JPH04103710A - Method for removing chromium in molten steel - Google Patents

Method for removing chromium in molten steel

Info

Publication number
JPH04103710A
JPH04103710A JP2221471A JP22147190A JPH04103710A JP H04103710 A JPH04103710 A JP H04103710A JP 2221471 A JP2221471 A JP 2221471A JP 22147190 A JP22147190 A JP 22147190A JP H04103710 A JPH04103710 A JP H04103710A
Authority
JP
Japan
Prior art keywords
flux
molten steel
slag
amount
removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2221471A
Other languages
Japanese (ja)
Other versions
JPH0772290B2 (en
Inventor
Keiichi Maya
真屋 敬一
Toru Matsuo
亨 松尾
Kenichi Kamegawa
亀川 憲一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2221471A priority Critical patent/JPH0772290B2/en
Publication of JPH04103710A publication Critical patent/JPH04103710A/en
Publication of JPH0772290B2 publication Critical patent/JPH0772290B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To rapidly and effectively remove Cr at the time of adding an iron oxide-contg. flux to the molten steel before being deoxidized and supplying gaseous oxygen to remove the contained Cr by using the flux having specified basicity related to the Fe content of slag. CONSTITUTION:When the Cr content of the molten steel before being deoxidized refined in a converter or an electric furnace exceeds the command, an iron oxide-contg. flux is added to the molten steel, gaseous oxygen is added, and the relation between the basicity (X) of the flux and the total Fe content (T.Fe) of the slag is adjusted as follows. Namely, (T.Fe)>=7.5% when 0<=X<1, (T.Fe)>=5% when 1<=X<2, (T.Fe)>=10% when 2<=X<3 and (T.Fe)>=15% when 3<=X, where X=(CaO)%+(MnO)%+(MgO)%/(SiO2)%+(Al2O3)%, the bracketed material is the one to be mixed into the flux, and % denotes wt.%.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、転炉や電気炉で溶製された溶鋼中に意に反
して混合したCr分を迅速かつ効果的に除去する方法に
関するものである。 (従来の技術) 一般に、鋼中のCr含有量が多くなれば冷間加工性およ
び深絞り性などの加工特性の悪化を招くことが知られて
おり、そのため、自動車用冷延鋼板等のような良加工性
の炭素鋼を溶製する場合には、溶鋼中のCr含有量を例
えば0.05%以下のように規制することが厳しく要求
されている。 しかし、最近、転炉による炭素鋼溶製作業において、突
発的なCr含有量の上昇が起きるのを完全に防止するの
が次第に困難な状況となりつつあった。なぜなら、転炉
による炭素鋼の溶製作業においては、通常、溶銑中への
スクラップの配合が行われているが、近年、ステンレス
鋼需要の伸びを反映して転炉配合原料たるスクラップ中
にステンレス鋼屑が混入する機会が増えつつあるからで
ある。勿論、スクラップの管理は一段と強化されてはい
るものの、実際の作業においては、転炉吹錬後の溶鋼中
におけるCr含有量の規格外れの発生を皆無にするのは
難しい。 上述のようなCr含有量の規格外れが発生した場合の対
策として、転炉において炭素を吹き下げ、吹錬を更に延
長して脱Crを行うという対策を講しることも行われて
いる。しかし、この場合には、溶銑中に溶は込んでいた
Crの一部が脱炭精錬の際に既に酸化されCr酸化物と
してスラグ中に移動していることから、低Cr化に限界
があり、また、この処理中は転炉耐火物の溶損も激しく
なるという問題もある。 従って、Cr含有量規格外れの度合いの大きな溶鋼は、
当初の製造予定のm秤量外の製品に振り替える“鋼種変
更”を余儀無くさせられているのが現状である。 近年、スクラップの多量発生に伴い、スクラップ使用量
はより増加する傾向にあり、今後、炭素鋼溶製に際して
溶銑比を下げスクラップ比を上げる操業が多くなること
は明らかである。このような状況になると、ステンレス
鋼屑混入による鋼材のCr含有量規格外れの確率は益々
高くなり、しかも規格外れ幅も一層大きくなると考えら
れ、“鋼種変更゛のみでは対処できなくなる。 上述した転炉溶製鋼のCr含有量規格外れの問題は、ス
クラップを多量配合する電気炉溶製鋼でも同様に発生す
る。 上記のような溶鋼のCr含有量規格外れの問題を解消す
べく本出願人は「未脱酸、未真空処理溶鋼にCab、 
SiO□、Fezesを主成分とする酸化性で望ましく
は低塩基度フラックスを接触させる」ことを特徴とする
「溶鋼の脱クロム方法」を開発し、下記の特許出願を行
った。 ■特願昭63−52099号(特開平1−225717
号公報)■特願昭63−83598号(特開平1−25
5616号公報)、■特願昭63−319877号 ■特願昭63−319878号 上記■および■では、脱Cr率とフラックスの配合塩基
度およびスラグの酸化力の指標であるスラグ中の全鉄分
含有量(T、Fe)との関係に基づいて、脱Crフラッ
クスの組成を決定する手段を提案した。 例えば、脱Cr率20%以上を達成するには、フラック
スの配合塩基度が0〜1.1〜2.2〜3および3以上
の時、(T、Fe)がそれぞれ7.5%以上、5%以上
、10%以上および15%以上となるよう、フラックス
中にFe酸化物を配合すればよい。また、脱Cr率50
%以上を達成するには、 (T、Fe)がそれぞれ11
%以上、15%以上、22%以上および22%以上とな
るよう、フラックス中にFe酸化物を配合すればよい。 なお、本明細書では特に断らない限り、%は重量%を示
し、()内に示す成分はスラグまたはフラックス中の成
分、〔〕内に示すのは溶鋼中の成分である。 また、■においては、有益成分であるMnの酸化損失を
防ぐ必要がある場合には、フラックス中にMn酸化物を
予め配合しておくことを提案し、ざらに■ではMnの歩
留りを向上させるために、脱Cr処理後にスラグ中に炭
材を添加することを提案した。 ■では合計10%以上のMgOおよび/またはZrO□
を配合することも提案し、脱Cr率の向上、耐火物の溶
損防止の効果を得ている。 本出願人が提案した上記溶鋼の脱クロム方法を実操業に
適用すれば、溶鋼中に混入した不純Cr成分を除去でき
る。しかしながら、さらに低クロム化を図ろうとすると
処理時間が長くなり、生産性の低下につながるという問
題があり、また処理中の溶鋼温度の低下を補償するため
、出鋼温度を高くしなければならないという難点がある
。 (発明が解決しようとする課題) 本発明は、前記■〜■の発明を基礎とし、その実操業に
おける問題点を解決することを課題としてなされたもの
である。本発明の目的は、生産性を落とさず、溶鋼温度
の低下を極力おさえながら転炉あるいは電気炉で溶製し
た鋼の不純物Crを迅速かつ効果的に除去する方法を提
供することにある。 (課題を解決するための手段) 本発明者らは、上述したCab、 SiO2、Feze
sを主成分とする酸化性で望ましくは低塩基度のフラッ
クス(以下「脱Crフラノクスコと記す)j−よる溶鋼
の脱Cr処理の操業を調査し、その処理法がもつ前記問
題点の解決策を検討した。その結果、次のような事実が
6I t’2された。 (])溶鋼に02ガスを供給すると、脱Crフラックス
のFe酸化物の適正配合から0□ガス供給量のFe酸化
物換算量を差引いて、Fe酸化物の配合量を少なくした
フラックスを添加しても同等以上の脱Cr効果が得られ
る。従って、同一レベルの[Cr]まで脱Crする処理
時間を短縮することができる。 (2)0□供給による溶鋼の酸化反応熱により処理中の
溶鋼温度の低下を抑制できる。 本発明は、上記の知見に基づいてなされたものであり、
その要旨は、 「転炉もしくは電気炉で溶製された未脱酸の溶鋼中のC
r含有量が目標値を超えているとき、その溶鋼にFe酸
化物を含有するフラックスを添加するとともに酸素ガス
を溶鋼に供給し、フラックスの塩基度(X)とスラグ中
の全Fe(T、Fe)の含有量との関係を下記のとおり
に調整することを特徴とする溶鋼の脱クロム方法Jにあ
る。 0≦X<1のとき・・・・・・・・・(T、Fe)≧7
.5%■≦X<2のとき・・・・・・・・・(T、Fe
)≧5 %2≦X<3のとき・・・・・・・・・(T、
Fe)≧10  %3≦Xのとき・・・・・・・・・(
T、Fe)≧15  %ただし、フラックスの塩基度(
χ)は、で表され、()内はフラックス中の配合成分、
%は重量%である。 (作用) 次に、本発明の脱Cr方法の各処理操作の詳細について
説明する。 なお、以下の説明においては転炉吹錬後の溶鋼を例にと
り、その脱Cr操作について説明する。 本発明方法では、転炉吹錬後、脱Crを目的に前述のよ
うな組成の混合フラックスまたは合成フラックスを添加
するのであるが、その添加時期は転炉吹錬後、脱酸前と
する。好ましくは転炉吹錬終了後、転炉スラグを除去し
てから可及的速やかに添加するのがよい、したがって、
一般には出鋼後の取鍋内において処理するが、必要によ
り転炉内において転炉スラグを除滓してから脱Cr処理
