts of an XY stage in the chamber and the other outside the chamber to move the entire chamber. CONSTITUTION:The chamber 14 of the CVD device is filled with a gaseous compd. 13, and a sample 15 is arranged in the chamber. A laser beam 17 introduced from a glass window 20 is condensed on the surface of the sample 15, and a conductive material is locally deposited close to the part irradiated with the laser beam by the thermal CVD action. The sample is scanned by the XY stages 18 and 19, and the deposits are successively connected in the horizontal direction to form a wiring. The X shaft of the XY stage 18 is arranged below the chamber 14 and the Y shaft of the XY stage 19 in the chamber 14. Accordingly, the entire surface of the sample 15 need not be covered by the window 20 provided in the upper wall of the chamber 14 in the X shaft stroke direction. Consequently, the window 20 can be made relatively thin while coping with a large-sized sample, the volume of the chamber 14 is reduced, and the device is also miniaturized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザCVD装置に関し、特に試料を走査す
るためのXYステージ及びチャンバの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laser CVD apparatus, and particularly to the structure of an XY stage and a chamber for scanning a sample.

〔従来の技術〕[Conventional technology]

し「ザCVD装置では、励起源であるレーザ光を導入す
るためにチャンバ壁面にガラス窓(レーザ光を透過する
材質)が設けられている。また、レーザCVDによる局
所堆積を利用して薄膜のバターニングを行うことを目的
とするレーザCVD装置では、通常レーザ光に対して試
料を走査するための手段としてXYステージが用いられ
ている。
"In the CVD equipment, a glass window (made of a material that transmits laser light) is provided on the chamber wall to introduce laser light, which is an excitation source. Also, local deposition by laser CVD is used to deposit thin films. In a laser CVD apparatus intended for patterning, an XY stage is usually used as a means for scanning a sample with laser light.

従来のレーザCVD装置では、XYステージの設置位置
として次の2通りの方法が採用されていた。
In conventional laser CVD apparatuses, the following two methods have been adopted for the installation position of the XY stage.

(i)XYステージを全てチャンバ内(化合物気体雰囲
気中)に設置するもの(チャンバ内部型と呼ぶ)。例え
ば、特願昭61−220158号に一例がみられる。今
、第3図にこの従来例の構成を示す。第3図においては
XYステージ1は全てチャンバ2内に配置されており、
励起源であるレーザ光を導入するためにチャンバ2の上
壁面にガラス窓3が設けられている。該ガラス窓3の下
側には試料4が、ガラス窓3の上側には対物レンズ5が
配置されている。
(i) A type in which all the XY stages are installed inside a chamber (in a compound gas atmosphere) (referred to as a chamber internal type). For example, an example can be found in Japanese Patent Application No. 61-220158. Now, FIG. 3 shows the configuration of this conventional example. In FIG. 3, the XY stage 1 is all placed inside the chamber 2,
A glass window 3 is provided on the upper wall surface of the chamber 2 to introduce a laser beam serving as an excitation source. A sample 4 is placed below the glass window 3, and an objective lens 5 is placed above the glass window 3.

