JPH0410337Y2 - - Google Patents

Info

Publication number
JPH0410337Y2
JPH0410337Y2 JP1151387U JP1151387U JPH0410337Y2 JP H0410337 Y2 JPH0410337 Y2 JP H0410337Y2 JP 1151387 U JP1151387 U JP 1151387U JP 1151387 U JP1151387 U JP 1151387U JP H0410337 Y2 JPH0410337 Y2 JP H0410337Y2
Authority
JP
Japan
Prior art keywords
spiral
intake
intake valve
flow
terminal end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1151387U
Other languages
Japanese (ja)
Other versions
JPS63119834U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1151387U priority Critical patent/JPH0410337Y2/ja
Publication of JPS63119834U publication Critical patent/JPS63119834U/ja
Application granted granted Critical
Publication of JPH0410337Y2 publication Critical patent/JPH0410337Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、内燃機関において燃焼室内に吸気の
旋回流(スワール流)を生じさせるようにするヘ
リカル型吸気ポートに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a helical intake port that generates a swirl flow of intake air within a combustion chamber of an internal combustion engine.

〔従来の技術〕[Conventional technology]

ヘリカル型吸気ポートは、燃焼室内に吸気のス
ワール流を発生させるため燃焼室への開口部を渦
巻状に形成したもので、このスワール流により燃
焼を改善させるものである。しかしながら、エン
ジンの高速高負荷時には前記のような開口部の特
殊形状により吸気抵抗が増大して充填効率が低下
する傾向がある。これを解決するためスワール流
を発生させる吸気通路とは別の分岐路を設け、エ
ンジンの高速高負荷時にこの分岐路からも吸気を
供給して充填効率を高めるようにしたヘリカル型
吸気ポートが提案されている(特開昭58−23224
号公報参照)。
A helical intake port has an opening to the combustion chamber formed in a spiral shape to generate a swirl flow of intake air within the combustion chamber, and this swirl flow improves combustion. However, when the engine is running at high speed and under high load, the special shape of the opening as described above tends to increase intake resistance and reduce filling efficiency. To solve this problem, we proposed a helical intake port, which has a branch path separate from the intake passage that generates the swirl flow, and supplies intake air from this branch path when the engine is running at high speeds and under high load to increase filling efficiency. (Unexamined Japanese Patent Publication No. 58-23224)
(see publication).

また、特に直接噴射式デイーゼルエンジンにお
いては燃焼室内における空気流動が燃焼に関して
重要な影響を有している。この型のデイーゼルエ
ンジンにおいては、吸気系により空気に与えられ
る動きには、巨視的な前記のようなスワール流と
微視的な乱流とがあり、特にこの乱流は噴射され
た燃料と空気との混合に影響を及ぼすのみなら
ず、後期燃焼に関しても重要な要素となつてい
る。そのためこの乱流を与えるための提案が特公
昭57−12016号に開示されている。
Furthermore, especially in direct injection diesel engines, air flow within the combustion chamber has an important influence on combustion. In this type of diesel engine, the movement given to the air by the intake system includes the macroscopic swirl flow as described above and the microscopic turbulence flow, and this turbulence is especially caused by the injected fuel and air. Not only does it affect the mixing with the fuel, but it is also an important factor regarding late combustion. Therefore, a proposal for providing this turbulent flow is disclosed in Japanese Patent Publication No. 12016/1983.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

前記特公昭57−12016号公報に開示されている
手段によれば、乱流を発生させるための、スワー
ル流とその逆向きの流れとの衝突が吸気弁流出後
の遠いところで行われるため乱流の生成力が弱
く、また強制的に流れを変えるため空気の流れ抵
抗が増大するという問題がある。
According to the means disclosed in the above-mentioned Japanese Patent Publication No. 57-12016, the collision between the swirl flow and the flow in the opposite direction to generate the turbulent flow occurs at a distance after the intake valve outflow. There is a problem in that the generation force is weak and the flow is forced to change, which increases the air flow resistance.

