JPH04103750A - Formation of wear resistant coating layer - Google Patents

Formation of wear resistant coating layer

Info

Publication number
JPH04103750A
JPH04103750A JP2219020A JP21902090A JPH04103750A JP H04103750 A JPH04103750 A JP H04103750A JP 2219020 A JP2219020 A JP 2219020A JP 21902090 A JP21902090 A JP 21902090A JP H04103750 A JPH04103750 A JP H04103750A
Authority
JP
Japan
Prior art keywords
coating layer
weight
wear
thermal
thermal spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2219020A
Other languages
Japanese (ja)
Inventor
Katsuji Sudo
須藤 克二
Yoshihiro Jitsumatsu
實松 嘉浩
Koji Hirata
平田 光二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2219020A priority Critical patent/JPH04103750A/en
Publication of JPH04103750A publication Critical patent/JPH04103750A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To reduce porosity in a coating layer and to improve its wear resistance by holding the temp. of the surface of a base metal to a specified one and plasma-spraying WC alloy powder mixed with Co, Cr, Ni or the like on the surface of the base metal under the reduced pressure. CONSTITUTION:The surface of a thermal spraying base metal is thermal-sprayed with alloy powder contg., by weight, 25 to 35% Co, 6 to 12% Cr, 5 to 10% Ni, 1.5 to 9% Si+B+C and the balance WC under the reduced pressure in the state where in the temp. of the surface of the above material is held to >=300 deg.C. By this thermal spraying, a spray coating layer having <=3% porosity is formed. Because the thermal spraying is executed under the reduced pressure, differently from thermal spraying in the air, the contamination of air does not occur and its porosity can be reduced. In this way, the formation of an excellent wear resistant coating layer is permitted, and the components to be added newly are general Ni, Cr, Si, B, C or the like which are inexpensive, so that the service life of a wear resistant member can remarkably be prolonged without raising the cost of the spray powder.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、機械部品等の摺動部分や土砂との関係で耐摩
耗性が要求される部分に適用さ九る耐摩耗被覆層の形成
方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to sliding parts such as mechanical parts and parts that require wear resistance in relation to earth and sand. Regarding the method.

[従来の技術] 一般に耐摩耗性を要求される部分には、セラミックスの
焼結品や、超硬の焼結品等の硬質のものが使用されてい
る。焼結品の場合には、しりくりと時間を掛け、基本的
にGoの液相を形成して凝固を行う液相焼結であるため
、組織の硬質粒子(WC)とそれを取り巻くマトリック
ス部(Go)との結合は確実であるし又、マトリックス
部自体の締まりも良好である。ダイヤモンドの針を押し
込みその圧痕の大きさより測定するマイクロ・ビッカー
ス硬度は、約1,600〜1.800の優れたものが得
られるのが通常である。
[Prior Art] Hard materials such as sintered ceramics and sintered carbide are generally used in parts that require wear resistance. In the case of sintered products, liquid-phase sintering basically forms a liquid phase of Go and solidifies it over time, so the hard particles (WC) of the structure and the matrix surrounding them The bonding with (Go) is reliable, and the matrix portion itself is also well-tightened. Micro-Vickers hardness, which is measured from the size of the indentation made by pressing a diamond needle into the material, usually has an excellent micro-Vickers hardness of about 1,600 to 1.800.

しかし、セラミックスの焼結品や、超硬の焼結品等の硬
質のものを使用する場合には、双方とも薄いものの製造
は技術上困難なため、成る程度以上の厚さが必要になる
。即ち、耐摩耗の構造材料として使用する場合には、通
常5〜l Omm程度必要であり、更に粉末自身も高価
なため、結果として高価な部品となってしまう。又、形
状的に平板、円柱、円筒状のもの以外の複雑な形状の場
合には、特別に金型等を作製する必要があり、非常にコ
ストの高いものとなってしまう。そのため実際的にはコ
スト的に採算が取れないため採用に至らないケースも多
い。又、採算の取れるような高級な部品として使用され
る場合にも鋼製の材料で構成された材料との取り付は方
法にも大きな問題があり、採用か困難なケースも多い。
However, when using a hard material such as a sintered ceramic product or a sintered carbide product, it is technically difficult to manufacture a thin product for both, so a thickness greater than that required is required. That is, when used as a wear-resistant structural material, it usually requires about 5 to 1 Omm, and the powder itself is expensive, resulting in expensive parts. Further, in the case of a complicated shape other than a flat plate, cylinder, or cylindrical shape, a special mold or the like must be manufactured, resulting in a very high cost. Therefore, there are many cases in which the technology is not adopted because it is not cost-effective in practice. Furthermore, even when used as a profitable high-class component, there are major problems in the method of attaching it to materials made of steel, and there are many cases where it is difficult to use it.

即ち、セラミックスや超硬の焼結晶等に穴を開けて、ボ
ルト等で縫い付けても使用中に穴からクラックか発生し
、破損してしまうことになり、耐摩耗性の観点で優れて
いても実用的でない場合が多かった。
In other words, even if holes are made in ceramics or sintered carbide crystals, etc. and sewn with bolts, etc., cracks will occur from the holes and breakage will occur during use, making it superior in terms of wear resistance. was also often impractical.