(ii)チャンバ全体をXYステージで移動させるもの
で、この場合XYステージは全てチャンバの外部に置か
れる(チャンバ外部型と呼ぶ)。この例としては、文献
(1) J、Vac、Sci、Technol、 85
゜496(1987)   (2> Appl、Phy
s、Lett、  43゜946 (1983)  等
にみられる。これらの例における構成を第4図(A)〜
(C)に示す。同図において、XYステージ1はその全
体がチャンバ2の下側外部に設置されており、チャンバ
2全体をXYステージ1で移動させると共に試料4(同
図B)にはガラス窓3を介して対物レンズ5でレーザ光
が集光されるように構成されている。なお、対物レンズ
5の上方にはグイクロイックミラー6が配置されており
、第4図(A)、(C)においてレーザ7からのレーザ
光は光学シャッタ8、レンズ9を経た後、グイクロイッ
クミラー6に導かれるように構成されている。また、第
4図(A)において、符号9aはモニタ、9bはコンピ
ュータ、9Cはインタフェース、37は反射光照明器、
38は透過光照明器、39は反射ミラー 36はカメラ
である。また、第4図(C)において、符号9dはフォ
トダイオード、9eは光導電効果を利用したビジコン、
9fはモニタ、9gはホストコンビコータ、9hは制御
装置、41は受光部、42はアイピース、43は光源、
44は制御信号を示している。
(ii) The entire chamber is moved by an XY stage; in this case, the XY stage is placed entirely outside the chamber (referred to as a chamber external type). Examples of this include reference (1) J, Vac, Sci, Technol, 85
゜496 (1987) (2> Appl, Phy
See, for example, S. Lett, 43°946 (1983). The configurations in these examples are shown in Figure 4 (A) ~
Shown in (C). In the figure, the entire XY stage 1 is installed outside the lower side of the chamber 2, and the entire chamber 2 is moved by the XY stage 1, and a sample 4 (B in the figure) is provided with an objective through a glass window 3. The laser beam is configured to be focused by a lens 5. Note that a guichroic mirror 6 is arranged above the objective lens 5, and in FIGS. 4(A) and 4(C), the laser beam from the laser 7 passes through an optical shutter 8 and a lens 9 before being It is configured to be guided by a loic mirror 6. Further, in FIG. 4(A), reference numeral 9a is a monitor, 9b is a computer, 9C is an interface, 37 is a reflected light illuminator,
38 is a transmitted light illuminator, 39 is a reflecting mirror, and 36 is a camera. In addition, in FIG. 4(C), 9d is a photodiode, 9e is a vidicon using the photoconductive effect,
9f is a monitor, 9g is a host combination coater, 9h is a control device, 41 is a light receiving section, 42 is an eyepiece, 43 is a light source,
44 indicates a control signal.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述の従来例では、特に大型の試料を扱
う上で、それぞれ次に示すような問題が存在する。
However, the above-mentioned conventional examples have the following problems, especially when handling large samples.

(1)第3図に示すチャンバ内部型の問題この形式では
XYステージ1全体をチャンバ2内に設置するため、プ
ロセス上必要な空間以上に、チャンバ2の内容積が大き
くなる欠点が存在する。
(1) Problem with the internal chamber type shown in FIG. 3 In this type, the entire XY stage 1 is installed within the chamber 2, so there is a drawback that the internal volume of the chamber 2 becomes larger than the space required for the process.

これは、XYステージ1の投影床面積が、試料4の面積
の4倍程度を必要とするためで、避けることができない
This is unavoidable because the projected floor area of the XY stage 1 requires about four times the area of the sample 4.

また、6インチ角のストロークを考えた場合でも、機構
部品が占有する体積を除いて30〜401の空間が発生
するが、将来の応用が見込まれる450M角のLCD 
(液晶デイスプレィ)用ガラス基板を試料として考えた
場合には、その容積は数百1にものぼってしまう。この
ため、チャンバ2の内部雰囲気を置換するための排気時
間、化合物気体の消費量等を考えれば実用的な装置構成
とは言えないことは明らかである。
Furthermore, even when considering a 6-inch square stroke, a space of 30 to 401 mm is generated excluding the volume occupied by mechanical parts, but a 450M square LCD is expected to be used in the future.
When a glass substrate for a liquid crystal display (liquid crystal display) is considered as a sample, its volume reaches several hundred units. Therefore, when considering the evacuation time for replacing the internal atmosphere of the chamber 2, the amount of compound gas consumed, etc., it is clear that this is not a practical device configuration.