を行ってもよい。 なお、取鍋に出鋼してその中で脱Cr処理を行う場合は
、取鍋内に不可避的に混入する転炉スラグは除去してお
くことが望ましいが、復Pがあまり問題にならない場合
は、転炉スラグを少量残した状態で前述のフラックス組
成と等しいスラグ成分組成になるように添加フラックス
の組成を調整してもよい。 脱酸前に脱Cr処理を行う理由は、(Cr)を酸化除去
するにはスラグ中にはもちろん溶鋼中にも酸素を含有さ
せておく必要があるからである。なお、脱Cr処理に先
立つ転炉吹錬それ自体には特別の制約はなく、通常の操
業条件で十分である。最終的にCr含有量が目標値を超
えた場合に初めて本発明方法で処理を行えばよいのであ
る。 フラックスの添加方法は、溶鋼上部よりの投入法ででも
目的は達せられるが、溶鋼中へのインジェクションのほ
うがより効果的である。 本発明方法は、脱Crフラックス中のFe酸化物の一部
を0□ガスに置き換えて溶鋼に供給することを特徴の一
つとしている。従って、フラックスの添加量は、目的と
する脱Cr量(通常0.05〜0.1%程度)および同
時に起こる脱C量などにより決定されるが、0□ガスを
供給しないときの脱Crフラックスの通常添加量である
10〜50kg/T−溶鋼から、0゜ガス供給量のFe
酸化物換算量を差引いた添加量で十分である。 一方、02ガスは下記(1)式で算出される量を上吹き
法、インジェクション法等の適宜の方法で供給すればよ
い。 ただし、QOz:送酸量 (Nm3/T−溶鋼)W:0
.を供給しない時の脱Crフラックスの適正添加量(k
g/T・溶鋼) A:0□を供給しない時の脱Crフラックス中のFe酸
化物(FezO=換算)の適正配合組成(%) B :本発明で使用するフラックス中 のFe酸化物(Fe、03換算)の配合組成(%) ここで、フラックス中のFe酸化物と0□ガスの割合は
反応容器の放冷速度、溶鋼量などに依存する脱Cr処理
中の温度降下量に応して決定すればよい。 溶鋼およびスラグを撹拌して脱Cr反応を促進するため
、アルゴンによるバブリング攪拌あるいは出鋼時にフラ
ックスを添加する溶鋼の自然落下による攪拌等を利用す
るのがよい。 脱Cr後のスラグは、次工程の脱酸、RH処理等の脱ガ
ス工程での復Crを防止するために除去することが望ま
しいが、塊状の生石灰等でスラグチル(スラグを固める
)する方法を採用してもよい。 以上、転炉溶製鋼を例として説明したが、本発明方法は
、電気炉を用いてスクラップを主原料とし、炭素鋼を溶
製する場合にも適用できることば言うまでもない。 次に、本発明方法の実施に用いるフラックスの組成につ
いてさらに具体的に述べる。 第1図は、本発明の脱Cr処理(0□ガスを上吹き)を
実施したときのフラックス中のFe2O3配合量と、処
理後のスラグ中(T、Fe)のFeJz換算量および脱
Cr率との関係を示す図である。フラックスの配合成分
組成および送酸量は後述する第1表に示す通りである。 なお、比較法として02ガス供給を行わずに後述の第1
表に示す脱Crフラックスを用いて脱Cr処理をした場
合を示している。 図示のとおり、本発明法ではフラックス中のFeze3
配合量が10〜20%と、比較法の脱Crフラックスに
比べて低いにもかかわらず、0□ガス上吹きにより処理
後のスラグ中の(T、Fe)のFezO3換算量は比較
法と大差のないレベルまで上昇した。また、比較法より
も高い脱Cr率が得られた。 脱Crフラックスを使用するだけで02の供給を行わな
い場合は、下記(2)式に示す酸化反応により(Cr)
をCr酸化物としてスラグ中へ除去することになる。そ
のため、フラックスは多量のFe酸化物を含有している
ことが必要である。 (Cr) +x(Fed) −(CrO,)+x  (
Fe)  ・・・(2)しかしながら、溶鋼に0□ガス
を上吹きすると下記(3)式に示す酸化反応により火点
付近での(T、Fe)が増加し、
(Industrial Application Field) The present invention relates to a method for quickly and effectively removing Cr content that has been mixed inadvertently into molten steel produced in a converter or electric furnace. (Prior art) It is generally known that an increase in Cr content in steel leads to deterioration of processing properties such as cold workability and deep drawability. When producing carbon steel with good workability, it is strictly required to control the Cr content in the molten steel to, for example, 0.05% or less. However, recently, it has become increasingly difficult to completely prevent a sudden increase in Cr content in carbon steel melting operations using converters. This is because when melting carbon steel in a converter, scrap is normally mixed into hot metal, but in recent years, reflecting the growth in demand for stainless steel, stainless steel has been added to the scrap that is the raw material for converter mixing. This is because the chances of steel scrap getting mixed in are increasing. Of course, scrap management has been further strengthened, but in actual work, it is difficult to completely eliminate the occurrence of deviations in the Cr content of molten steel after converter blowing. As a countermeasure in the case where the Cr content exceeds the standard as described above, a measure has been taken in which carbon is blown down in the converter and the blowing process is further extended to remove Cr. However, in this case, there is a limit to the reduction in Cr because some of the Cr that had entered the hot metal has already been oxidized during decarburization and moved into the slag as Cr oxides. There is also the problem that during this treatment, the converter refractories are severely eroded. Therefore, molten steel with a large degree of Cr content deviation from the standard is
The current situation is that we are forced to "change the steel type" by switching to a product with a weight outside of the m-weight originally planned. In recent years, as a large amount of scrap has been generated, the amount of scrap used has tended to increase, and it is clear that in the future there will be more operations in which the hot metal ratio is lowered and the scrap ratio is increased in the production of carbon steel. In such a situation, the probability that the Cr content of the steel material will be out of specification due to the contamination of stainless steel scraps will become higher and higher, and the range of deviations from the specification will also increase, and it will no longer be possible to deal with it simply by changing the steel type. The problem of Cr content deviation from the standard in furnace molten steel also occurs in electric furnace molten steel, which mixes a large amount of scrap.In order to solve the above-mentioned problem of Cr content deviation from the standard in molten steel, the applicant has Cab on non-deoxidized, non-vacuum treated molten steel,
We have developed a ``method for dechromizing molten steel'' which is characterized by ``contacting an oxidizing, preferably low basicity flux containing SiO□ and Fezes as main components'' and have filed the following patent application. ■Patent Application No. 1983-52099 (Unexamined Patent Application No. 1-225717