それに比し、耐摩耗性材料の溶射は、その基材に対し必
要な部分のみを硬くするため、最近、溶射が盛んに行わ
わている。溶射は、手軽にどのような形状にも対応でき
又、必要な膜厚のみに、通常100〜300μm程度構
成すれば良いので、粉末も少なくて済み、製造工程も上
記の粉末焼結法に比へわば、単純であるため、コスト的
に極めて有利である。溶射の場合にも、焼結による超硬
と同じ組成の12%Coのものや17%Coの超硬の粉
末が現在最も多用されている。超硬と同じ組成の12%
Coのものや17%Coの超硬の粉末の大気圧溶射の場
合には、通常数+μm程度の大きさの粒子を使用し、プ
ラズマやアセチレン+酸素等のガス燃焼による高温の中
に入れ瞬時に溶融し又、急速に冷却させ固化を行う方式
であるため、十分にマトリックス部(Co)の粒子同志
の結合が行なわれず、完全な一体の構造物とは言い難い
。又、不可避的に未溶融粒子や気孔が組織中に入り込み
、溶射膜中の欠陥となり得る。そのため、上記のどツカ
ース硬度は高々1,000〜1,100程度しか得られ
ない。更に又、母材の表面が酸化されないように、通常
母材の表面を150〜200℃程度に冷却しなから溶射
を行うため、膜質そのものは急冷凝固量であることと、
未溶融粒子や気孔等が含まれているため靭性の点でも劣
る。更に、通常の大気溶射の場合、グリッド・ブラスト
処理を行った後、母材温度を150〜200℃程度以下
に管理しなから溶射を行わねばならない。これは、母材
の表面の酸化を押さえるためのものである。
In contrast, thermal spraying of wear-resistant materials has recently become popular because it hardens only the necessary parts of the base material. Thermal spraying can easily be applied to any shape, and since it is only necessary to form a film with a required thickness, usually around 100 to 300 μm, less powder is required, and the manufacturing process is faster than the powder sintering method described above. In other words, since it is simple, it is extremely advantageous in terms of cost. In the case of thermal spraying, 12% Co or 17% Co cemented carbide powder, which has the same composition as sintered carbide, is currently most commonly used. 12% of the same composition as carbide
In the case of atmospheric pressure spraying of Co or 17% Co cemented carbide powder, particles with a size of about a few micrometers are usually used, and they are placed in a high temperature caused by plasma or gas combustion of acetylene + oxygen, etc., and instantly sprayed. Since the method involves melting and rapidly cooling and solidifying, the particles of the matrix portion (Co) are not sufficiently bonded to each other, and it cannot be said to be a completely integrated structure. In addition, unmelted particles and pores inevitably enter the structure and may cause defects in the sprayed film. Therefore, the above-mentioned throat hardness is only about 1,000 to 1,100 at most. Furthermore, in order to prevent the surface of the base material from being oxidized, the surface of the base material is usually cooled to about 150 to 200°C before thermal spraying, so the film quality itself is a rapidly solidified amount.
It also has poor toughness because it contains unmelted particles and pores. Furthermore, in the case of normal atmospheric spraying, after grid blasting, the temperature of the base material must be controlled to below about 150 to 200°C before spraying. This is to prevent oxidation of the surface of the base material.

即ち、母材の表面の酸化物の生成による界面との剥離を
防止するためのものである。このことから、母材の表面
の温度は低いため、溶射粒子は急冷され溶射粒子間の結
合も十分に行われないし又、成分中の化学反応も十分に
行われない。
That is, this is to prevent separation from the interface due to the production of oxides on the surface of the base material. For this reason, since the temperature of the surface of the base material is low, the sprayed particles are rapidly cooled, and the bonding between the sprayed particles does not take place sufficiently, nor does the chemical reaction in the components take place sufficiently.

この問題解決のため、溶射ガンにおいて粒子を溶融する
温度を上げても、重要な成分であるWCの分解をもたら
すだけであり逆効果となる。このため、通常の大気圧溶
射では、その寿命の点で期待が持たれない。
In order to solve this problem, increasing the temperature at which the particles are melted in the thermal spray gun only causes the decomposition of the important component WC, which has the opposite effect. For this reason, normal atmospheric pressure spraying does not have a promising lifespan.

そこで、12%Coや17%Coの超硬の粉末を用いて
、50トール(Torr)の雰囲気圧力、300 t:
以上の予熱温度で、減圧溶射を行えば、かなりの改善効
果は見られる。
Therefore, using cemented carbide powder of 12% Co or 17% Co, an atmospheric pressure of 50 Torr and 300 t:
If low-pressure thermal spraying is performed at the above preheating temperature, a considerable improvement effect can be seen.