(ii)第4図(A)〜(C)に示すチャンバ外部型の
問題 この場合は、チャンバ2の容積を最小限に小さくできる
利点はあるが、チャンバ2の壁面に取り付けるガラス窓
3の板厚と対物レンズ5の関係が問題となってくる。通
常、チャンバ2内に試料4を設置した後の雰囲気置換に
は、真空排気系が採用されるため、ガラス窓3は1気圧
の圧力差で破壊されないだけの板厚にしなければならな
い。しかしながら、試料4の面積が大きくなり、これを
カバーするためにガラス窓3の面積を広げていくと、こ
れが急速に厚くなってしまう。例えば、有効エリア40
0市角のガラス窓3の場合十数mmの板厚のガラスが必
要となる。一方で、レーザ光を数μm以下の径で集光で
きるような対物レンズ5ではその作動距離を15玉以上
とることが技術的に困難であり、上述のような厚いガラ
ス窓3を使用した装置は構成できない。
(ii) Problem with the external chamber type shown in FIGS. 4(A) to (C) In this case, although there is an advantage that the volume of the chamber 2 can be minimized, the plate of the glass window 3 attached to the wall of the chamber 2 The relationship between the thickness and the objective lens 5 becomes a problem. Normally, a vacuum exhaust system is used to replace the atmosphere after the sample 4 is placed in the chamber 2, so the glass window 3 must be thick enough not to be destroyed by a pressure difference of 1 atmosphere. However, as the area of the sample 4 increases and the area of the glass window 3 is expanded to cover it, the glass window 3 rapidly becomes thicker. For example, effective area 40
In the case of a glass window 3 with a width of 0, a glass plate with a thickness of more than 10 mm is required. On the other hand, it is technically difficult to maintain a working distance of 15 lenses or more with the objective lens 5 that can focus the laser beam to a diameter of several μm or less, and the device using the thick glass window 3 as described above is difficult to achieve. cannot be configured.

本発明の目的は上述した問題に2みなされたもので、試
料の外形寸法によらずガラス窓の板厚を比較的薄いもの
に保つことができ、しかもチャンバ内部型の場合よりも
チャンバ容積を小さくでき、装置も小型にできるレーザ
CVD装置を提供するにある。
The purpose of the present invention is to solve two of the above-mentioned problems.It is possible to keep the thickness of the glass window relatively thin regardless of the external dimensions of the sample, and to reduce the chamber volume compared to the case of an internal chamber type. It is an object of the present invention to provide a laser CVD device which can be made small and the device can also be made small.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、解離反応により導電性物質を形成する化合物
気体を含む雰囲気中に配置された試料上にレーザ光を集
光照射して、主にこの照射点での局部的な温度上昇によ
る熱CVD作用により、前記照射点近傍に導電性物質を
局所堆積させ、さらに前記レーザ光に対して試料を相対
的に走査することにより、前記試料上に導電性物質を連
続的に堆積して配線を形成するレーザCVD装置におい
て、前記試料をレーザ光に対して相対的に走査する手段
としてXYステージを用い、かつこのXYステージの2
軸のうちの1軸を、試料を前記化合物気体雰囲気中に保
持するために使用するチャンバ内に設置し、他の1軸を
チャンバ全体を動かすようにチャンバ外に設置するよう
に構成したものである。
The present invention focuses on irradiating a sample with a focused laser beam on a sample placed in an atmosphere containing a compound gas that forms a conductive substance through a dissociation reaction, and performs thermal CVD mainly due to a local temperature increase at this irradiation point. By the action, a conductive substance is locally deposited near the irradiation point, and by scanning the sample relative to the laser beam, the conductive substance is continuously deposited on the sample to form wiring. In a laser CVD apparatus, an XY stage is used as a means for scanning the sample relative to the laser beam, and two of the XY stages
One of the axes is installed inside the chamber used to hold the sample in the compound gas atmosphere, and the other axis is installed outside the chamber so as to move the entire chamber. be.