Publication No. 1983-83598 (Japanese Patent Application No. 1983-83598)
5616), ■Japanese Patent Application No. 63-319877 ■Japanese Patent Application No. 63-319878 In the above ■ and ■, the total iron content in the slag, which is an indicator of the Cr removal rate, the blended basicity of the flux, and the oxidizing power of the slag. We proposed a means to determine the composition of the Cr-removal flux based on the relationship with the content (T, Fe). For example, in order to achieve a Cr removal rate of 20% or more, when the blend basicity of the flux is 0-1.1-2.2-3 and 3 or more, (T, Fe) is 7.5% or more, respectively. Fe oxide may be blended into the flux so that the amount is 5% or more, 10% or more, and 15% or more. In addition, the Cr removal rate is 50
To achieve % or more, (T, Fe) must each be 11
% or more, 15% or more, 22% or more, and 22% or more of Fe oxide may be blended into the flux. In this specification, unless otherwise specified, % indicates weight %, the components shown in parentheses are the components in slag or flux, and the components in parentheses are the components in molten steel. In addition, in ■■, if it is necessary to prevent oxidation loss of Mn, which is a beneficial component, it is proposed to mix Mn oxide in the flux in advance, and in Zarani■, it is proposed to improve the yield of Mn. Therefore, we proposed adding carbonaceous material to the slag after the Cr removal treatment. ■In total, 10% or more of MgO and/or ZrO□
It has also been proposed to incorporate the following, and the effect of improving the Cr removal rate and preventing erosion of refractories has been obtained. If the method for dechromizing molten steel proposed by the present applicant is applied to actual operations, impure Cr components mixed in molten steel can be removed. However, trying to further reduce chromium requires a longer processing time, leading to a decrease in productivity, and in order to compensate for the drop in molten steel temperature during processing, the tapping temperature must be increased. There are some difficulties. (Problems to be Solved by the Invention) The present invention is based on the above-mentioned inventions (1) to (3), and has been made with the object of solving problems in actual operation thereof. An object of the present invention is to provide a method for quickly and effectively removing impurities Cr from steel melted in a converter or electric furnace, without reducing productivity and suppressing a drop in molten steel temperature as much as possible. (Means for Solving the Problems) The present inventors have developed the above-mentioned Cab, SiO2, Feze
We investigated the operation of Cr-removal treatment of molten steel using oxidizing and preferably low basicity flux (hereinafter referred to as "Cr-removal Furanoxco") containing s as the main component, and found solutions to the above-mentioned problems with the treatment method. As a result, the following facts were found: (]) When 02 gas is supplied to molten steel, Fe oxidation with a 0□ gas supply amount is Even if a flux with a reduced amount of Fe oxide is added by subtracting the equivalent amount of Fe oxide, the same or higher Cr removal effect can be obtained. Therefore, the processing time for removing Cr to the same level of [Cr] can be shortened. (2) The oxidation reaction heat of the molten steel due to the 0□ supply can suppress the decrease in the temperature of the molten steel during treatment. The present invention has been made based on the above findings,
The gist of this is that ``C in undeoxidized molten steel melted in a converter or electric furnace.
When the r content exceeds the target value, a flux containing Fe oxide is added to the molten steel and oxygen gas is supplied to the molten steel to determine the basicity (X) of the flux and the total Fe (T, A method J for dechromizing molten steel is characterized in that the relationship with the content of Fe) is adjusted as follows. When 0≦X<1・・・・・・・・・(T, Fe)≧7
.. When 5%■≦X<2・・・・・・・・・(T, Fe
)≧5 When %2≦X<3・・・・・・・・・(T,
Fe)≧10 When %3≦X・・・・・・・・・(
T, Fe)≧15% However, the basicity of the flux (
χ) is expressed as, and the numbers in parentheses are the components in the flux,
% is by weight. (Function) Next, details of each processing operation of the Cr removal method of the present invention will be explained. In the following description, molten steel after converter blowing will be taken as an example, and the Cr removal operation will be explained. In the method of the present invention, after the converter blowing, a mixed flux or synthetic flux having the composition as described above is added for the purpose of removing Cr, and the addition timing is after the converter blowing and before deoxidation. Preferably, it is added as soon as possible after the converter blowing is completed and the converter slag is removed. Therefore,