〔問題点を解決するための手段〕 本考案によれば、上記の問題点は、渦巻部を有
する吸気通路とこの吸気通路と隔壁により仕切ら
れた分岐路とを有するヘリカル型ポートにおい
て、前記分岐路の終端部の位置と、この終端部と
前記渦巻部の終端部との間に、特殊な工夫を施す
ことにより解決される。すなわち本考案における
上記の問題点を解決するために講じた手段は、吸
気弁周りに形成された渦巻部と、該渦巻部に接線
状に接続されほぼ真直ぐに延びる吸気入口通路部
と、吸気弁軸のガイド部に設けた隔壁により前記
入口通路部から分岐され前記渦巻部の渦巻終端部
に連通する分岐路とからなり、前記渦巻部の天井
は渦巻部終端部に至る間に徐々に燃焼室に向けて
下降し、前記分岐路の天井は吸気弁傘部に向つて
急激に下降するよう構成されたヘリカル型吸気ポ
ートにおいて、前記分岐路の終端部を、吸気弁軸
に関し前記渦巻部よりも外側に張り出させ、かつ
前記渦巻終端部と前記分岐路終端部との間に、燃
焼室への開口部に向つて突出する隔壁を設けけた
ことにある。
[Means for Solving the Problems] According to the present invention, the above problems are solved in a helical port having an intake passage having a spiral portion and a branch passage partitioned from the intake passage by a partition wall. This problem is solved by making special arrangements for the position of the end of the path and between this end and the end of the spiral. That is, the measures taken to solve the above-mentioned problems in the present invention are as follows: a spiral portion formed around the intake valve; an intake inlet passage connected tangentially to the spiral portion and extending almost straight; and a spiral portion formed around the intake valve. It is composed of a branch passage which is branched from the inlet passage part by a partition wall provided in the guide part of the shaft and communicates with the spiral terminal part of the spiral part, and the ceiling of the spiral part gradually opens into the combustion chamber while reaching the spiral terminal part. In a helical intake port configured such that the ceiling of the branch passage descends rapidly toward the intake valve head, the terminal end of the branch passage is set so that the terminal end of the branch passage is lower than the spiral portion with respect to the intake valve shaft. A partition wall is provided that projects outwardly and projects toward the opening to the combustion chamber between the spiral end portion and the branch path end portion.

〔作用〕[Effect]

本考案によれば、吸気入口通路部から流入した
吸気は渦巻部へと流れる主流と分岐路を流れる副
流とに分かれ、渦巻部を流れる主流はシリンダ内
燃機関に流入して巨視的なスワール流を生じさせ
る。一方、分岐路を流れる副流はその終端部付近
で急激な下降流となるが、この終端部が吸気弁軸
に対して渦巻終端部よりも外側に張り出ているこ
ととこれらの間の隔壁の存在とにより前記スワー
ル流と干渉することなく吸気弁の外側に流れる。
そして前記主流であるスワール流は吸気弁の周り
に存在するので、この領域において前記副流であ
る下降流がこのスワール流に衝突し、微視的な乱
流を生じさせる。
According to the present invention, the intake air flowing from the intake inlet passage is divided into the main stream flowing into the vortex part and the side stream flowing through the branch passage, and the main stream flowing through the volute part flows into the cylinder internal combustion engine to create a macroscopic swirl flow. cause On the other hand, the side flow flowing through the branch path becomes a sharp downward flow near its terminal end, but this terminal end protrudes outward from the spiral terminal end with respect to the intake valve shaft, and there is a partition wall between them. Due to the presence of the swirl flow, the swirl flow flows outside the intake valve without interfering with the swirl flow.
Since the mainstream swirl flow exists around the intake valve, the downward flow, which is the side flow, collides with this swirl flow in this area, causing microscopic turbulence.

このようにして燃焼に必要とされる巨視的なス
ワール流はその勢いが衰えず、このスワール流に
加えて副流が流入するので体積効率が増大し、特
にエンジンの高速高負荷時の出力を増大させる。
またこのスワール流は副流との作用で強力な微視
的な乱流を生じこれが燃焼工程まで持続するた
め、特にスワール流の不足がちのエンジンの低速
時での燃焼を促進し出力を向上させる。
In this way, the macroscopic swirl flow required for combustion does not lose its momentum, and in addition to this swirl flow, a side flow flows in, increasing the volumetric efficiency, especially when the engine is at high speed and under high load. increase
In addition, this swirl flow creates strong microscopic turbulence due to the interaction with the side flow, which persists until the combustion process, which promotes combustion and improves output, especially at low speeds in engines where swirl flow tends to be insufficient. .

〔実施例〕〔Example〕

本考案の実施例について、図面を参照して以下
に説明する。
Examples of the present invention will be described below with reference to the drawings.

第1図ないし第3図を参照すると、1はシリン
ダヘツド、2はシリンダボア(燃焼室)、3は吸
気弁(図示しない)の軸中心、4は吸気入口通路
を示す。吸気弁軸のガイド部には水平断面三角形
状の下方に突出する隔壁31が設けられ、吸気入
口通路4はこの隔壁31により、渦巻通路5と、
分岐路6とに分割される。渦巻通路5は吸気弁軸
の周りに渦巻部51を有し、この渦巻部51は第
2図に示すように、吸気入口通路4から渦巻部終
端部52(第1図)に向つて徐々に下降する天井
部53を有している。分岐路6は吸気入口通路4
からほぼ真直ぐに延び燃焼室2内に達し、前記渦
巻終端部52に連通している。この分岐路6は第
2図に示すように、吸気入口通路4の天井に連続
し図示しない吸気弁傘部に向つて急激に下降する
天井61を有している。また分岐路6の終端部6
2は第1図に示すように、吸気弁軸中心3に関
し、渦巻終端部52より外側に距離hだけ張り出
させ燃焼室中心21の方に向けている。さらに第
2図、第3図に示すように、渦巻終端部52と分
岐路終端部62との間に、燃焼室2側に向つて突
出する終端部隔壁7が設けられている。
Referring to FIGS. 1 to 3, 1 is a cylinder head, 2 is a cylinder bore (combustion chamber), 3 is an axial center of an intake valve (not shown), and 4 is an intake inlet passage. A partition wall 31 having a triangular horizontal cross section and projecting downward is provided on the guide portion of the intake valve shaft.
It is divided into a branch road 6. The spiral passage 5 has a spiral part 51 around the intake valve shaft, and as shown in FIG. 2, this spiral part 51 gradually extends from the intake inlet passage 4 toward the spiral end end 52 (FIG. 1). It has a ceiling portion 53 that descends. Branch passage 6 is intake inlet passage 4
It extends almost straight from the center to reach the inside of the combustion chamber 2, and communicates with the spiral end portion 52. As shown in FIG. 2, this branch passage 6 has a ceiling 61 that is continuous with the ceiling of the intake passage 4 and steeply descends toward an intake valve umbrella (not shown). Also, the terminal end 6 of the branch road 6
As shown in FIG. 1, reference numeral 2 extends outward from the spiral end portion 52 by a distance h with respect to the center 3 of the intake valve shaft, and is directed toward the center 21 of the combustion chamber. Furthermore, as shown in FIGS. 2 and 3, a terminal end partition wall 7 that projects toward the combustion chamber 2 is provided between the spiral terminal end 52 and the branched passage terminal end 62.

上記のように構成された本実施例の作用を説明
する。
The operation of this embodiment configured as described above will be explained.

図示しないインテークマニホルドから吸入され
た新気は吸気入口通路4を通り隔壁31により、
渦巻通路5を流れるスワール流の主流aと、分岐
路6を流れる副流bとの分かれる。渦巻通路5を
流れる主流aは通常のヘリカル型吸気ポートと同
様に図示しない吸気弁傘部と弁シート部との隙間
を通つてシリンダ内に流入し、スワール流a′とな
る。一方、副流bは、主流aと同様に吸気弁傘部
と弁シート部との間を通つて燃焼室2内に流入し
ようとするが、分岐路6がその終端部62を弁軸
中心3に対して外方に距離hだけ張り出させてお
り、かつ渦巻終端部52と分岐路終端部62との
間には終端部隔壁7が設けてあるので、渦巻終端
部52を流れるスワール流aと分岐路6の天井6
1に沿つて流れる急激な下降流b′とは干渉するこ
となく、吸気弁から燃焼室2内に流入する。この
ため、燃焼室2内に発生した巨視的なスワール流
a′は副流bにより損われることなく燃焼に必要と
されるスワール流が保持される。さらにこのスワ
ール流a′に加え、副流bが流入するので、燃焼室
2内の体積効率は増大し、ヘリカル型吸気ポート
で問題となるエンジン高速高負荷時の空気量の低
下がなく出力が増大する。
Fresh air sucked in from an intake manifold (not shown) passes through the intake inlet passage 4 and is passed through the partition wall 31.
The swirl flow is divided into a main flow a flowing through the swirl passage 5 and a side flow b flowing through the branch passage 6. The main flow a flowing through the swirl passage 5 flows into the cylinder through a gap between an intake valve head portion and a valve seat portion (not shown), as in a normal helical intake port, and becomes a swirl flow a′. On the other hand, the side stream b tries to flow into the combustion chamber 2 through the space between the intake valve head and the valve seat like the main stream a, but the branch passage 6 has its terminal end 62 at the center of the valve shaft 3. Since the spiral end portion 52 and the branch path end portion 62 are provided with a terminal partition wall 7, the swirl flow a flowing through the spiral end portion 52 is and ceiling 6 of branch road 6
1 flows into the combustion chamber 2 from the intake valve without interfering with the rapid downward flow b' flowing along the intake valve. Therefore, the macroscopic swirl flow generated in the combustion chamber 2
The swirl flow required for combustion is maintained in a' without being damaged by the side stream b. Furthermore, in addition to this swirl flow a', a side flow b flows in, so the volumetric efficiency inside the combustion chamber 2 increases, and the output is increased without reducing the amount of air at high engine speeds and high loads, which is a problem with helical intake ports. increase

また吸気弁から流出したスワール流aはこの吸
気弁周りに存在しており、この領域においてスワ
ール流aに前記副流の急激な下降流b′に衝突し、
微視的な強力の乱流cを生じさせる。この乱流c
は燃焼行程まで持続するため、特にスワール流の
不足しがちなエンジン低速時での燃焼が促進さ
れ、低速時での出力トルクが向上する。また、上
記の乱流cの発生により燃焼速度が速くなるた
め、燃料の噴射タイミングを遅らせることがで
き、通常問題になるスモークの増加も少なく、
NOxの排出量を減少できる。
Further, the swirl flow a flowing out from the intake valve exists around this intake valve, and in this area, the swirl flow a collides with the rapid downward flow b' of the side flow,
Generates strong microscopic turbulence c. This turbulence c
Since this lasts until the combustion stroke, combustion is promoted especially at low engine speeds where swirl flow tends to be insufficient, improving output torque at low speeds. In addition, since the combustion speed becomes faster due to the generation of the turbulent flow c mentioned above, the fuel injection timing can be delayed, and there is less increase in smoke, which would normally be a problem.
Can reduce NOx emissions.

〔考案の効果〕[Effect of idea]

本考案によれば、噴霧燃料と空気との混合や後
期燃焼に重要な関係を持つ微視的な乱流が効率的
に得られかつこれが燃焼行程まで持続するので、
特にスワール流の不足しがちなエンジン低速時で
の燃焼が促進され出力トルクの増大が図られる。
またこの燃焼速度が速くなることにより燃料の噴
射タイミングを遅らせることができるようにな
り、そのためスモークの増加を少なくして、
NOxの排出を減少するものとなる。
According to the present invention, microscopic turbulence, which has an important relationship with the mixing of sprayed fuel and air and late-stage combustion, can be efficiently obtained and this continues until the combustion stroke.
In particular, combustion is promoted at low engine speeds where swirl flow tends to be insufficient, and output torque is increased.
In addition, by increasing the combustion speed, it is possible to delay the fuel injection timing, which reduces the increase in smoke.
This will reduce NOx emissions.

さらに前記乱流の発生に基づくスワール流の阻
害を回避することができ、燃焼に必要なスワール
流は確保され、またこのスワール流に加えて分岐
路から別の吸気が流入するので、燃焼室内の体積
効率は増大し、特にエンジンの高速高負荷時に必
要な高出力を得ることができる。
Furthermore, it is possible to avoid the obstruction of the swirl flow due to the occurrence of the turbulent flow, the swirl flow necessary for combustion is secured, and in addition to this swirl flow, another intake air flows from the branch path, so the inside of the combustion chamber is The volumetric efficiency is increased, and the high power required especially when the engine is operated at high speed and high load can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案実施例の平面図、第2図は第1
図の−線に沿う縦断面図、第3図は同上実施
例の拡大斜視図である。 1……シリンダヘツド、2……シリンダボア
(燃焼室)、3……吸気弁軸中心、31……隔壁、
4……吸気入口通路、5……渦巻通路、51……
渦巻部、52……渦巻終端部、53……渦巻部天
井、6……分岐路、61……分岐路天井、62…
…分岐路終端部、7……終端部隔壁。
Fig. 1 is a plan view of an embodiment of the present invention, and Fig. 2 is a plan view of an embodiment of the present invention.
A vertical sectional view taken along the line - in the figure, and FIG. 3 is an enlarged perspective view of the same embodiment. 1... Cylinder head, 2... Cylinder bore (combustion chamber), 3... Intake valve shaft center, 31... Partition wall,
4... Intake inlet passage, 5... Spiral passage, 51...
Spiral part, 52... Spiral end part, 53... Spiral part ceiling, 6... Branch road, 61... Branch road ceiling, 62...
... Branch road end part, 7... End part bulkhead.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 吸気弁周りに形成された渦巻部と、該渦巻部に
接線状に接続されほぼ真直ぐに延びる吸気入口通
路部と、吸気弁軸のガイド部に設けた隔壁により
前記入口通路部から分岐され前記渦巻部の渦巻終
端部に連通する分岐路とからなり、前記渦巻部の
天井は渦巻終端部に至る間に徐々に燃焼室に向け
て下降し、前記分岐路の天井は吸気弁傘部に向つ
て急激に下降するよう構成されたヘリカル型吸気
ポートにおいて、前記分岐路の終端部を、吸気弁
軸に関し前記渦巻部よりも外側に張り出させ、か
つ前記渦巻終端部と前記分岐路終端部との間に、
燃焼室への開口部に向つて突出する隔壁を設けた
ことを特徴とするヘリカル型吸気ポート。
A spiral portion formed around the intake valve, an intake inlet passage portion that is tangentially connected to the spiral portion and extends almost straight, and a partition wall provided in the guide portion of the intake valve shaft that branches from the inlet passage portion. The ceiling of the spiral part gradually descends toward the combustion chamber while reaching the spiral end part, and the ceiling of the branch passage connects to the intake valve head part. In a helical intake port configured to descend rapidly, the terminal end of the branch passage is made to protrude outward from the spiral part with respect to the intake valve shaft, and the terminal end of the branch passage is arranged such that the terminal end of the branch passage extends outward from the spiral part, and the terminal end of the branch passage extends outward from the spiral part with respect to the intake valve shaft. Between,
A helical intake port characterized by having a partition wall that protrudes toward the opening to the combustion chamber.
JP1151387U 1987-01-30 1987-01-30 Expired JPH0410337Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1151387U JPH0410337Y2 (en) 1987-01-30 1987-01-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1151387U JPH0410337Y2 (en) 1987-01-30 1987-01-30

Publications (2)

Publication Number Publication Date
JPS63119834U JPS63119834U (en) 1988-08-03
JPH0410337Y2 true JPH0410337Y2 (en) 1992-03-13

Family

ID=30798799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1151387U Expired JPH0410337Y2 (en) 1987-01-30 1987-01-30

Country Status (1)

Country Link
JP (1) JPH0410337Y2 (en)

Also Published As

Publication number Publication date
JPS63119834U (en) 1988-08-03

Similar Documents

Publication Publication Date Title
KR930018138A (en) An internal combustion engine
JPS6263134A (en) Internal combustion engine with cylinder intake port
JPH048610B2 (en)
US6062192A (en) Internal combustion engine with spark ignition
JPH06159079A (en) Intake device for engine
JPH057555B2 (en)
JPH0410337Y2 (en)
JPH01208517A (en) Direct injection type diesel engine
JPH0415938Y2 (en)
JPH0725230U (en) Engine intake system
JP2003502550A (en) Piston type internal combustion engine equipped with secondary air supply flow generating means
JPS6319551Y2 (en)
JPH0988616A (en) Intake device for internal combustion engine
JPS6326257B2 (en)
JPH0121345B2 (en)
JPH0430341Y2 (en)
JP3427614B2 (en) Intake device for internal combustion engine
JPH0415945Y2 (en)
JPS5849383Y2 (en) Intake port of direct injection internal combustion engine
JPS6335165Y2 (en)
JPH0415936Y2 (en)
JP2540799B2 (en) Diesel engine combustion chamber
JPH036824Y2 (en)
JPS603316Y2 (en) Swirl port intake system for direct fuel injection engines
JPS6111422A (en) Suction system device for internal-combustion engine