〔作用〕[Effect]

本発明によれば、XYステージの1軸をチャンバ内に、
もう1軸をチャンバ全体を動かすようにチャンバの外部
に置くことにより、チャンバの外部に置くステージの移
動方向にのみ長さをとった、細長いガラス窓でよいため
板厚が薄くても圧力差に耐えられる。したがって、ガラ
ス窓の板厚を比較的薄くしたままで、大型試料に対応で
きる。さらに、上記構成によりチャンバ内部型の場合よ
りもチャンバ容積を小さくでき、装置も小型化できる。
According to the present invention, one axis of the XY stage is placed in the chamber,
By placing the other axis outside the chamber so that it moves the entire chamber, a long and thin glass window with a length only in the direction of movement of the stage placed outside the chamber can be used, so even if the plate thickness is thin, the pressure difference can be maintained. I can endure it. Therefore, it is possible to handle large samples while keeping the thickness of the glass window relatively thin. Furthermore, with the above configuration, the chamber volume can be made smaller than in the case of an internal chamber type, and the device can also be made smaller.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明に係るレーザCVD装置の一実施例を示
す全体構成図である。本実施例では、レーザ10として
ArレーザあるいはQスイッチNd:YAGレーザの第
2高調波(SH光)等の可視レーザを、原料化合物とし
てダンゲステンカルボニル(W(CO)6)  を使用
して、LSIチップ上又はLCD用基板上にタングステ
ンの配線をCvDにより形成する場合を示している。
FIG. 1 is an overall configuration diagram showing an embodiment of a laser CVD apparatus according to the present invention. In this example, a visible laser such as an Ar laser or the second harmonic (SH light) of a Q-switched Nd:YAG laser is used as the laser 10, and dungesten carbonyl (W(CO)6) is used as the raw material compound. This shows the case where tungsten wiring is formed on an LSI chip or an LCD substrate by CvD.

原料化合物のW (Co) aは室温で固体であり、リ
ザーバ11と呼ぶ容器中で加熱されガス化される。
The raw material compound W (Co) a is solid at room temperature, and is heated and gasified in a container called a reservoir 11 .

このときの飽和蒸気圧は65°Cで約1.2T。The saturated vapor pressure at this time is approximately 1.2T at 65°C.

rrである。ガス化した−(CO) gはキャリアガス
12 (本実施例ではアルゴンを用いた)と混合して1
気圧程度で化合物気体13としてチャンバ14内に送ら
れる。これは、ガス化したW(CO)sの蒸気圧が小さ
いためである。
It is rr. The gasified −(CO) g is mixed with 12 g of carrier gas (argon was used in this example) to give 1 g.
The compound gas 13 is sent into the chamber 14 at approximately atmospheric pressure. This is because the vapor pressure of gasified W(CO)s is low.

チャンバ14内は、化合物気体13で満たされており、
試料15はこのチャンバ14の中に配置され、載物台1
6に内蔵のヒータで雰囲気ガス温度程度に加熱されてい
る。これは、W(CO)6が試料15の表面に再凝集し
ないためである。この状態で、試料15の表面にレーザ
光17を集光することにより、レーザ光照射部近傍にタ
ングステン薄膜が堆積する。
The inside of the chamber 14 is filled with compound gas 13,
The sample 15 is placed in this chamber 14, and the stage 1
6 is heated to about the atmospheric gas temperature by a built-in heater. This is because W(CO)6 does not reaggregate on the surface of the sample 15. In this state, by focusing the laser beam 17 on the surface of the sample 15, a tungsten thin film is deposited near the laser beam irradiation area.

レーザ光の集光径が2μm程度のとき、Arレーザの場
合は10 QmW程度、QスイッチNd:YAGレーザ
のSH光の場合は平均出力1ml程度とすることで、堆
積が行われる。
When the focused diameter of the laser beam is about 2 μm, deposition is performed with an average output of about 10 QmW in the case of an Ar laser and about 1 ml in the case of the SH light of a Q-switched Nd:YAG laser.

