JPH04103729A - Method for electron beam melting of titanium and titanium alloy - Google Patents

Method for electron beam melting of titanium and titanium alloy

Info

Publication number
JPH04103729A
JPH04103729A JP22096190A JP22096190A JPH04103729A JP H04103729 A JPH04103729 A JP H04103729A JP 22096190 A JP22096190 A JP 22096190A JP 22096190 A JP22096190 A JP 22096190A JP H04103729 A JPH04103729 A JP H04103729A
Authority
JP
Japan
Prior art keywords
electron beam
melting
titanium
mold
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22096190A
Other languages
Japanese (ja)
Inventor
Shigeo Fukumoto
成雄 福元
Yoshinori Sugiyama
杉山 好則
Ryuji Nakao
隆二 中尾
Hidemaro Takeuchi
竹内 英麿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP22096190A priority Critical patent/JPH04103729A/en
Publication of JPH04103729A publication Critical patent/JPH04103729A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To suppress the vibration on the molten metal surface of a melting pool in a mold, therefore to prevent the generation of a double skin and to improve the completion yield of slabs by specifying the ratio of electron beam irradiating energy to the molten pool and to a melting material and appropriately distributing the energy. CONSTITUTION:In the electron beam rod-melting of titanium and titanium alloys, the ratio of irradiating energy to a melting pool 7 in a mold 3 and to a melting material 1 is regulated to (1:3) to (1:8). In the case the above value lies in <1/8, violent vibration with >=5mm amplitude is generated at the lower part of the melting material 1 and at the melting pool 7 on the opposite side. Furthermore, in the case the ratio of the irradiating energy exceeds 1/3, violent vibration is generated over the full circumference of the melting pool 7. As a result, the amt. of the surface of an ingot to be machined remarkably increases, by double skins. Moreover, at the time of irradiating plural places by one electron gun 6 in time allocation, the time allocation shall be executed in such a manner that the irradiating energy lies in the above range.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電子ビームロッド溶解炉を用いてチタン・チタ
ン合金を溶解・精錬し、鋳塊を製造する際に発生する*
aの表面欠陥を防止する方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention deals with the production of ingots by melting and refining titanium and titanium alloy using an electron beam rod melting furnace.
The present invention relates to a method for preventing surface defects of (a).

(従来の技術) 現在、チタンの鋳塊製造は真空アーク溶解炉(VAR)
による方法が主流である。VARはアークを熱源として
用いるためアークの安定性を確保する必要があり、丸断
面の鋳塊しか製造することができない。このため、例え
ば板材への加工が困難である。一方、電子ビーム溶解炉
は電子ビームの偏向制御が容易なため、丸断面のみでな
く矩形等、種々断面形状の鋳塊を製造でさるという利点
をもつ。
(Prior technology) Currently, titanium ingots are manufactured using a vacuum arc melting furnace (VAR).
The mainstream method is Since VAR uses an arc as a heat source, it is necessary to ensure the stability of the arc, and it is only possible to produce ingots with a round cross section. For this reason, it is difficult to process it into a plate material, for example. On the other hand, electron beam melting furnaces have the advantage of being able to manufacture ingots with various cross-sectional shapes, such as not only round cross-sections but also rectangular shapes, because the deflection of the electron beam can be easily controlled.

電子ビーム溶解における主な溶解方法としては、第1図
(a)に示すように棒状の溶解材料1を電子ビーム2に
よって溶融させ、鋳型3内に溶滴を滴下させるロッド溶
解、および第1図(b)に示すフイ−グー4からハース
5に粉、粒、板およびチップ状の原料を装入しつつ、該
原料を電子ビーム2によって溶融させ、溶湯をオーバー
フローさせて鋳型3に注入するハース溶解がある。本発
明は、鋳型内への電子ビーム照射方法が複雑であるロッ
ド溶解法を対象としている。
The main melting methods in electron beam melting include rod melting, in which a rod-shaped melting material 1 is melted by an electron beam 2 and droplets are dropped into a mold 3, as shown in FIG. 1(a); Powder, grain, plate, and chip-shaped raw materials are charged into the hearth 5 from the figure 4 shown in (b), and the raw materials are melted by the electron beam 2, and the molten metal overflows and is poured into the mold 3. There is dissolution. The present invention is directed to a rod melting method in which the method of irradiating an electron beam into a mold is complicated.