[発明が解決しようとする課題] 溶射法によれば、上記のように手軽で且つ、低コストで
耐摩耗性部材の製造が可能であるが、しかしながら、例
え成分比率だけを揃えても溶射と焼結とでは、その溶融
、凝固(固化)の様態が異なるため、品質的に焼結には
到底及ばない。即ち、現状の溶射においては、性能的に
焼結による超硬には劣り、耐摩耗部品としての寿命が短
い。
[Problems to be Solved by the Invention] According to the thermal spraying method, it is possible to manufacture wear-resistant parts easily and at low cost as described above. Since the mode of melting and solidification (solidification) is different from sintering, the quality cannot be compared to sintering. That is, current thermal spraying is inferior to sintered carbide in performance and has a short life as a wear-resistant component.

そこで本発明は、上記のような問題のある現状の耐摩耗
材料の溶射方法において、溶射の良い点を生かしコスト
的に安価で且つ、品質的に極力焼結の超硬に近付け、硬
質耐摩耗材料の溶射を実用的に製造する方法を提供する
ことを目的とする。
Therefore, in the current thermal spraying method for wear-resistant materials, which has the above-mentioned problems, the present invention takes advantage of the advantages of thermal spraying to produce a hard wear-resistant material that is low in cost and as close to sintered carbide in quality as possible. The purpose of this invention is to provide a practical method for producing thermal sprayed materials.

[課題を解決するための手段] 上記目的を達成するため、本発明の耐摩耗被覆層を形成
する方法は、溶射母材の表面にこの材料の温度を300
℃以上に保持した状態で、Goを25〜35重量%、C
rを6〜12重量%、Niを5〜10重■%、Si十B
 + Cを1.5〜9重量%含有し、その他残部をwC
よりなる合金粉末を減圧中でプラズマ溶射して、気孔率
3%以下の溶射被覆層を形成することを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the method for forming a wear-resistant coating layer of the present invention includes applying a temperature of this material to the surface of a thermally sprayed base material at a temperature of 300°C.
25 to 35% by weight of Go and C while keeping the temperature above ℃
6 to 12% by weight of r, 5 to 10% by weight of Ni, 10B of Si
+ Contains 1.5 to 9% by weight of C, with the remainder being wC
It is characterized in that an alloy powder consisting of the following is plasma sprayed under reduced pressure to form a sprayed coating layer with a porosity of 3% or less.

[作用及び実施例] 耐摩耗性は硬質粒子の硬度とマトリックス部の硬さ及び
、該硬質粒子を拘束するマトリックス部との結合力に依
存する。又、母材と膜の密着強度も耐摩耗材料の使用途
中の剥離防止の観点から寿命の長さに効いてくる。
[Operations and Examples] Wear resistance depends on the hardness of the hard particles, the hardness of the matrix portion, and the bonding force with the matrix portion that restrains the hard particles. Furthermore, the adhesion strength between the base material and the film has an effect on the longevity of the wear-resistant material from the viewpoint of preventing peeling during use.

本発明者らは、溶射が焼結に劣るのは、超硬の溶射材料
の中において、WC粒子自体は硬いのであるが、そのマ
トリックスを構成するCoが十分に溶けず、粒子間の結
合を強力にするには至っていないことと考え又、成分の
未溶融粒子や気孔等の混入も十分な粒子間の結合を妨げ
ているものと推定した。又、該硬質粒子を拘束するマト
リックス部との結合力と母材と膜の密着強度は、減圧溶
射を実施する際の母材の温度が高い程強固になる。
The present inventors believe that the reason why thermal spraying is inferior to sintering is that in carbide thermal spray materials, the WC particles themselves are hard, but the Co that makes up the matrix is not sufficiently melted, and the bond between the particles is broken. It was thought that this had not yet been made strong enough, and it was also assumed that unmelted particles of the components, pores, etc. were mixed in and prevented sufficient bonding between the particles. In addition, the bonding force with the matrix portion that restrains the hard particles and the adhesion strength between the base material and the film become stronger as the temperature of the base material during vacuum spraying is higher.

母材の温度が300℃以下では、密着界面における拡散
がうまく生ぜず、該母材との密着強度が数kg/ID1
112以下に低下し、更に溶射被覆層内の粒子間結合力
も低下して、強い摩耗条件下では剥離する危険性があり
実用的ではない。このことから300℃以上、より好ま
しくは400℃以上に母材を予熱することが好ましい。
If the temperature of the base material is below 300°C, diffusion at the adhesion interface will not occur properly, and the adhesion strength with the base material will be several kg/ID1.
112 or less, and the interparticle bonding force within the thermally sprayed coating layer also decreases, and there is a risk of peeling under strong abrasion conditions, making it impractical. For this reason, it is preferable to preheat the base material to 300°C or higher, more preferably 400°C or higher.

このため、付着した粒子も急冷されないため、粒子同士
が馴染める時間が多くとられる。このことは、周囲に酸
素のない雰囲気で行える減圧溶射でなければ不可能であ
る。
For this reason, the attached particles are not rapidly cooled either, allowing more time for the particles to become familiar with each other. This is only possible through low-pressure thermal spraying, which can be carried out in an atmosphere free of surrounding oxygen.