配線を形成するには、XYステージ18.19により試
料15を走査すればよい。このようにすれば、タングス
テン堆積が連続して横方向につながっていき、タングス
テンによる配線となる。このときのXYステージ18.
19の移動速度は0゜5μm / s〜5μm/s程度
である。
To form the wiring, the sample 15 may be scanned by the XY stages 18 and 19. In this way, the tungsten deposits are successively connected in the lateral direction, resulting in a tungsten interconnect. XY stage 18 at this time.
The moving speed of 19 is about 0°5 μm/s to 5 μm/s.

第2図は本発明によるXYステージ18.19とチャン
バ14との関係を示す斜視図である。同図に示すように
、X軸のXYステージ18はチャンバ14の下に、一方
Y軸のXYステージ19はチャンバ14内に配置されて
いる。したがって、X軸ストローク方向(矢印A方向)
にはチャンバ14ごと移動させるので、チャンバ14の
上壁面に設けたガラス窓20は試料15の全面を覆う必
要はない。なお、矢印BはY軸ストローク方向を示す。
FIG. 2 is a perspective view showing the relationship between the XY stage 18, 19 and the chamber 14 according to the present invention. As shown in the figure, an X-axis XY stage 18 is arranged below the chamber 14, while a Y-axis XY stage 19 is arranged inside the chamber 14. Therefore, the X-axis stroke direction (arrow A direction)
Since the entire chamber 14 is moved, the glass window 20 provided on the upper wall of the chamber 14 does not need to cover the entire surface of the sample 15. Note that arrow B indicates the Y-axis stroke direction.

ガラス窓20の開口寸法は、短辺側は20市程度、長辺
側は試料15のX方向の寸法と同程度となっている。こ
のように、短辺側の寸法は試料寸法によらず20胚程度
でよいため、450mm角の試料15の場合でも厚み3
〜4 mmのガラス窓20で充分1気圧の差圧に耐えら
れる。また、チャンバ14はY軸にみを覆えばよいので
、XYステージ全体を内蔵する場合に比べて小型にでき
、6インチ角の試料15が対象の場合でチャンバ14の
内部空間は101程度(機構部品の占有体積は除く)と
なる。
The opening dimensions of the glass window 20 are approximately 20 mm on the short side and approximately the same as the dimension of the sample 15 in the X direction on the long side. In this way, the short side dimension only needs to be about 20 embryos regardless of the sample size, so even in the case of sample 15, which is 450 mm square, the thickness is 3
A glass window 20 of ~4 mm can withstand a pressure difference of 1 atmosphere. In addition, since the chamber 14 only needs to cover the Y-axis, it can be made smaller compared to the case where the entire XY stage is built in. When a 6-inch square sample 15 is the target, the internal space of the chamber 14 is about 101 (mechanism). (excluding the volume occupied by parts).

また、第1図に示すように、レーザ光17はビームエキ
スパンダ21で拡大された後、対物レンズ22で試料1
5上に集光されるようになっているが、この対物レンズ
22としては焦点距離11m+++、作動距離14.5
Mのものを使用した。したがって、ガラス窓20の板厚
が3〜4mmであれば、対物レンズ22の上下ストロー
クの余裕を数mI++とることができ、充分実用的なシ
ステムとなる。
Further, as shown in FIG. 1, the laser beam 17 is expanded by a beam expander 21 and then passed through an objective lens 22 to
The objective lens 22 has a focal length of 11 m+++ and a working distance of 14.5 m.
I used one from M. Therefore, if the glass window 20 has a thickness of 3 to 4 mm, the vertical stroke of the objective lens 22 can have an allowance of several mI++, resulting in a sufficiently practical system.

対物レンズ22は接眼23あるいはTV左カメラ4での
観察用のレンズを兼ねているため、短焦点(焦点距離1
1■)のものが必要となる。なお、第1図において、符
号25はモニタ、26はヒータ、27はグイクロイック
ミラー、28は排ガス処理部、29は排気ガスを示す。
The objective lens 22 also serves as an observation lens for the eyepiece 23 or TV left camera 4, so it has a short focus (focal length 1
1■) will be required. In FIG. 1, reference numeral 25 is a monitor, 26 is a heater, 27 is a gicroic mirror, 28 is an exhaust gas treatment section, and 29 is an exhaust gas.