Generally, the treatment is carried out in the ladle after tapping, but if necessary, the Cr removal treatment may be carried out after removing the converter slag in the converter. In addition, when tapping steel into a ladle and performing Cr removal treatment therein, it is desirable to remove converter slag that inevitably gets mixed into the ladle, but in cases where repurification is not a big problem. Alternatively, the composition of the added flux may be adjusted so that the slag component composition is equal to the flux composition described above, with a small amount of converter slag remaining. The reason why the Cr removal treatment is performed before deoxidation is that in order to oxidize and remove (Cr), it is necessary to contain oxygen not only in the slag but also in the molten steel. Note that there are no special restrictions on the converter blowing itself prior to the Cr removal treatment, and normal operating conditions are sufficient. It is only when the Cr content finally exceeds the target value that the process of the present invention can be carried out. Although the purpose of adding flux can be achieved by adding it from the top of the molten steel, injection into the molten steel is more effective. One of the features of the method of the present invention is that a part of the Fe oxide in the Cr-removal flux is replaced with 0□ gas and then supplied to the molten steel. Therefore, the amount of flux added is determined by the target amount of Cr removal (usually about 0.05 to 0.1%) and the amount of carbon removal that occurs simultaneously. From the usual addition amount of 10 to 50 kg/T-molten steel, Fe with a gas supply amount of 0°
The amount added after subtracting the equivalent amount of oxide is sufficient. On the other hand, the 02 gas may be supplied in an amount calculated by the following equation (1) using an appropriate method such as a top blowing method or an injection method. However, QOz: Oxygen supply amount (Nm3/T-molten steel) W: 0
.. Appropriate addition amount of Cr-free flux (k
g/T・molten steel) A: Appropriate blending composition (%) of Fe oxide (FezO = conversion) in the Cr-free flux when 0□ is not supplied B: Fe oxide (Fe , 03 conversion) (%) Here, the ratio of Fe oxide and 0□ gas in the flux depends on the amount of temperature drop during the Cr removal process, which depends on the cooling rate of the reaction vessel, the amount of molten steel, etc. You just have to decide. In order to promote the Cr removal reaction by stirring the molten steel and slag, it is preferable to use bubbling stirring with argon or stirring by gravity of the molten steel to which flux is added during tapping. It is desirable to remove the slag after removing Cr in order to prevent re-Cr in the next degassing process such as deoxidation and RH treatment. May be adopted. Although the above description has been made using a converter furnace as an example, it goes without saying that the method of the present invention can also be applied to the case of melting carbon steel using an electric furnace and using scrap as the main raw material. Next, the composition of the flux used in carrying out the method of the present invention will be described in more detail. Figure 1 shows the amount of Fe2O3 in the flux when the Cr removal treatment of the present invention (top blowing with 0□ gas) is carried out, the FeJz equivalent amount of (T, Fe) in the slag after treatment, and the Cr removal rate. FIG. The component composition of the flux and the amount of oxygen supplied are as shown in Table 1 below. As a comparative method, the first method described below was performed without supplying 02 gas.
This shows the case where Cr removal treatment was performed using the Cr removal flux shown in the table. As shown in the figure, in the method of the present invention, Feze3 in the flux
Although the blending amount is 10 to 20%, which is lower than that of the comparative method for removing Cr, the FezO3 equivalent amount of (T, Fe) in the slag after treatment with 0□ gas top blowing is significantly different from the comparative method. It has risen to a level where there is no. Further, a higher Cr removal rate than the comparative method was obtained. When only using a Cr-removal flux and not supplying 02, (Cr) is removed by the oxidation reaction shown in the following equation (2).
is removed into the slag as Cr oxide. Therefore, the flux needs to contain a large amount of Fe oxide. (Cr) +x(Fed) −(CrO,)+x (
(Fe) ... (2) However, when 0□ gas is top-blown into molten steel, (T, Fe) near the flash point increases due to the oxidation reaction shown in equation (3) below,