但し、上限温度に関しては、母材の融点、熱膨張率やそ
の大きさ等に関係するため、−概には言えない。即ち、
アルミニウム等の低融点の材料に対しては、その融点か
ら自ずから予熱温度は、500℃まてに制限される。又
、母材の熱膨張率にも関係し、熱膨張率の大きなステン
レス系のもので、しかもそのサイズが大きい場合には、
溶射完了後の冷却過程で大きく収縮するために、膜が剥
離する等のトラブルも発生する。しかし、熱膨張率の小
さな鋳物の場合には、母材のサイズが大きくても剥離等
のトラブルは起こりにくい。上記の様に、母材の融点や
、そのサイズと最高予熱温度及び溶射中の最高到達温度
等との関係は、予め実際の形状で把握しておくことが必
要である。
However, the upper limit temperature cannot be generalized because it is related to the melting point, coefficient of thermal expansion, size, etc. of the base material. That is,
For materials with a low melting point such as aluminum, the preheating temperature is naturally limited to 500° C. due to its melting point. It is also related to the coefficient of thermal expansion of the base material, and if it is made of stainless steel with a high coefficient of thermal expansion and is large in size,
The large shrinkage during the cooling process after thermal spraying can cause problems such as peeling of the film. However, in the case of castings with a small coefficient of thermal expansion, problems such as peeling are unlikely to occur even if the size of the base material is large. As mentioned above, it is necessary to understand the relationship between the melting point of the base material, its size, the maximum preheating temperature, the maximum temperature reached during thermal spraying, etc. in advance based on the actual shape.

更に減圧溶射で行うため、大気溶射と異なり空気を巻き
込むことがなく、気孔率も低減できる。
Furthermore, since it is carried out by low pressure thermal spraying, unlike atmospheric thermal spraying, air is not involved and the porosity can be reduced.

耐摩耗性は以下で定義される溶射被覆層の気孔率にも依
存する。
Abrasion resistance also depends on the porosity of the sprayed coating layer, defined below.

気孔率(駒=(1−(溶射被覆層の比重/バルク材料の
比重))X100 気孔が多い場合、例えば耐火セラミックス煉瓦成型用の
金型等の耐摩耗性向上を期待してコーティングした場合
、摩耗の原因となるセラミックの粒子が食い込み、そこ
がら摩耗が成長するので気孔の少ない緻密な被覆層はど
耐摩耗性に優れている。
Porosity (piece = (1 - (specific gravity of thermal spray coating layer / specific gravity of bulk material)) x 100 If there are many pores, for example, if the coating is applied to improve the abrasion resistance of a mold for molding fire-resistant ceramic bricks, etc. Ceramic particles that cause wear dig in and wear grows there, so a dense coating layer with few pores has excellent wear resistance.

土砂に対する摩耗の場合も同様である。更にエロージョ
ンと摩耗が複合されている場合や、腐食と摩耗が複合さ
れている場合等では、この気孔率の小ささの影響度は特
に重要である。気孔を核にして損耗は成長する。通常の
場合には気孔率の許容度は3%以下が好ましい。
The same applies to abrasion caused by earth and sand. Furthermore, in cases where erosion and wear are combined, or corrosion and wear are combined, the influence of the small porosity is particularly important. Attrition grows with the pores as the nucleus. In normal cases, the porosity tolerance is preferably 3% or less.

溶射被覆層の高い密着力と粒子間結合力を確保し、気孔
率を低減して緻密な溶射被覆層とするため、減圧プラズ
マ溶射法を実施するに当たっての圧力範囲は20〜30
0トール(Torr)であり、より好ましくは、30〜
100トールである。
In order to ensure high adhesion and interparticle bonding force of the thermal spray coating layer and reduce porosity to create a dense thermal spray coating layer, the pressure range when implementing the low pressure plasma spray method is 20 to 30℃.
0 Torr, more preferably 30 to
It is 100 torr.

圧力が、300ト一ル以上になれば、減圧溶射の効果は
減少し、大気圧溶射に近付く、即ち、気孔を巻き込んで
膜の形成が行われるようになるため、緻密な膜にはなら
ず、耐摩耗性が低下する。
When the pressure exceeds 300 torr, the effect of reduced pressure spraying decreases and approaches atmospheric spraying, that is, the film is formed by involving pores, so it is not a dense film. , wear resistance decreases.

又、20トール以下の低圧になれば、プラズマ・フレー
ムが異常に長く伸びるため、通常の減圧溶射装置では溶
射作業が困難になり、膜質か低下し好ましくない。
Furthermore, if the pressure is lower than 20 Torr, the plasma flame will extend abnormally long, making thermal spraying work difficult with a normal low-pressure thermal spraying device, and the film quality will deteriorate, which is not preferable.

摩耗の現象は、先ずマトリックス部分の柔らかい部分か
削り取られ、硬いWCの粒子の突出が大きくなると、つ
いにはマトリックス部分のWCの保持が困難となり脱落
する。脱落した部分は穴となり、その部分を再び中心と
して、摩耗、浸食が進行する。
In the phenomenon of wear, first, the soft part of the matrix part is scraped off, and when the protrusion of hard WC particles becomes larger, it becomes difficult to hold the WC in the matrix part, and the part falls off. The part that fell off becomes a hole, and wear and erosion progresses around that part again.

本発明の実施に当たって、用いられる粉末の組成は、G
oを25〜35重量%、Crを6〜12重量%、Niを
5〜10重量%、Si+ B + Cを1.5〜9重量
%含有し、その抽残部をWeよりなる合金粉末であるが
、粉末の粒径は、好ましくは44〜1μmであるがより
好ましくは、25〜5μmである。
In carrying out the present invention, the composition of the powder used is G
It is an alloy powder containing 25-35% by weight of O, 6-12% by weight of Cr, 5-10% by weight of Ni, 1.5-9% by weight of Si + B + C, and the raffinate part is made of We. However, the particle size of the powder is preferably 44 to 1 μm, more preferably 25 to 5 μm.

合金粉末の粒径か粗くなると、気孔率が増加し、粒子間
結合力も低下して耐摩耗性が低下する。又、粉末の粒径
が余り細かくなると、プラズマ中への粉末の送給が不安
定となり、緻密で均質な被覆層の形成が困難となる。
When the particle size of the alloy powder becomes coarse, the porosity increases and the bonding force between particles decreases, resulting in a decrease in wear resistance. Furthermore, if the particle size of the powder becomes too fine, the feeding of the powder into the plasma becomes unstable, making it difficult to form a dense and homogeneous coating layer.

本発明の実施にあたり、使用されるプラズマカスは、A
r十He、Ar+ N2、Ar+ N2等の混合カスが
使用できるが、Ar+ 82の使用が好ましい。
In carrying out the present invention, the plasma scum used is A
Mixtures of He, Ar+N2, Ar+N2, etc. can be used, but it is preferable to use Ar+82.

第3図から分かるように、Coは25〜35重量%の範
囲であれば、従来のWC−17にoの耐摩耗性を陵駕す
る。同様に、第4図から明らかなように、Crは6〜1
2重量%が最適である。一方、第5図に示すようにNi
は5〜10重量%の範囲が最適である。
As can be seen from FIG. 3, if Co is in the range of 25 to 35% by weight, it surpasses the wear resistance of conventional WC-17. Similarly, as is clear from Fig. 4, Cr is 6 to 1
2% by weight is optimal. On the other hand, as shown in Figure 5, Ni
is optimally in the range of 5 to 10% by weight.

又、第6図に示すようにSj+ B + C成分は1.
5〜9重量%の範囲か好ましい。各々珪化物、硼化物、
炭化物等を合成し、マトリックスを硬化、強化するのに
効果がある。Si+ B + C成分が、9重量%を超
えれば脆くなり、15重量%より下回れば効果か現れな
い。実際的には、Siが1〜4重量%、Bが0゜5〜3
重量%、Cが0.】〜3.5重量%の範囲が好ましい。
Moreover, as shown in FIG. 6, the Sj+B+C component is 1.
A range of 5 to 9% by weight is preferred. silicide, boride,
It is effective in synthesizing carbides, etc., and hardening and strengthening the matrix. If the Si + B + C component exceeds 9% by weight, it will become brittle, and if it is less than 15% by weight, no effect will be seen. In practice, Si is 1 to 4% by weight and B is 0°5 to 3% by weight.
Weight %, C is 0. ] to 3.5% by weight is preferred.

以下、実施例により、本発明を更に詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

[実施例] (実施例−1) 第1表に示す組成(重量%)、粒径(qm)の合金粉末
a、b、cを第2表に示す溶射条件で軟鋼表面にそれぞ
れ減圧溶射して、溶射被覆層A、B、Cを形成した。溶
射被覆層の厚さは、1mmとした。
[Example] (Example-1) Alloy powders a, b, and c having the composition (wt%) and particle size (qm) shown in Table 1 were vacuum sprayed onto a mild steel surface under the spraying conditions shown in Table 2. Then, thermal spray coating layers A, B, and C were formed. The thickness of the thermal spray coating layer was 1 mm.

JIS−88503で規定されているスガ式摺動摩耗試
験機により摩耗試験を実施した。これは、−数的に適用
されている試験方法であって、SiCのサントベーパー
で擦りながらその摩耗減量を測定するものであり、比較
的多くの実際の摺動摩耗の形態を代表するものである。
A wear test was conducted using a Suga sliding wear tester specified in JIS-88503. This is a numerically applied test method that measures the wear loss while rubbing SiC with Santo Vapor, and is representative of relatively many forms of actual sliding wear. be.

本実施例の試験方法もこの方法によった。表面に溶射被
覆層を有する試験片を製作し、スガ式摺動摩耗試験機に
より摺動摩耗損傷の程度を評価した。試験条件は荷重3
00gとし、ベーパーには、−数的に良く採用されてい
る#320のものを使用した。リングに巻き付けられる
ベーパーは1往復当たり、0.9度回転するので、新品
のベーパーでは400往復使用できる。そのため、40
0回毎に重量を精密天秤て測定し、データをプロットし
た。
The test method of this example was also based on this method. A test piece with a thermally sprayed coating layer on the surface was prepared, and the degree of sliding wear damage was evaluated using a Suga type sliding wear tester. Test condition is load 3
00g, and #320, which is commonly used in terms of numbers, was used as the vapor. The vapor wrapped around the ring rotates 0.9 degrees per reciprocation, so a new vapor can be used for 400 reciprocations. Therefore, 40
The weight was precisely weighed and measured every 0 times, and the data was plotted.

比較材として、従来の溶射材料であるWe−12Go、
WC−17Coの粉末を用い、電力87kw、圧力50
トール、溶射距離400mm 、予熱温度450 ”C
の条件で減圧溶射を行フた溶射被覆層を示す。第1図か
ら判るように本発明の溶射被覆層A、B、Cはいずれも
従来材料以上の耐摩耗性を示している。それぞれ合金粉
末aは溶射被覆層A、合金粉末すは溶射被覆層B、合金
粉末Cは溶射被覆層Cの条件で溶射した。溶射被覆層の
各条件は、第2表に示す。
As comparison materials, We-12Go, a conventional thermal spray material,
Using WC-17Co powder, power 87kW, pressure 50
Thor, spraying distance 400mm, preheating temperature 450"C
This figure shows a thermally sprayed coating layer that was sprayed under reduced pressure under these conditions. As can be seen from FIG. 1, the thermal spray coating layers A, B, and C of the present invention all exhibit higher wear resistance than conventional materials. Alloy powder a was thermally sprayed to form a thermal sprayed coating layer A, alloy powder A was thermally sprayed to form a thermal sprayed coating layer B, and alloy powder C was thermally sprayed to form a thermal sprayed coating layer C. The conditions for the thermal spray coating layer are shown in Table 2.

(実施例−2) 第1表に示す合金粉末Cを用い、第3表に示す溶射条件
で、軟鋼の表面にそれぞれ減圧溶射して、気孔率の異な
る溶射被覆層り、E、F、Gを作製し、実施例−1と同
様の方法で耐摩耗損傷の程度を評価した。各溶射被覆層
の気孔率と、4,000回往復摺動摩耗試験後の重量減
少量の関係を第2図に示した。
(Example-2) Using alloy powder C shown in Table 1, the surface of mild steel was sprayed under reduced pressure under the spraying conditions shown in Table 3 to form thermal spray coating layers with different porosity, E, F, and G. was prepared, and the degree of wear resistance and damage was evaluated in the same manner as in Example-1. FIG. 2 shows the relationship between the porosity of each sprayed coating layer and the amount of weight loss after 4,000 reciprocating sliding abrasion tests.

各溶射被覆層の厚さは、1■とした。溶射被覆層からI
OX IOX 1.5mmの比重測定用試料を切り出し
、JIS Z8807で規定されている液中秤量法で比
重を測定した。
The thickness of each thermal spray coating layer was 1 .mu.m. From thermal spray coating layer I
A sample for specific gravity measurement of OX IOX 1.5 mm was cut out, and the specific gravity was measured by the submerged weighing method specified in JIS Z8807.

又、バルク材の比重は、合金粉末CをA「雰囲気中の水
冷ルツボ内でプラズマ溶解した試料から前記同様の試料
を切り出し、同様の方法で比重測定し、バルク材の比重
として気孔率を求めた。
In addition, the specific gravity of the bulk material can be determined by cutting out a sample similar to the above from a sample plasma-melted in a water-cooled crucible in a water-cooled crucible in the atmosphere of A. Ta.

第2図の結果から、気孔率がほぼ3%以下であれば、本
発明の方法による溶射被覆層は、従来の耐摩耗材料(1
2%Go、17%coの超硬の粉末を用いて、50トー
ル(Torr)の雰囲気圧力、300℃以上の温度で、
減圧溶射を行ったもの)の耐摩耗性能を超えることがで
きる。高温で溶射を行うため、成分中のBの硼化物、珪
化物、炭化物等の生成の反応が良く進み、マトリックス
の強度及び硬度の向上か得られる。
From the results shown in Figure 2, it is clear that if the porosity is approximately 3% or less, the thermal spray coating layer formed by the method of the present invention can be formed using conventional wear-resistant materials (1
Using cemented carbide powder of 2% Go and 17% Co, at an atmospheric pressure of 50 Torr and a temperature of 300°C or higher,
The wear resistance can exceed the wear resistance of those that have been sprayed under reduced pressure. Since thermal spraying is carried out at a high temperature, the reaction of forming borides, silicides, carbides, etc. of B in the components proceeds well, resulting in improvements in the strength and hardness of the matrix.

溶射の粉末供給速度とガンの移動速度を予め適当に設定
しておき、溶射1パス当たり何urn形成されるかを把
握しておけば、設計要求通りの膜厚を得るのは容易であ
る。通常本方法によれば、10〜数100μmの間で自
在に可能である。勿論、特殊な用途に対しては、1mm
程度以上の膜圧のものを得ることも可能である。
If the powder supply speed and gun movement speed for thermal spraying are appropriately set in advance and the number of urns formed per thermal spraying pass is known, it is easy to obtain a film thickness that meets the design requirements. Generally, according to this method, it is possible to freely achieve a thickness between 10 and several hundred micrometers. Of course, for special purposes, 1mm
It is also possible to obtain a film with a membrane pressure of more than a certain degree.

この様にして、容易に耐摩耗性被覆層を得ることかてき
る。以下の第1表、第3表、第5表において、粒径はu
rn、組成は重量%を示す。
In this way, it is possible to easily obtain a wear-resistant coating layer. In Tables 1, 3, and 5 below, the particle size is u
rn, composition indicates weight %.

尚、第1表におけるSi、  B、 Cの内訳は、例え
ば粉末aの場合、具体的には各々1.9重量%、1.1
重量%、2.9重量%とし、粉末す、cについても、S
i、B、 Cの3者の比率は同じとした。
In addition, the breakdown of Si, B, and C in Table 1 is, for example, in the case of powder a, specifically 1.9% by weight and 1.1% by weight, respectively.
% by weight and 2.9% by weight, and for powder S and c, S
The ratios of i, B, and C were the same.

第1表 第 表 第2表 (実施例−3) 溶射条件は下記第4表に示す条件に統一し、各種成分を
変えて溶射膜を作製し、その膜を使用して摺動摩耗試験
を行い各種成分の最適範囲を求めた。尚、第5表の溶射
合金粉末の組成比率は、実験の性格上小数点以下を四捨
五入し、丸めたものを使用し、各成分につき各々代表的
な4点のみを示した。又、慴動摩耗試験結果は、第3図
〜第6図に示す。第3図はGoの成分比率を、第4図は
Crの成分比率を、第5図はNiの成分比率を、第6図
はSi+ B + Cの成分比率を変化させ、溶射被覆
層の4,000回往復摺動摩耗試験後の重量減少量との
関係を示す。尚、この場合、Si:B:Cの組成比率は
、!、5  : 1 : 2.5の割合とし、この比率
は定とした。
Table 1 Table 2 (Example-3) Thermal spraying conditions were unified to those shown in Table 4 below, and various components were changed to produce a thermal sprayed film, and the film was used to conduct a sliding wear test. The optimal ranges of various components were determined. Note that, due to the nature of the experiment, the composition ratios of the thermal spray alloy powders in Table 5 were rounded to the nearest whole number, and only four representative points were shown for each component. The results of the sliding wear test are shown in FIGS. 3 to 6. Figure 3 shows the Go component ratio, Figure 4 shows the Cr component ratio, Figure 5 shows the Ni component ratio, and Figure 6 shows the Si + B + C component ratio. ,000 times of the reciprocating sliding abrasion test. In this case, the composition ratio of Si:B:C is ! , 5:1:2.5, and this ratio was kept constant.

尚、図中にはり、i、j、・・・のパウダーで溶射し、
形成した膜をH,1,J、・・・で表示した。
In addition, the beams in the figure are thermally sprayed with powders i, j,...
The formed films were indicated by H, 1, J, . . . .

第4表 第5表 [発明の効果] 以上説明したごとく本発明によれば、従来の耐摩耗コー
ティング即ち、通常多用されているwc−12Co、 
WC−]7Co溶射被覆層よりも優れた耐摩耗性被覆層
の形成が可能で且つ、新たに添加する成分も、−数的な
Ni、 Cr、Si、B、C等であり、安価なものであ
るため、溶射粉末がコストアップになることもなく、耐
摩耗性部材の寿命を大幅に延長することができる等、本
発明の効果は実用的に大なるものがある。
Table 4 Table 5 [Effects of the Invention] As explained above, according to the present invention, the conventional wear-resistant coating, that is, wc-12Co, which is commonly used,
It is possible to form a wear-resistant coating layer that is superior to the WC-]7Co thermal spray coating layer, and the newly added components are numerically Ni, Cr, Si, B, C, etc., and are inexpensive. Therefore, the present invention has great practical effects, such as not increasing the cost of the thermal spray powder and greatly extending the life of the wear-resistant member.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、スガ式摺動摩耗試験機による耐摩耗比較テス
ト結果を示す。第2図は、各種溶射被覆層の気孔率と4
.000回往復慴動摩耗試験後の重量減少量との関係を
示す。第3図はcoの成分比率を、第4図はC「の成分
比率を、第5図はNiの成分比率を、第6図はSj+ 
B + Cの成分比率を変化させ、溶射被覆層の4,0
00回往復慴動摩耗試験後の重量減少量との関係を示す
FIG. 1 shows the results of a wear resistance comparison test using a Suga sliding wear tester. Figure 2 shows the porosity and 4
.. The relationship between weight loss after 000 reciprocating sliding abrasion tests is shown. Figure 3 shows the component ratio of co, Figure 4 shows the component ratio of C, Figure 5 shows the ratio of Ni, and Figure 6 shows the ratio of Sj+.
By changing the component ratio of B + C, 4,0
The relationship with the amount of weight loss after 00 times reciprocating sliding abrasion test is shown.

Claims (1)

【特許請求の範囲】[Claims] 1.溶射母材の表面に、この材料の温度を300℃以上
に保持した状態で、Coを25〜35重量%、Crを6
〜12重量%、Niを5〜10重量%、Si+B+Cを
1.5〜9重量%含有し、その他残部をWCよりなる合
金粉末を20〜300トールの減圧中でプラズマ溶射し
て、気孔率3%以下の溶射被覆層を形成することを特徴
とする耐摩耗被覆層の形成方法。
1. 25 to 35% by weight of Co and 6% by weight of Cr are added to the surface of the sprayed base material while maintaining the temperature of this material at 300°C or higher.
An alloy powder containing ~12% by weight, 5~10% by weight of Ni, 1.5~9% by weight of Si+B+C, and the remainder WC was plasma sprayed in a reduced pressure of 20~300 Torr to obtain a porosity of 3. A method for forming a wear-resistant coating layer, the method comprising forming a thermally sprayed coating layer of % or less.
JP2219020A 1990-08-22 1990-08-22 Formation of wear resistant coating layer Pending JPH04103750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2219020A JPH04103750A (en) 1990-08-22 1990-08-22 Formation of wear resistant coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2219020A JPH04103750A (en) 1990-08-22 1990-08-22 Formation of wear resistant coating layer

Publications (1)

Publication Number Publication Date
JPH04103750A true JPH04103750A (en) 1992-04-06

Family

ID=16728995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2219020A Pending JPH04103750A (en) 1990-08-22 1990-08-22 Formation of wear resistant coating layer

Country Status (1)

Country Link
JP (1) JPH04103750A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228728A (en) * 1992-12-30 1994-08-16 Praxair St Technol Inc Article with wear resisting coating and method
JP2016187046A (en) * 2012-02-03 2016-10-27 エーエスエムエル ネザーランズ ビー.ブイ. Substrate holder and method of manufacturing substrate holder

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228728A (en) * 1992-12-30 1994-08-16 Praxair St Technol Inc Article with wear resisting coating and method
JP2016187046A (en) * 2012-02-03 2016-10-27 エーエスエムエル ネザーランズ ビー.ブイ. Substrate holder and method of manufacturing substrate holder
US9737934B2 (en) 2012-02-03 2017-08-22 Asml Netherlands B.V. Substrate holder and method of manufacturing a substrate holder
US10245641B2 (en) 2012-02-03 2019-04-02 Asml Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
US10875096B2 (en) 2012-02-03 2020-12-29 Asml Netherlands B.V. Substrate holder and method of manufacturing a substrate holder
US10898955B2 (en) 2012-02-03 2021-01-26 Asme Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
US11235388B2 (en) 2012-02-03 2022-02-01 Asml Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
US11376663B2 (en) 2012-02-03 2022-07-05 Asml Netherlands B.V. Substrate holder and method of manufacturing a substrate holder
US11628498B2 (en) 2012-02-03 2023-04-18 Asml Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder
US11754929B2 (en) 2012-02-03 2023-09-12 Asml Netherlands B.V. Substrate holder and method of manufacturing a substrate holder
US11960213B2 (en) 2012-02-03 2024-04-16 Asml Netherlands B.V. Substrate holder, lithographic apparatus, device manufacturing method, and method of manufacturing a substrate holder

Similar Documents

Publication Publication Date Title
US6436470B1 (en) Method of applying a hard-facing material to a substrate
EP0459637B1 (en) Process for applying a coating to a metal or ceramic object
KR20020062855A (en) Spray powder and method for its production
JPS60103170A (en) Abrasion resistant coating and manufacture
US2922721A (en) Method for coating and infiltrating a porous refractory body
US5328878A (en) Aluminum nitride refractory materials and methods for making the same
JPS61190891A (en) Carbon or graphite body having protective film and manufacture thereof
US8795448B2 (en) Wear resistant materials
US4851267A (en) Method of forming wear-resistant material
Shen et al. Interfacial characteristics of titanium coated micro-powder diamond abrasive tools fabricated by electroforming-brazing composite process
US4906529A (en) Method of producing an erosion-resistant surface/layer on a metallic workpiece
EP0400683B1 (en) Powdered metal spray coating material, process for producing the same and the use thereof
JP2950436B2 (en) Manufacturing method of composite material
JPH08104969A (en) Ceramic metal composite powder for thermal spraying, thermally sprayed coating film and its formation
JPH04103750A (en) Formation of wear resistant coating layer
US20060051599A1 (en) Coatings for articles used with molten metal
JPH0645863B2 (en) Thermal spray material excellent in high temperature wear resistance and build-up resistance and its coated article
JPH0337454B2 (en)
JPH1112758A (en) Metallic parts coated with cermet sintered compact, and their production
US5773147A (en) Ceramic-coated support for powder metal sintering
JP2004359975A (en) Method for producing composite material in which hard grains are dispersed in matrix metal
JPH08117984A (en) Sliding nozzle plate refractories
JP3245338B2 (en) Hot chamber die casting machine for low aluminum zinc base alloy
JPH0517305B2 (en)
JP2002179485A (en) Graphite tray for sintering