また、前記チャンバ14の左側壁には開閉i30が設け
られている。
Further, an opening/closing i30 is provided on the left side wall of the chamber 14.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に係るレーザCVD装置によ
れば、XYステージの2軸のうち、1軸をチャンバ内部
に、もう1軸をチャンバ全体を移動するようにチャンバ
外部に設置した構成とすることにより、対象となる試料
の外形寸法によらず、レーザ光導入用のガラス窓の板厚
を比較的薄いものに保つことができ、光学系の設計・製
作を可能とするばかりでなく、XYステージ全体をチャ
ンバ内に組み込む従来に比べてチャンバ自身の内容積を
格段に小さくすることが可能となり、大型の試料に対し
てレーザCVDによる金属薄膜のパターニング技術の適
用が可能になるという種々の優れた効果を有する。
As explained above, according to the laser CVD apparatus according to the present invention, one of the two axes of the XY stage is installed inside the chamber, and the other axis is installed outside the chamber so as to move the entire chamber. By doing so, the thickness of the glass window for introducing the laser beam can be kept relatively thin regardless of the external dimensions of the target sample, which not only makes it possible to design and manufacture optical systems, but also enables XY Compared to the conventional method where the entire stage is built inside the chamber, the internal volume of the chamber itself can be made much smaller, and it has various advantages such as making it possible to apply metal thin film patterning technology using laser CVD to large samples. It has a great effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るレーザCVD装置の一実施例を示
す全体構成図、第2図は第1図に示す実施例のチャンバ
及びXYステージの関係を示す斜視図、第3図及び第4
図(A)、(C)はそれぞれ従来例の構成を示す模式図
、第4図(B)は第4図(A)のB部の拡大断面図であ
る。 10・・・・・・レーザ、 14・・・・・・チャンバ、 15・・・・・・試料、 17・・・・・・レーザ光、 18.19・・・・・・xYステージ、20・・・・・
・ガラス窓、 21・・・・・・ビームエキスパンダ、22・・・・・
・対物レンズ。 出 願 人  日本電気株式会社 代 理 人  弁理士 山内梅雄 第2図 第4図(C,)
FIG. 1 is an overall configuration diagram showing an embodiment of a laser CVD apparatus according to the present invention, FIG. 2 is a perspective view showing the relationship between the chamber and the XY stage of the embodiment shown in FIG. 1, and FIGS.
Figures (A) and (C) are schematic diagrams showing the configuration of conventional examples, respectively, and Figure 4 (B) is an enlarged sectional view of section B in Figure 4 (A). 10... Laser, 14... Chamber, 15... Sample, 17... Laser light, 18.19... xY stage, 20・・・・・・
・Glass window, 21... Beam expander, 22...
・Objective lens. Applicant NEC Corporation Agent Patent Attorney Umeo Yamauchi Figure 2 Figure 4 (C,)

Claims (1)