〔0〕含有量が高くな
るので下記(4)式に示す脱Cr反応が促進される。 [Fe) + −02−(FeOy)    ・・・(
3)2  (Cr) + 3  (0) →(CrtO
z)    ・・・(4)生成したCrtOzは弱塩基
性酸化物であるから低塩基度のフラックスを添加した方
が低い(T、Fe)でもCrtOzがスラグ中に安定化
され、効率的に溶鋼中のCrを除去することができる。 また、Ozガスの供給によりスラグの攪拌が強化される
ので(4)式で生成したCr2O2が速やかにスラグ中
で安定化される。 さらに、上述の(3)式はY値によっても異なるが、高
発熱量の酸化反応であるため溶鋼昇熱の一助となり、滓
化および反応が促進される。 本発明方法で用いるフラックスにはCab、 Sing
、CaFtおよびAI!、□0,1種以上をフラックス
の融点を下げることおよび塩基度調整を主目的として配
合するのが望ましい。このような融点降下側の添加によ
って、フラックスの融点を脱Cr処理温度(1700°
C〜1550°C)以下にまで低下させることができる
。 また、このフラックスにはMgOおよび/またはZr0
zを耐火物の溶損防止を主目的として、合計Iθ%以上
配合するのが望ましい。本発明の脱Cr処理中のスラグ
は、(T、Fe)が高いので転炉あるいは取鍋の耐火物
に対し特に侵食力が強い。従って、脱Cr処理中のスラ
グによる耐火物溶損防止のために、フラックス中に耐火
物の主成分である化合物の1種以上を予め含有させてお
くのが望ましのである。 MgOを含むスラグの場合、?1gOとCr#化物が選
択的に化合物をつくる傾向がある。また、ZrO□を含
むスラグの場合、ZrO2が酸性酸化物であることから
、ZrO□は塩基性酸化物であるCr酸化物をスラグ中
で安定化させることができる。従って、耐火物の溶損防
止ばかりでなく、脱Cr率向上のためにも、MgOおよ
びZrO□は非常に存効な添加物である6さらに本発明
方法で使用するフラックスは、Mn酸化物を(Mnlの
酸化損失を防止する目的で20%以上含有するのが望ま
しい。脱Cr処理中のスラグは、強い酸化力を有してい
るため、[Cr)と同時に溶鋼中の存益成分である(M
n)も酸化除去される。w4種によってはこれを防ぐこ
とを目的として、多重の(MnO)を含有していること
が必要である。 例えば、溶鋼のMn歩留りが50%を超えるようにする
には、スラグ中の(MnO)は15%以上、フラックス
中のMn酸化物の配合量は、約20%以上必要である。 本発明のフラックスの形態としては、種々の化合物を混
合物とした混合フラックスであってもよく、あるいはこ
れらの混合物を溶鋼への添加前に一旦溶融して冷却した
後粉砕して得た合成フラックスの形態で使用してもよい
。フラ・ンクスの性質の安定性の点からは後者の合成フ
ラックスが好ましい。 以下、実施例および比較例により本発明の方法をさらに
具体的に説明する。 (実施例1) 電気炉で溶製した未脱酸の低炭素綱溶鋼10)ッを取鍋
に入れ、0.058m’/+ain−T溶鋼のアルゴン
ガスでバブリング攪拌しながら第1表に示す組成のフラ
ックスを42.5kg/T・溶鋼を添加し、さらにo2
ガス1.58Nm’/T・溶鋼を上吹きすることにより
、約20分間膜Cr処理を行った。この実施例は、フラ
ックスからのFezO,添加量を比較例1の172量に
減少し、その減少分を0□上吹きに置き換えた場合であ
る。 (比較例1) FezOsの配合組成が30%と高い第1表に示す脱C
rフラックスを50kg/T−溶鋼添加し、0□ガス上
吹きを行わなかった以外は実施例1と同じ条件で脱Cr
処理を行った。 脱Cr処理の成績を第2表に示す。表に示すように、実
施例1はフラックス中の(Fezo3)%が17.6%
と低いにもかかわらず、処理後のスラグ中の換算(Fe
ars)%は30.0%と高くなり、強い酸化性スラグ
が生成した。処理中の溶鋼温度の降下量は比較例1の1
00’cに比べ実施例1では50’Cに半減した。実施
例1の脱Cr率は比較例1の64%よりも高い78%で
あり、等しい処理時間で処理後のrcr)を低くするこ
とができた。 (実施例2) 電気炉で溶製した未脱酸の低炭素鋼溶鋼1oト、を取鍋
に入れ、アルゴンガス0.05Nm”/5in−T溶鋼
で溶鋼をバブリング撹拌しながら第1表に示す組成のフ
ラックス40kg/T・溶鋼を添加し、ざらに0!ガス
2.1Nea’/T・溶鋼を上吹きすることにより、約
20分間膜Cr処理を行った。この実施例は、フラック
スからのFezO=添加置を比装例2の1/3量に減少
し、その減少分を0!上吹きに置き換えた場合である。 また、フラックス中には(MnQt)を配合した。 (比較例2) FezO3の配合組成が30%と高い第1表に示す脱C
rフラックスを50kg/T・溶鋼添加し、o2ガス上
吹きを行わなかった以外は実施例2と同し条件で脱C「
処理を行った。 第2表に示すとおり、実施例2はフラックス中の(Fe
zes)%が12.5%と低いが、02上吹きにより処
理後のスラグ中の換算(pezoz)%は30.3%と
高くなり、強い酸化性スラグが生成した。処理中の溶H
7M廣の膝下量は比較例2の80’Cに比べ実施例2で
は40’Cに半減した。実施例2の脱Cr率は比較例2
050%よりも高い67%であった。実施例2および比
較例2ではいずれも87.5%の高い(Mn)歩留りが
得られた。 (実施例3) 転炉で溶製した未脱酸の低炭素t!i4溶鋼9oト、を
取鍋に入れ、アルゴンガス0.05Nm’/win−T
溶鋼で溶鋼をバブリング攪拌しながら第1表に示す組成
のフラックス40kg/T・溶鋼を添加し、さらに02
ガス2.1Ng+”/T・溶鋼を上吹きすることにより
、約20分間膜Cr処理を行った。この実施例は、フラ
ックスからのFezO3添加量を比較例3の173量に
減少し、その減少分を02上吹きに置き換えた場合であ
る。 また、フラックス中には(MnOJを25%、(MgO
)および(ZrO□)を合計で25%配合した。 (比較例3) Fe2(hの配合組成が30%と高い第1表に示す脱C
rフラックスを50kg/T−溶鋼添加し、0□ガス上
吹きを行わなかった以外は実施例3と同し条件で脱Cr
処理を行った。 第2表に示すとおり、実施例3はフラックス中の(t’
ezoi)%が12,5%と低いが、θ□上吹きにより
処理後のスラグ中の換算(Fezes)%は34.9%
と高くなり、比較例3と同様の強い酸化性スラグを生成
した。処理中の溶鋼温度の降下量は比較例3の45゛C
に比べ実施例3では20°Cに大きく減少した。 実施例3の脱Cr率は比較例3の60%よりも高い75
%であり、等しい処理時間で処理後の(Cr:lを低く
することができた。  (Mn)歩留りは実施例3およ
び比較例3のいずれも85%の高い水準であった。 また、処理前後のスラグ中の(ZrO□)%に差が認め
られないことがら取鍋の内面裏張りジルコンレンガ(6
0%Zr0z、34%SiO□)の溶損はほとんどない
と考えられる。 (発明の効果) 本発明方法によれば、フラックス中の酸化鉄含有量を下
げても処理中に脱Crに必要な強い酸化性スラグを生成
させることができる。さらに、スラグの攪拌が強化され
処理中の溶鋼温度の低下が抑制されるので脱Cr反応が
促進され、目標値を超える(Cr)を迅速かつ効率的に
除去することが可能である。また、脱Cr処理の所要時
間が少なくてすみ、出鋼温度も特に高くする必要がない
ので生産効率を落とすことなく脱Cr処理を行うことが
できる。
Since the [0] content becomes high, the Cr removal reaction shown in the following equation (4) is promoted. [Fe) + -02-(FeOy) ...(
3) 2 (Cr) + 3 (0) → (CrtO
(4) Since the generated CrtOz is a weakly basic oxide, adding a flux with a low basicity stabilizes CrtOz in the slag even if the flux is low (T, Fe), and efficiently transforms molten steel. Cr inside can be removed. Furthermore, since the stirring of the slag is strengthened by supplying the Oz gas, the Cr2O2 produced by equation (4) is quickly stabilized in the slag. Furthermore, although the above equation (3) differs depending on the Y value, since it is an oxidation reaction with a high calorific value, it helps heat up the molten steel, and promotes slag formation and reaction. The flux used in the method of the present invention includes Cab, Sing
, CaFt and AI! , □0, It is desirable to blend one or more of them with the main purpose of lowering the melting point of the flux and adjusting the basicity. By adding something that lowers the melting point, the melting point of the flux can be lowered to the Cr removal treatment temperature (1700°
C to 1550°C) or lower. This flux also contains MgO and/or ZrO.
The main purpose of z is to prevent melting and damage of refractories, and it is desirable to add z in a total amount of Iθ% or more. The slag undergoing the Cr removal treatment of the present invention has a high (T, Fe) content, so it has a particularly strong corrosive force against the refractories of a converter or a ladle. Therefore, in order to prevent the refractory from being eroded by the slag during the Cr removal process, it is desirable to previously contain one or more compounds that are the main components of the refractory in the flux. In the case of slag containing MgO? There is a tendency for 1gO and Cr# compounds to selectively form compounds. Furthermore, in the case of a slag containing ZrO□, since ZrO2 is an acidic oxide, ZrO□ can stabilize Cr oxide, which is a basic oxide, in the slag. Therefore, MgO and ZrO□ are very effective additives not only for preventing corrosion damage of refractories but also for improving the Cr removal rate.6Furthermore, the flux used in the method of the present invention contains Mn oxide. (It is desirable to contain 20% or more for the purpose of preventing oxidation loss of Mnl. Slag during Cr removal treatment has strong oxidizing power, so it is a beneficial component in molten steel at the same time as [Cr]. (M
n) is also removed by oxidation. For the purpose of preventing this, depending on the w4 type, it is necessary to contain multiple amounts of (MnO). For example, in order to make the Mn yield of molten steel exceed 50%, the (MnO) content in the slag needs to be 15% or more, and the amount of Mn oxide in the flux needs to be about 20% or more. The form of the flux of the present invention may be a mixed flux made of a mixture of various compounds, or a synthetic flux obtained by melting the mixture, cooling it, and pulverizing it before adding it to molten steel. It may be used in any form. The latter synthetic flux is preferred from the viewpoint of stability of the properties of the flux. The method of the present invention will be explained in more detail below using Examples and Comparative Examples. (Example 1) Undeoxidized low-carbon molten steel 10) melted in an electric furnace was placed in a ladle and stirred by bubbling with argon gas of 0.058 m'/+ain-T molten steel as shown in Table 1. Add 42.5kg/T of flux to molten steel, and further o2
Film Cr treatment was performed for about 20 minutes by top blowing gas at 1.58 Nm'/T of molten steel. In this example, the amount of FezO added from the flux was reduced to 172 in Comparative Example 1, and the reduced amount was replaced with 0□ top blowing. (Comparative Example 1) The decarbonization shown in Table 1 with a high blending composition of 30% FezOs
Cr removal was carried out under the same conditions as in Example 1, except that 50 kg/T-molten steel of r flux was added and 0□ gas top blowing was not performed.
processed. Table 2 shows the results of the Cr removal treatment. As shown in the table, in Example 1, the (Fezo3)% in the flux was 17.6%.
Despite the low concentration of Fe in the slag after treatment,
ars)% was as high as 30.0%, and strong oxidizing slag was produced. The amount of decrease in molten steel temperature during treatment was 1 in Comparative Example 1.
Compared to 00'C, the temperature in Example 1 was reduced by half to 50'C. The Cr removal rate of Example 1 was 78%, which was higher than 64% of Comparative Example 1, and the post-treatment rcr) could be lowered with the same treatment time. (Example 2) 1 ton of undeoxidized low carbon molten steel melted in an electric furnace was placed in a ladle, and while stirring the molten steel by bubbling with argon gas 0.05Nm"/5in-T molten steel, A film Cr treatment was carried out for about 20 minutes by adding 40 kg/T of molten steel having the composition shown and top-blowing 2.1 Nea'/T of molten steel with a coarse 0! gas. This is the case where the amount of FezO added was reduced to 1/3 of that in Specification Example 2, and the reduced amount was replaced with 0! top blowing. Also, (MnQt) was mixed in the flux. (Comparative Example) 2) Decarbonization shown in Table 1 with a high FezO3 composition of 30%
Decarbonization was carried out under the same conditions as in Example 2, except that 50 kg/T of R flux was added to the molten steel and no O2 gas top blowing was performed.
processed. As shown in Table 2, in Example 2, (Fe
Although the 02 top blowing increased the converted (pezoz)% in the slag after treatment to 30.3%, strongly oxidizing slag was produced. Molten H during processing
The amount below the knee of 7M Hiro was halved to 40'C in Example 2 compared to 80'C in Comparative Example 2. The Cr removal rate of Example 2 is that of Comparative Example 2.
It was 67%, higher than 0.050%. In both Example 2 and Comparative Example 2, a high (Mn) yield of 87.5% was obtained. (Example 3) Undeoxidized low carbon t melted in a converter! Put i4 molten steel 90m into a ladle and add argon gas 0.05Nm'/win-T
While stirring the molten steel by bubbling, add 40 kg/T of molten steel having the composition shown in Table 1, and further add 0.2 kg of molten steel.
Membrane Cr treatment was performed for about 20 minutes by top blowing gas 2.1Ng+"/T molten steel. In this example, the amount of FezO3 added from the flux was reduced to 173 in Comparative Example 3, and the reduction was This is the case where 25% of (MnOJ and 25% of (MgO
) and (ZrO□) in a total of 25%. (Comparative Example 3) Decarbonization shown in Table 1 with a high blending composition of Fe2(h) of 30%.
Cr removal was carried out under the same conditions as in Example 3 except that 50 kg/T-molten steel of r flux was added and 0□ gas top blowing was not performed.
processed. As shown in Table 2, in Example 3, (t'
ezoi)% is low at 12.5%, but the conversion (Fezes)% in the slag after treatment due to θ□ top blowing is 34.9%.
and a strong oxidizing slag similar to that of Comparative Example 3 was produced. The amount of decrease in molten steel temperature during treatment was 45°C in Comparative Example 3.
In comparison with Example 3, the temperature was significantly reduced to 20°C. The Cr removal rate of Example 3 is higher than 60% of Comparative Example 375
%, and it was possible to lower the (Cr:l) after treatment with the same treatment time. The (Mn) yield was at a high level of 85% in both Example 3 and Comparative Example 3. There was no difference in the percentage of (ZrO□) in the slag before and after the ladle.
0% Zr0z, 34% SiO□), it is thought that there is almost no melting loss. (Effects of the Invention) According to the method of the present invention, strong oxidizing slag necessary for removing Cr can be generated during treatment even if the iron oxide content in the flux is reduced. Further, since the slag stirring is strengthened and the drop in the temperature of the molten steel during treatment is suppressed, the Cr removal reaction is promoted, and it is possible to quickly and efficiently remove (Cr) exceeding the target value. Further, the time required for the Cr removal treatment is short, and the tapping temperature does not need to be particularly high, so the Cr removal treatment can be performed without reducing production efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の脱Cr処理を実施したときのフラッ
クス中のFe20s配合量と、処理後のスラグ中(T、
Fe)のFeg’3換算量および脱Cr率との関係を示
す図である。
Figure 1 shows the amount of Fe20s in the flux when the Cr removal treatment of the present invention was carried out and the amount of Fe20s in the slag after treatment (T,
It is a figure showing the relationship between the Feg'3 equivalent amount of Fe) and the Cr removal rate.

Claims (1)

【特許請求の範囲】  転炉もしくは電気炉で溶製された未脱酸の溶鋼中のC
r含有量が目標値を超えているとき、その溶鋼にFe酸
化物を含有するフラックスを添加するとともに酸素ガス
を溶鋼に供給し、フラックスの塩基度(X)とスラグ中
の全Fe(T、Fe)の含有量との関係を下記のとおり
に調整することを特徴とする溶鋼の脱クロム方法。 0≦X<1のとき・・・・・・・・・(T、Fe)≧7
.5%1≦X≦2のとき・・・・・・・・・(T、Fe
)≧5%2<X≦3のとき・・・・・・・・・(T、F
e)≧10%3<Xのとき・・・・・・・・・(T、F
e)≧15%ただし、 X=(CaO)%+(MnO)%+(MgO)%/(S
iO_2)%+(Al_2O_3)%で、()内はフラ
ックス中の配合成分、%は重量%である。
[Claims] C in undeoxidized molten steel melted in a converter or electric furnace
When the r content exceeds the target value, a flux containing Fe oxide is added to the molten steel and oxygen gas is supplied to the molten steel to determine the basicity (X) of the flux and the total Fe (T, A method for dechromizing molten steel, characterized in that the relationship with the content of Fe) is adjusted as follows. When 0≦X<1・・・・・・・・・(T, Fe)≧7
.. 5% When 1≦X≦2 (T, Fe
)≧5%2<X≦3・・・・・・・・・(T, F
e) When ≧10%3<X... (T, F
e)≧15% However, X=(CaO)%+(MnO)%+(MgO)%/(S
iO_2)%+(Al_2O_3)%, the numbers in parentheses are the components in the flux, and the percentages are by weight.
JP2221471A 1990-08-22 1990-08-22 Dechromization method of molten steel Expired - Lifetime JPH0772290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2221471A JPH0772290B2 (en) 1990-08-22 1990-08-22 Dechromization method of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2221471A JPH0772290B2 (en) 1990-08-22 1990-08-22 Dechromization method of molten steel

Publications (2)

Publication Number Publication Date
JPH04103710A true JPH04103710A (en) 1992-04-06
JPH0772290B2 JPH0772290B2 (en) 1995-08-02

Family

ID=16767237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2221471A Expired - Lifetime JPH0772290B2 (en) 1990-08-22 1990-08-22 Dechromization method of molten steel

Country Status (1)

Country Link
JP (1) JPH0772290B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225717A (en) * 1988-03-05 1989-09-08 Sumitomo Metal Ind Ltd Method for removing chromium from molten steel
JPH01255616A (en) * 1988-04-05 1989-10-12 Sumitomo Metal Ind Ltd Method for removing cr in molten steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225717A (en) * 1988-03-05 1989-09-08 Sumitomo Metal Ind Ltd Method for removing chromium from molten steel
JPH01255616A (en) * 1988-04-05 1989-10-12 Sumitomo Metal Ind Ltd Method for removing cr in molten steel

Also Published As

Publication number Publication date
JPH0772290B2 (en) 1995-08-02

Similar Documents

Publication Publication Date Title
JPH10130714A (en) Production of steel for wire rod excellent in wire drawability and cleanliness
JP2002339014A (en) Method for producing extra low sulfur steel
JP5324142B2 (en) Refining method using electric furnace
CA1230974A (en) Process for refining of chromium-containing molten steel
JPH04103710A (en) Method for removing chromium in molten steel
JPH09165615A (en) Denitrifying method for molten metal
KR20100045053A (en) Method for refining ferritic stainless steel containing titanium
JPS6358203B2 (en)
JP3158912B2 (en) Stainless steel refining method
JPS6138248B2 (en)
JPH07103416B2 (en) High carbon steel wire manufacturing method
JPH04103711A (en) Method for removing chromium in molten steel
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JPH05148525A (en) Treatment of molten iron
US4065297A (en) Process for dephosphorizing molten pig iron
JP5544818B2 (en) Melting method of high chromium steel
JP3099152B2 (en) Raw material blending method and smelting method for chromium-containing molten steel
JP2553204B2 (en) Tuyere protection method for bottom-blown and top-blown converters
JPH0730387B2 (en) Cr removal method for molten iron
JPH02163310A (en) Method for removing cr in molten iron
JP3297997B2 (en) Hot metal removal method
JP2855333B2 (en) Modification method of molten steel slag
JPH024938A (en) Manufacture of medium-carbon and low-carbon ferromanganese
JP2004256854A (en) Method for decarbonization-refining stainless steel
JPH0692614B2 (en) Dechromization method of molten steel