電子ビームの照射軌跡を第2図に示す。ロッド溶解の電
子ビームは第2図のように溶解材料先端f!SIAおよ
び溶融プール7の調型内周部7Aに照射され、溶融プー
ル7の形成・維持が図られ、円滑な溶解・鋳造を行える
ようにしている。
Figure 2 shows the irradiation trajectory of the electron beam. The electron beam for rod melting is applied to the tip of the melted material f! as shown in Figure 2. The SIA and the mold inner circumferential portion 7A of the melt pool 7 are irradiated to form and maintain the melt pool 7, allowing smooth melting and casting.

従来、電子ビーム溶解における溶解方法としては、特開
平1−159334号公報に示されているように、電子
ビーム出力、鋳造速度、前型表面積の関係および鋳型内
への電子ビーム照射位置を限定する方法が知られている
。このような方法は溶融プール形状をコントロールし、
初期凝固シェルを厚く生成させることが可能となるため
、鋳塊の表面欠陥の低減に効果がある。しかしながら、
鍛造または圧延前の#@無手入化が可能なほど良好な衰
面飢は得られないのが現状である。
Conventionally, as a melting method in electron beam melting, as shown in Japanese Patent Application Laid-Open No. 1-159334, the relationship between electron beam output, casting speed, front mold surface area, and electron beam irradiation position in the mold is limited. method is known. Such methods control the melt pool shape and
Since it is possible to generate a thick initial solidified shell, it is effective in reducing surface defects in the ingot. however,
At present, it is not possible to obtain such a good reduction surface resistance that #@ can be done without any work before forging or rolling.

(発明が解決しようとする課題) 本発明は#塊の表面欠陥を防止し、鍛造または圧延前の
鋳片手入れ負荷を軽減するとともに、鋳片千人歩留を向
上させ得る電子ビーム溶解方法を提供することを目的と
するものである。
(Problems to be Solved by the Invention) The present invention provides an electron beam melting method that can prevent surface defects in the ingot, reduce the load on casting hands before forging or rolling, and improve the slab yield. The purpose is to provide

(課題を解決するための手段) 本発明の第1の溶解方法は、チタン・チタン合金の電子
ビームロッド溶解において、鋳型内溶融プールへの照射
エネルギーと溶解材料への照射エネルギーの比率を1:
3〜に8とすることを特徴とするチタン・チタン合金の
電子ビーム溶解方法であり、第2の溶解方法は、チタン
・チタン合金の電子ビームロッド溶解において、溶解材
料に照射する電子ビームの照射軌跡を楕円形あるいは矩
形とすることを特徴とするチタン・チタン合金の電子ビ
ーム溶解方法であり、第3の溶解方法は、チタン・チタ
ン合金の電子ビームロッド溶解において、鋳型内溶融プ
ールへの照射エネルギーと溶解材料への照射エネルギー
の比率を1:3〜1:8とし、かつ溶解材料に照射する
電子ビームの照射軌跡を楕円形あるいは矩形とすること
を特徴とするチタン・チタン合金の電子ビーム溶解方法
である。
(Means for Solving the Problems) The first melting method of the present invention, in electron beam rod melting of titanium/titanium alloy, sets the ratio of the irradiation energy to the molten pool in the mold to the irradiation energy to the melted material to 1:
This is an electron beam melting method for titanium/titanium alloy, characterized in that the second melting method is electron beam rod melting of titanium/titanium alloy, in which the molten material is irradiated with an electron beam. This is an electron beam melting method for titanium and titanium alloys, which is characterized by an elliptical or rectangular trajectory.The third melting method is an electron beam melting method for titanium and titanium alloys, in which the molten pool in the mold is irradiated. An electron beam for titanium/titanium alloy, characterized in that the ratio of energy and irradiation energy to the melted material is 1:3 to 1:8, and the irradiation locus of the electron beam irradiated to the melted material is elliptical or rectangular. This is a dissolution method.

(作用) 電子ビーム溶解において、従来の方法により製造された
鋳塊の表面欠陥をpltJ3図に示す。表面欠陥として
は、鋳型内未充満肌、二重風の2種類がある。
(Function) Figure pltJ3 shows the surface defects of an ingot produced by the conventional method in electron beam melting. There are two types of surface defects: under-filled skin in the mold and double-sided defects.

第3図(IL)の鋳型内未充満肌Aは、電子ビームによ
る債型内溶融プールへの入熱量が抜熱量に比べて小さく
、凝固速度が速い場合、溶湯が鋳型内に完全に充満する
前に凝固が完了することにより発生する。この欠陥は鋳
型内溶融プールへの電子ビーム照射出力の増大により防
止することができる。
The unfilled skin A in the mold in Figure 3 (IL) shows that when the amount of heat input into the molten pool in the bond mold by the electron beam is small compared to the amount of heat extracted, and the solidification rate is fast, the molten metal completely fills the mold. This occurs due to the completion of coagulation before. This defect can be prevented by increasing the electron beam irradiation power to the molten pool in the mold.

一方、第3図(b)の二重風Bは、凝固シェルと鋳型内
壁の間に溶湯が侵入するオーバー7a−現象、または鋳
型内壁と凝固シェルの摩擦によりもしくは溶湯流動によ
るシェル洗いにより凝固シェルが破断し、その破断部よ
り溶湯が流出するプリーディング現象により発生する。
On the other hand, the double wind B in Fig. 3(b) is caused by the over 7a phenomenon in which the molten metal enters between the solidified shell and the inner wall of the mold, or by the friction between the inner wall of the mold and the solidified shell, or by the washing of the shell by the flow of the molten metal. This occurs due to a pulling phenomenon in which the molten metal flows out from the fractured part.

チタン・チタン合金は高温での凝固シェル強度がステン
レス鋼に比べて低く、二重風の発生が顕著である。
Titanium and titanium alloys have a lower solidified shell strength at high temperatures than stainless steel, and the generation of double wind is noticeable.

このような問題を解決する方法として、本発明者らは特
願平1−159334号を出願した。これは、チタン・
チタン合金の電子ビーム溶解において、上記表面欠陥の
発生を防止するために電子ビーム8力、鋳造速度、鋳型
断面積の適正な関係を限定するものであり、その内容を
第4図によって説明する。
As a method for solving such problems, the present inventors filed Japanese Patent Application No. 1-159334. This is titanium
In electron beam melting of titanium alloys, in order to prevent the occurrence of the above-mentioned surface defects, the appropriate relationship among the electron beam force, casting speed, and mold cross-sectional area is limited, and the details will be explained with reference to FIG.

tJS4図は、断面積250cm2の鋳型を用いてチタ
ン合金の角ビレットを電子ビームロッド溶解によって製
造した場合の電子ビーム条件とビレットの表面研削量と
の関係を示す図である。なお、電子ビームの鋳型内溶融
プールへの照射中心は、鋳型内壁より20mm内側に設
定し照射した。また、研削深さとは、表面欠陥を完全に
除去するために必要な研削深さである。
Figure tJS4 is a diagram showing the relationship between the electron beam conditions and the amount of surface grinding of the billet when a square billet of titanium alloy is manufactured by electron beam rod melting using a mold with a cross-sectional area of 250 cm2. The center of irradiation of the electron beam onto the molten pool in the mold was set at 20 mm inside the mold inner wall. Moreover, the grinding depth is the grinding depth necessary to completely remove surface defects.

電子ビーム出力をE(kW)、鋳型断面積をS(a@2
)、It造速度をV[kg/h)としたと鰺、E=0.
06X S +0.5X V +40の直線以下では鋳
型内未充満肌が多発し、またE = 0.06X S 
+ 1.OX V + 110の直線以上では二重風が
多発し、表面欠陥を無くすためには5■を越える研削量
が必要である。一方、■が0.4XSより大きな場合は
二重風が発生し研削量が増加し、■が0.IXSより小
さな場合は生産能率上実用的でないばかりでなく二重風
が多発する。従って、 o、ix s < v < 0.4X Sおよび 0.08X S +0.5X V +40< E < 
0.06X S +1.OX V + 110の関係を
満足することが表面欠陥の防止に重要であるとした。
The electron beam output is E (kW), the mold cross-sectional area is S (a@2
), It is assumed that the manufacturing speed is V [kg/h], then mackerel, E=0.
Below the straight line of 06X S +0.5X V +40, unfilled skin inside the mold frequently occurs, and E = 0.06X S
+1. Above the straight line of OX V + 110, double wind occurs frequently, and a grinding amount of more than 5 cm is required to eliminate surface defects. On the other hand, when ■ is larger than 0.4XS, double wind occurs and the amount of grinding increases, and ■ is 0. If it is smaller than IXS, it is not only impractical in terms of production efficiency, but also double wind occurs frequently. Therefore, o,ix s < v < 0.4X S and 0.08X S + 0.5X V +40 < E <
0.06X S +1. It was determined that satisfying the relationship OX V + 110 is important for preventing surface defects.

しかし、この先願発明では溶融プールの湯面振動によっ
ても二重風が発生し、凝固シェル厚の不均一によっても
ブリーディング現象が発生するという点を考慮していな
かった。
However, this prior invention did not take into account the fact that double winds are also generated by vibration of the molten pool surface, and that bleeding phenomenon also occurs due to non-uniformity in the thickness of the solidified shell.

場面振動を抑制するためには電子ビームの照射エネルギ
ーを低減させればよいが、この場合は鋳造速度すなわち
生産能率が低下する6本発明は先願発明を前提とし、生
産能率を低下させることなく湯面振動を抑制するために
、鋳型内溶融プールへの照射エネルギーと溶解材料への
照射エネルギーの比率を考慮し、ブリーディング現象を
抑制するために溶解材料に照射する電子ビームの照射軌
跡を考慮したものである。
In order to suppress scene vibration, it is sufficient to reduce the irradiation energy of the electron beam, but in this case, the casting speed, that is, the production efficiency, decreases.6 The present invention is based on the invention of the prior application, and it is possible to reduce the irradiation energy of the electron beam without reducing the production efficiency. In order to suppress the vibration of the molten metal surface, we considered the ratio of the irradiation energy to the molten pool in the mold and the irradiation energy to the molten material, and in order to suppress the bleeding phenomenon, we considered the irradiation trajectory of the electron beam irradiated to the molten material. It is something.

本発明の第1の溶解方法は、第2図に示すロッド溶解に
おいて鋳型内周部7Aと溶解材料先端部IAへの照射エ
ネルギーの比率を1:3〜1:8とする。なお、第1図
(、)、(b)のように1@の電子銃6によって複数位
置を時間配分により照射する場合は、照射エネルギーが
前述の範囲になるように時間配分をW14整すればよい
。また、複数の電子銃6によって同一位置を同時に照射
する場合、あるいは一方または双方の位置に専用の電子
銃6によって照射する場合も、全体での照射エネルギー
の比率を前述の範囲に調整すればよい。
In the first melting method of the present invention, in the rod melting shown in FIG. 2, the ratio of irradiation energy to the mold inner circumference 7A and the melted material tip IA is 1:3 to 1:8. In addition, when irradiating multiple positions by time distribution using the 1@ electron gun 6 as shown in FIGS. good. Furthermore, when irradiating the same position simultaneously with multiple electron guns 6, or when irradiating one or both positions with a dedicated electron gun 6, the overall irradiation energy ratio may be adjusted within the above range. .

Pt55図に、300m輸φの丸断面鋳型を用い、前記
先願発明の条件を満たしたロッド溶解を実施した場合の
電子ビームの照射エネルギー比率と溶融プール内湯面振
動の最大振幅との関係を示す。第5図の横軸は電子ビー
ム照射エネルギーの比率であり、鋳型内周部7Aへの照
射エネルギーを溶解材料1への照射エネルギーで割った
値を示している。この値が1X8未満では溶解材料1へ
の照射エネルギーが大トすぎるため、溶解材料下部とそ
の反対側の溶融プールで振幅51111I以上の激しい
振動が起こる。*た、照射エネルギーの比率が1/3を
超えると溶解材料への照射エネルギーに対して清型内部
への照射エネルギーが大きすぎるため、溶融プール全周
にわたって激しい振動が起こる。
Pt55 diagram shows the relationship between the electron beam irradiation energy ratio and the maximum amplitude of the molten metal surface vibration in the molten pool when rod melting that satisfies the conditions of the prior invention is performed using a round cross-sectional mold with a diameter of 300 m. . The horizontal axis in FIG. 5 is the ratio of electron beam irradiation energy, and indicates the value obtained by dividing the irradiation energy to the mold inner circumferential portion 7A by the irradiation energy to the melted material 1. If this value is less than 1×8, the irradiation energy to the melted material 1 is too large, and intense vibrations with an amplitude of 51111I or more occur in the lower part of the melted material and the molten pool on the opposite side. *If the ratio of irradiation energy exceeds 1/3, the irradiation energy to the inside of the mold is too large compared to the irradiation energy to the melted material, and intense vibrations occur around the entire circumference of the molten pool.

この結果として、第6図に示すように、これらの領域で
は二重風により鋳塊の表面切削量が着しく増大している
。照射エネルギー比率が1/8〜1/3の範囲、特に1
/4〜115の範囲において必要な表面切削深さが低位
に安定する。
As a result, as shown in FIG. 6, the amount of surface cutting of the ingot is steadily increased in these areas due to the double wind. The irradiation energy ratio is in the range of 1/8 to 1/3, especially 1
In the range of /4 to 115, the necessary surface cutting depth is stable at a low level.

本発明の第2の溶解方法は、ブリーディング現象を抑制
するため、凝固シェル厚の不均一性、特に薄い部分を低
減する。第2図の場合、溶解材料1への電子ビーム照射
により溶解材料近傍の溶湯温度が高くなり、他の部分に
比べて凝固シェルの成長が遅くなるため、ブリーディン
グが発生しやすくなる。
The second melting method of the present invention reduces the non-uniformity of the solidified shell thickness, especially the thin portion, in order to suppress the bleeding phenomenon. In the case of FIG. 2, the temperature of the molten metal near the molten material becomes high due to the electron beam irradiation to the molten material 1, and the growth of the solidified shell is slower than in other parts, so that bleeding is more likely to occur.

第7図に、250III+1φの丸断面鋳型を用いてロ
ッド溶解を実施した場合の表面切削深さに及ぼす電子ビ
ーム照射軌跡の影響を示す。溶解材料への電子ビームの
照射軌跡が直MAではなく、楕円形Bあるいは矩形Cの
場合には溶解材料近傍の過熱が抑えられ、凝固シェルの
均一性が向上し、表面切削深さを低減できる。なお、矩
形には矩形の角がとれた形状も含む、楕円形の長軸Y/
短軸X、矩形の長辺Y/短辺Xの比は3〜5程度が適当
な範囲である。
FIG. 7 shows the influence of the electron beam irradiation trajectory on the surface cutting depth when rod melting was performed using a 250III+1φ round cross-section mold. If the irradiation trajectory of the electron beam on the molten material is not a direct MA but an elliptical B or rectangular C, overheating near the molten material is suppressed, the uniformity of the solidified shell is improved, and the surface cutting depth can be reduced. . Note that rectangles include rectangular shapes with rounded corners, and the long axis Y/
The appropriate range of the short axis X and the ratio of the long side Y/short side X of the rectangle is about 3 to 5.

本発明の第3の溶解方法は、第1の溶解方法と第2の溶
解方法を同時に行う方法である。
The third dissolution method of the present invention is a method in which the first dissolution method and the second dissolution method are performed simultaneously.

(実施例) チタン・チタン合金の電子ビームロッド溶解において、
先願発明による電子ビーム出力、憫型断面積、鋳造速度
の関係を満たしながら、鋳型内溶湯部への照射エネルギ
ーと溶解材料への照射エネルギーの比率を種々変え、ま
た溶解材料に照射する電子ビームの照射軌跡を種々変え
た溶解試験の結果を第1表に示す。第1表中のNo、1
〜8は本発明例であり、N o、 9〜10は比較例で
ある。特にN o、 3は本発明のうち最も望ましい条
件で溶解を実施したものであり、鋳塊の表面無手入化が
可能である。また、N o、 9〜10では51以上の
表面切削が必要であるのに対し、本発明のPt53の溶
解方法により表面切削深さ2a+m以下まで低減できた
(Example) In electron beam rod melting of titanium and titanium alloy,
The ratio of the irradiation energy to the molten metal part in the mold and the irradiation energy to the molten material is varied while satisfying the relationship between the electron beam output, the cross-sectional area of the mold, and the casting speed according to the prior invention, and the electron beam is irradiated to the molten material. Table 1 shows the results of dissolution tests with various irradiation trajectories. No. 1 in Table 1
-8 are examples of the present invention, and No. 9-10 are comparative examples. In particular, No. 3 was melted under the most desirable conditions of the present invention, and the surface of the ingot could be left untreated. Moreover, while No. 9 to 10 required surface cutting of 51 or more, the surface cutting depth could be reduced to 2 a+m or less by the Pt53 melting method of the present invention.

(発明の効果) 本発明は以上のようにチタン・チタン合金の電子ビーム
溶解において、鋳型内溶融プールと溶解材料との電子ビ
ーム照射エネルギー比率を適正に配分することにより、
溶融プールの場面振動を抑制し、二重肌の発生を防止し
得る。また、電子ビームの溶解材料への照射軌跡を楕円
形あるいは矩形とすることにより、溶融プール内溶湯温
度さらには凝固シェル厚の均一化をはかり、ブリーディ
ングの発生を防止し得る。これにより鋳片表面手入負荷
の軽減および鈎片手人歩留の向上をなし得る。
(Effects of the Invention) As described above, the present invention achieves the following by appropriately distributing the electron beam irradiation energy ratio between the molten pool in the mold and the melted material in electron beam melting of titanium/titanium alloy.
It can suppress the scene vibration of the molten pool and prevent the occurrence of double skin. Further, by making the irradiation trajectory of the electron beam on the melted material into an elliptical or rectangular shape, it is possible to equalize the temperature of the molten metal in the molten pool and the thickness of the solidified shell, thereby preventing the occurrence of bleeding. This makes it possible to reduce the load on slab surface maintenance and improve the yield rate of one-hand hooking.

【図面の簡単な説明】 vJ1図は電子ビーム溶解炉における溶解方法を示す図
、 v42図は電子ビームの照射パターンを示す図、第3図
は電子ビーム溶解時の*aの表面欠陥を示す図、 第4図は電子ビーム条件とビレットの表面研削量との関
係を示す図、 第5図は電子ビーム照射エネルギーの比率と場面振動の
振幅の関係を示す図、 第6図は電子ビーム照射エネルギーの比率と鋳塊の表面
切削量の関係を示す図、 第7図は電子ビームの照射軌跡と鋳塊の表面切削量の関
係を示す図である。 1・・・溶解材料、IA・・・溶解材料先端部、2・・
・電子ビーム、3・・・鋳型、4・・・フィーグー 5
・・・ハース、6・・・電子銃、7・・・溶融プール、
7A・・・鋳型内周部、8・・・インゴット。
[Brief explanation of the drawings] Figure vJ1 is a diagram showing the melting method in an electron beam melting furnace, Figure v42 is a diagram showing the electron beam irradiation pattern, and Figure 3 is a diagram showing surface defects *a during electron beam melting. , Figure 4 is a diagram showing the relationship between electron beam conditions and billet surface grinding amount, Figure 5 is a diagram showing the relationship between the ratio of electron beam irradiation energy and the amplitude of scene vibration, and Figure 6 is a diagram showing the relationship between electron beam irradiation energy and the amount of surface grinding of the billet. FIG. 7 is a diagram showing the relationship between the electron beam irradiation locus and the amount of surface cutting of the ingot. 1...Dissolved material, IA...Dissolved material tip, 2...
・Electron beam, 3... Mold, 4... Figu 5
... Hearth, 6... Electron gun, 7... Molten pool,
7A...Mold inner periphery, 8...Ingot.

Claims (3)

【特許請求の範囲】[Claims] (1)チタン・チタン合金の電子ビームロッド溶解にお
いて、鋳型内溶融プールへの照射エネルギーと溶解材料
への照射エネルギーの比率を1:3〜1:8とすること
を特徴とするチタン・チタン合金の電子ビーム溶解方法
(1) Titanium/titanium alloy characterized in that in electron beam rod melting of titanium/titanium alloy, the ratio of irradiation energy to the molten pool in the mold and irradiation energy to the melted material is 1:3 to 1:8. electron beam melting method.
(2)チタン・チタン合金の電子ビームロッド溶解にお
いて、溶解材料に照射する電子ビームの照射軌跡を楕円
形あるいは矩形とすることを特徴とするチタン・チタン
合金の電子ビーム溶解方法。
(2) A method for electron beam melting of titanium and titanium alloys, characterized in that in electron beam rod melting of titanium and titanium alloys, the irradiation locus of the electron beam irradiated onto the melted material is elliptical or rectangular.
(3)チタン・チタン合金の電子ビームロッド溶解にお
いて、鋳型内溶融プールへの照射エネルギーと溶解材料
への照射エネルギーの比率を1:3〜1:8とし、かつ
溶解材料に照射する電子ビームの照射軌跡を楕円形ある
いは矩形とすることを特徴とするチタン・チタン合金の
電子ビーム溶解方法。
(3) In electron beam rod melting of titanium and titanium alloys, the ratio of the irradiation energy to the molten pool in the mold and the irradiation energy to the melted material is 1:3 to 1:8, and the electron beam irradiated to the melted material is A method for electron beam melting of titanium and titanium alloys, characterized in that the irradiation trajectory is elliptical or rectangular.
JP22096190A 1990-08-23 1990-08-23 Method for electron beam melting of titanium and titanium alloy Pending JPH04103729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22096190A JPH04103729A (en) 1990-08-23 1990-08-23 Method for electron beam melting of titanium and titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22096190A JPH04103729A (en) 1990-08-23 1990-08-23 Method for electron beam melting of titanium and titanium alloy

Publications (1)

Publication Number Publication Date
JPH04103729A true JPH04103729A (en) 1992-04-06

Family

ID=16759272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22096190A Pending JPH04103729A (en) 1990-08-23 1990-08-23 Method for electron beam melting of titanium and titanium alloy

Country Status (1)

Country Link
JP (1) JPH04103729A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8022856B2 (en) 2008-09-08 2011-09-20 Sony Corporation Successive approximation type A/D converter, method of controlling successive approximation type A/D converter, solid-state imaging device, and imaging apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8022856B2 (en) 2008-09-08 2011-09-20 Sony Corporation Successive approximation type A/D converter, method of controlling successive approximation type A/D converter, solid-state imaging device, and imaging apparatus
US8823574B2 (en) 2008-09-08 2014-09-02 Sony Corporation Successive approximation type A/D converter, method of controlling successive approximation type A/D converter, solid-state imaging device, and imaging apparatus

Similar Documents

Publication Publication Date Title
US8668760B2 (en) Method for the production of a β-γ-TiAl base alloy
CN107164639B (en) A kind of electron beam covers the method that formula solidification technology prepares high temperature alloy
WO2010018831A1 (en) Silicon purification method
CN110423931A (en) A kind of electron-beam smelting homogenizes the method for preparing Ti-Zr-Hf-Nb-Ta infusibility high-entropy alloy
CA2220357A1 (en) Method of shaping semisolid metals
CN107385244B (en) A kind of electron beam covers the method that induced coagulation technology High Purity prepares nickel base superalloy
JP2010037651A (en) Method for producing titanium-ingot by vacuum arc melting method
JP5788691B2 (en) Melting furnace for melting metal and method for melting metal using the same
CN104109760A (en) Steel ingot medium-frequency induction furnace/electroslag furnace dual-smelting system and method and steel ingot
JP6994392B2 (en) Ingot made of an alloy containing titanium as the main component, and its manufacturing method
JPH05214458A (en) Method for melting titanium alloy ingot by var process
JPH06287661A (en) Production of smelted material of refractory metal
JPH0617163A (en) Production of eutectic copper-iron alloy
JPH04103729A (en) Method for electron beam melting of titanium and titanium alloy
JPH06263B2 (en) Continuous casting method
CN102517476B (en) High strength aluminum alloy capable of reducing porosity and dispersed shrinkage and preparation method thereof
CN110484742B (en) Method for preparing Fe-W intermediate alloy by electron beam melting and high purification
JP6728934B2 (en) Continuous casting method for molten steel
US3482259A (en) Process of producing ledeburitic tool steel
JP7406073B2 (en) Manufacturing method for titanium ingots
JP7417056B2 (en) titanium alloy ingot
JP7376790B2 (en) Equipment for titanium casting
JP6022416B2 (en) Continuous casting equipment for ingots made of titanium or titanium alloy
JP2003221630A (en) Method for manufacturing titanium ingot
JPH07136740A (en) Casting method of ti alloy