【特許請求の範囲】 1、解離反応により導電性物質を形成する化合物気体を
含む雰囲気中に配置された試料上にレーザ光を集光照射
して、主にこの照射点での局部的な温度上昇による熱C
VD作用により、前記照射点近傍に導電性物質を局所堆
積させ、さらに前記レーザ光に対して試料を相対的に走
査することにより、前記試料上に導電性物質を連続的に
堆積して配線を形成するレーザCVD装置において、前
記試料をレーザ光に対して相対的に走査する手段として
XYステージを用い、かつこのXYステージの2軸のう
ちの1軸を、試料を前記化合物気体雰囲気中に保持する
ために使用するチャンバ内に設置し、他の1軸をチャン
バ全体を動かすようにチャンバ外に設置するようにした
ことを特徴とするレーザCVD装置。 2、レーザ光はビームエキスパンダで拡大された後、対
物レンズで試料上に集光されて成る請求項1記載のレー
ザCVD装置。
[Claims] 1. A laser beam is focused and irradiated onto a sample placed in an atmosphere containing a compound gas that forms a conductive substance through a dissociation reaction, and the local temperature mainly at this irradiation point is Heat C due to rise
A conductive substance is locally deposited near the irradiation point by VD action, and by scanning the sample relative to the laser beam, the conductive substance is continuously deposited on the sample to form wiring. In the laser CVD apparatus for forming the sample, an XY stage is used as a means for scanning the sample relative to the laser beam, and one axis of the two axes of the XY stage holds the sample in the compound gas atmosphere. What is claimed is: 1. A laser CVD apparatus, characterized in that the apparatus is installed in a chamber used to move the entire chamber, and another axis is installed outside the chamber so as to move the entire chamber. 2. The laser CVD apparatus according to claim 1, wherein the laser beam is expanded by a beam expander and then focused onto the sample by an objective lens.
JP2221077A 1990-08-24 1990-08-24 Laser CVD equipment Expired - Fee Related JP2546419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2221077A JP2546419B2 (en) 1990-08-24 1990-08-24 Laser CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2221077A JP2546419B2 (en) 1990-08-24 1990-08-24 Laser CVD equipment

Publications (2)

Publication Number Publication Date
JPH04103769A true JPH04103769A (en) 1992-04-06
JP2546419B2 JP2546419B2 (en) 1996-10-23

Family

ID=16761127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2221077A Expired - Fee Related JP2546419B2 (en) 1990-08-24 1990-08-24 Laser CVD equipment

Country Status (1)

Country Link
JP (1) JP2546419B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999052125A1 (en) * 1998-04-02 1999-10-14 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Method and device for specifically manipulating and depositing particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999052125A1 (en) * 1998-04-02 1999-10-14 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Method and device for specifically manipulating and depositing particles
US6616987B1 (en) 1998-04-02 2003-09-09 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Procedure and device for specific particle manipulation and deposition

Also Published As

Publication number Publication date
JP2546419B2 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
US6341009B1 (en) Laser delivery system and method for photolithographic mask repair
AU613341B2 (en) Flowing gas seal enclosure for processing workpiece surface with controlled gas environment and intense laser irradiation
US4609566A (en) Method and apparatus for repairing defects on a photo-mask pattern
US20050121144A1 (en) Processing system and exposure apparatus using the same
TW201007385A (en) Optical element for a lithographic apparatus, lithographic apparatus comprising such optical element and method for making the optical element
JP2003518729A (en) Method for generating ultrashort radiation, method for manufacturing an apparatus with said radiation, ultrashort radiation source device and lithographic projection apparatus equipped with such a radiation source device
US4058638A (en) Method of optical thin film coating
JPH02138900A (en) Electron beam transmission window
JPH04103769A (en) Laser cvd device
US20050053369A1 (en) Focused photon energy heating chamber
JPH04295851A (en) Photomask correcting device
JPH03285339A (en) Detection of contamination, device for it and semiconductor manufacturing line
JP2803106B2 (en) Optical equipment for laser processing
JP3668776B2 (en) X-ray microscope
JP2002283090A (en) Deposit protective member for laser beam introducing optical window of laser ablation device, and method and device of laser ablation
JP2003294900A (en) X-ray microscope
JPH07306448A (en) Finder device
JPH01125922A (en) Manufacture of thin film by radiation cvd and apparatus used therefor
KR100239488B1 (en) Thin film forming apparatus using laser beam
JPS637618A (en) Laser-beam positioning apparatus in semiconductor manufacturing apparatus
RU2017191C1 (en) Method of forming of mask masking layer
JPH04342218A (en) Microscope device
JPS61237446A (en) Method and apparatus for connecting lsi wiring
JPS6125146A (en) Correcting method of defect of photomask
JPH09301800A (en) Laser annealing device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees