JPH04103286A - Color correction circuit for color television camera - Google Patents

Color correction circuit for color television camera

Info

Publication number
JPH04103286A
JPH04103286A JP21891290A JP21891290A JPH04103286A JP H04103286 A JPH04103286 A JP H04103286A JP 21891290 A JP21891290 A JP 21891290A JP 21891290 A JP21891290 A JP 21891290A JP H04103286 A JPH04103286 A JP H04103286A
Authority
JP
Japan
Prior art keywords
color
signals
signal
coefficient
color difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21891290A
Other languages
Japanese (ja)
Inventor
Norio Murata
宣男 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Denshi KK
Original Assignee
Hitachi Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Denshi KK filed Critical Hitachi Denshi KK
Priority to JP21891290A priority Critical patent/JPH04103286A/en
Publication of JPH04103286A publication Critical patent/JPH04103286A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Color Television Signals (AREA)

Abstract

PURPOSE:To simplify an adjustment by providing a means selecting a coefficient to be multiplied with each color difference signal depending on the polarity of each color difference signal between two color signals in three primary color signals and multiplying the coefficient with the color difference signal and a means adding the each color difference signal multiplied with the coefficient to a relevant color signal of the three primary color signals. CONSTITUTION:Subtractors 7-9 output color difference signals R-G, G-B, B-R respectively, and when the output is positive, switches 19-21 select coefficients K1, K2, K3 and they are multiplied with each of relevant color difference signals by multipliers 22-24. Then each output of the multipliers 22-24 is added to G, B, R signals by adder circuits 30, 32, 29. On the other hand, when any of the outputs 7-9 is negative, the switches 25-27 is switched as shown in dotted lines and the output of the multipliers 22-24 is added to each of the R, G, B signals by adders 28, 31, 33. Since a hue adjustment coefficient of each of the R, G, B color signals is provided independently, the hue is singly and simply adjusted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、カラーテレビジョンカメラの信号処理回路に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a signal processing circuit for a color television camera.

〔発明の概要〕[Summary of the invention]

本発明は、カラーテレビジョンカメラの色相調整を簡単
にすることと、当該回路の合理化を目的としたものであ
り、従来のリニアマトリクス方式と呼ばれる色相調整回
路の欠点である。回路規模が大きいこと及びある色(た
とえばR)の色相を調整しようとすると、この影響が他
の色(G?B)に及ぶため、調整がしにくいという点を
改善するものである。
The present invention aims to simplify the hue adjustment of a color television camera and to rationalize the circuit, which is a disadvantage of the conventional hue adjustment circuit called a linear matrix system. This is intended to improve the problem that the circuit scale is large and that when trying to adjust the hue of a certain color (for example, R), this effect extends to other colors (G?B), making it difficult to adjust.

本発明はy C1−Cj(C1l CjE R+ G 
r B )色差信号の正の成分と、負の成分を区別して
、各々適当な係数をかけ、対応するCi及びCj倍信号
加減算する方法をとることで2色相調整の容易化を図る
ものであり、また回路をディジタル化する際問題となる
乗算器の数が多いことによる2回路規模の増大を改善す
るものである。
The present invention provides y C1-Cj (C1l CjE R+ G
rB) This method facilitates two-hue adjustment by distinguishing between the positive and negative components of the color difference signal, multiplying them by appropriate coefficients, and adding and subtracting the corresponding Ci and Cj multiplied signals. , and also to improve the increase in the scale of two circuits due to the large number of multipliers, which is a problem when digitizing the circuit.

〔従来の技術〕[Conventional technology]

第2図にプリズム光学系を使用した。カラーテレビジョ
ンカメラの一例を示す。被写体からの光信号は、レンズ
31を通り、プリズム32でR(赤)3G(緑)、B(
青)の各色信号に分解され、各色用撮像素子33〜35
でR,G、Bの各電気信号に変換される。通常、このプ
リズム32の分光感度特性は第3図(A)に示すような
特性をしている。理想的な分光感度特性としては、斜線
で示すR,G、Hのオーバーラツプが無いものであるが
、実際にはこのようなプリズム32を得ることは大変難
しい。
In Figure 2, a prism optical system was used. An example of a color television camera is shown. The optical signal from the subject passes through the lens 31 and is converted into R (red), 3G (green), and B (
blue), and image sensors 33 to 35 for each color
The signal is converted into R, G, and B electrical signals. Normally, the spectral sensitivity characteristics of this prism 32 are as shown in FIG. 3(A). Although the ideal spectral sensitivity characteristic is one in which there is no overlap of R, G, and H as indicated by diagonal lines, it is actually very difficult to obtain such a prism 32.

このため、真赤な被写体を撮像した場合にも。Therefore, even when photographing a bright red subject.

一部の光はG及びB用撮像素子34.35に到達し3G
及びBの電気信号として8力されてしまう。
Some of the light reaches the G and B image sensor 34.35 and 3G
and B as electrical signals.

したがって、カラーモニタで見たこのカメラの出力画像
では、真赤な被写体が、ややくすんだ色に再生される。
Therefore, in the output image of this camera viewed on a color monitor, a bright red subject will be reproduced in a slightly dull color.

このため、信号処理回路36〜38で、増幅等の必要な
処理を施こされたR3G、B信号は、マスキング回路3
9により、電気信号の状態で色相補正を施こされる。一
般にはこのマスキング回路としてリニアマトリクス回路
が良く用いられている。
Therefore, the R3G and B signals that have been subjected to necessary processing such as amplification in the signal processing circuits 36 to 38 are transferred to the masking circuit 3.
9, hue correction is performed in the state of the electrical signal. Generally, a linear matrix circuit is often used as this masking circuit.

第4図にこのマスキング回路のブロック図を示す。FIG. 4 shows a block diagram of this masking circuit.

この動作を簡単に説明すると、入力R,G、B信号より
、減算回路41〜43で、R−G3G−B。
To briefly explain this operation, the subtraction circuits 41 to 43 calculate R-G3G-B from the input R, G, and B signals.

B−Rの各色差信号を作り、係数乗算回路44〜49で
上記信号に適当な係数に1〜に6を掛け、これを加算回
路50〜55でR,G、B信号に加算するものである。
Each color difference signal of B-R is generated, the above signal is multiplied by an appropriate coefficient of 1 to 6 in coefficient multiplication circuits 44 to 49, and this is added to the R, G, and B signals in addition circuits 50 to 55. be.

こうすると、第3図(A)に示した分光感度特性は等測
的に同図(B)に示すように変化し9色再現性を向上さ
せることができる。
In this way, the spectral sensitivity characteristics shown in FIG. 3(A) are changed isometrically as shown in FIG. 3(B), and nine-color reproducibility can be improved.

ところが2本方式には次のような欠点がある。However, the two-wire method has the following drawbacks.

即ち、いま例えば、R信号に加算するR−Gの係数に1
を変化させると2等価的な分光感度特性は。
That is, for example, 1 is added to the R-G coefficient to be added to the R signal.
When changing , the two equivalent spectral sensitivity characteristics are:

第3図(B)に示す様に変化する。つまり、Rに関する
分光感度を調整しようとすると3Gの特性も一緒に働い
てしまい、調整がしにくいという問題が生じる。勿論、
原理的には上記リニアマトリクス回路は、プリズム及び
フィルタ等の光学系での混色を正確に補正できる回路で
ある訳ではあるが、実際には2色相調整回路は混色補正
というより、複数のカメラ間のトーン調整として使われ
ることが多く、調整のしにくさが問題となる。
It changes as shown in FIG. 3(B). In other words, when attempting to adjust the spectral sensitivity related to R, the 3G characteristics also work together, creating the problem that adjustment is difficult. Of course,
In principle, the linear matrix circuit described above is a circuit that can accurately correct color mixture in optical systems such as prisms and filters, but in reality, the two-hue adjustment circuit is a circuit that can accurately correct color mixture between multiple cameras rather than color mixture correction. It is often used as a tone adjustment, and the problem is that it is difficult to adjust.

また9回路をディジタル回路で構成した場合。In addition, when 9 circuits are configured with digital circuits.

従来のリニアマトリクス方式では、係数に1〜に6の乗
算用に、6個の乗算器が必要となる。ディジタル回路で
は、この乗算器の数は2回路規模に大きな影響を与える
ためコスト、大きさ、電力といった面で問題となる。
In the conventional linear matrix method, six multipliers are required for multiplying coefficients by 1 to 6. In digital circuits, the number of multipliers has a large effect on the scale of the two circuits, which poses problems in terms of cost, size, and power.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、従来回路のこの欠点を解決し、調整が簡単で
回路規模の小さいディジタル色相補正回路を提供するこ
とを目的とする。
An object of the present invention is to solve this drawback of the conventional circuit and provide a digital hue correction circuit that is easy to adjust and has a small circuit scale.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記の目的を達成するため、ディジタル化さ
れたR3G、B信号から、 C1−Cj(Ci。
In order to achieve the above object, the present invention converts C1-Cj (Ci) from digitized R3G and B signals.

CjER,G、B)信号を得る減算手段と、これら減算
結果の正負極性に応じて異なる2種類の係数を選択する
手段と、該選択された係数を上記減算結果を乗算する手
段と、該乗算結果を上記減算結果の極性に応じ、対応す
るCi又はCj倍信号加算もしくは減算する手段を有す
る構成としたことを特徴とする。
CjER, G, B) subtraction means for obtaining a signal; means for selecting two different types of coefficients depending on the positive/negative polarity of these subtraction results; means for multiplying the selected coefficients by the above subtraction results; The present invention is characterized in that it has a configuration that includes means for adding or subtracting a corresponding Ci or Cj multiplied signal depending on the polarity of the subtraction result.

〔作用〕[Effect]

本発明では、前記減算手段により計算したC1−Cjの
計算結果が正の場合は、この計算結果に所定の定数に1
を乗算し、Cj倍信号らKl(Ci−Cj)を減(加)
算し、また、C1−Cjの計算結果が負のときは、この
計算結果に別の所定の定数に2を乗じてCi倍信号らに
2 (Ci−Cj)を加(減)算するという方法を用い
ることにより、R2O,Bの各色信号毎に単独に色相調
整を行うことを可能にするとともに、使用する乗算器の
数を従来の半分の3個に減らすことを可能にするもので
ある。
In the present invention, when the calculation result of C1-Cj calculated by the subtraction means is positive, this calculation result is added to a predetermined constant by 1.
Multiply by and subtract (add) Kl (Ci - Cj) from Cj times the signal
Also, when the calculation result of C1-Cj is negative, this calculation result is multiplied by 2 by another predetermined constant, and 2 (Ci-Cj) is added (subtracted) to the Ci multiplied signal. By using this method, it is possible to perform hue adjustment independently for each color signal of R2O and B, and it is also possible to reduce the number of multipliers used to three, which is half of the conventional method. .

〔実施例〕 第1図に本発明の第1の実施例を示し、以下本発明の詳
細な説明する。第2図のプリズム32又は色フィルタに
より色分解され、撮像素子33〜35により光電変換さ
れたR3G、B信号は、増幅等の処理をアナログ処理回
路1〜3で施された後、A−D変換器4〜6でディジタ
ル信号に変換される。該A−D変換器4〜6の8力のデ
ィジタル信号は、減算器7〜9に送られ色差信号R−G
[Embodiment] FIG. 1 shows a first embodiment of the present invention, and the present invention will be described in detail below. The R3G and B signals color-separated by the prism 32 or color filter in FIG. The signals are converted into digital signals by converters 4 to 6. The eight digital signals from the A-D converters 4 to 6 are sent to subtracters 7 to 9 to produce color difference signals R-G.
.

G−B、B−Hに変換される。Converted to GB, B-H.

本発明の特徴は、上記色差信号R−G3G−B。A feature of the present invention is the color difference signal R-G3G-B.

B−Rの各々の極性により、対応するスイッチ19〜2
1.25〜27を切替え、従来に較べ半分の数の乗算器
22〜24でR,G、B3色の色相調整を独立に行える
ようにしたことにある。以下このプロセスを詳細に述べ
ると、減算器7〜9からは、符号ビット10〜12つき
の色差信号R−G3G−B、B−Rが出力され9乗算器
22〜24に送られる。この各々の乗算器22〜24で
上記各色差信号に乗算される係数に1〜に6は、係数用
レジスタ13〜18に格納されている。このうちKl、
に5はR信号の色相調整用係数で、同様にに2.に3は
G用、に4.に6はB用である。つまり。
Depending on the polarity of each of B-R, the corresponding switch 19-2
1.25 to 27, and the hue adjustment of the three colors R, G, and B can be performed independently using half the number of multipliers 22 to 24 compared to the conventional one. Describing this process in detail below, subtracters 7-9 output color difference signals R-G3G-B and BR with sign bits 10-12, and are sent to 9 multipliers 22-24. Coefficients 1 to 6, which are multiplied by each color difference signal in each of the multipliers 22 to 24, are stored in coefficient registers 13 to 18. Among these, Kl,
5 is the hue adjustment coefficient of the R signal, and similarly 2. 3 is for G, 4 is for G. 6 is for B. In other words.

本発明では1つの乗算器に対し、2つの係数が係数レジ
スタに用意されている。そして減算器7〜9の出力が正
のときには、スイッチ19〜21で係数Kl、に3.に
5が選択され9乗算器22〜24で対応する各色差信号
に乗算される。そして。
In the present invention, two coefficients are prepared in the coefficient register for one multiplier. When the outputs of the subtracters 7-9 are positive, the switches 19-21 change the coefficient Kl to 3. 5 is selected and each corresponding color difference signal is multiplied by 9 multipliers 22-24. and.

この乗算結果はスイッチ25〜27に送られるが。This multiplication result is sent to switches 25-27.

当該スイッチは上記減算器7〜9の呂カが正のときには
2図中実線で示すように切替えられる。このとき2乗算
器22〜24の出力は加算回路30゜32.29により
3G、B、Rの信号に加算される。一方、7〜9の出力
が負のときは、スイッチ25〜27は点線の様に切替え
られ7乗算122〜24出力は、加算器28,31.3
3によりR2O,Hの各信号に加算される。
The switch is switched as shown by the solid line in FIG. 2 when the positive values of the subtractors 7 to 9 are positive. At this time, the outputs of the 2 multipliers 22 to 24 are added to the 3G, B, and R signals by an adder circuit 30°32.29. On the other hand, when the outputs of 7 to 9 are negative, the switches 25 to 27 are switched as shown by the dotted line, and the outputs of 7 multipliers 122 to 24 are transferred to the adders 28, 31.3.
3 is added to each signal of R2O and H.

以上の動作により2例えば今、赤色の被写体を撮像して
いたとすると、R−G信号は正、B−R信号は負となり
、スイッチ19.25は実線のように、スイッチ21.
27は点線のように切替わる。つまり3G信号にはKI
X(R−G)信号が。
As a result of the above operations, for example, if a red object is being imaged now, the R-G signal becomes positive and the B-R signal becomes negative, and the switches 19.25 and 21.
27 is switched as shown by the dotted line. In other words, KI for 3G signal
X (R-G) signal.

B信号にはに6X(B−R)信号が加算される。A 6X (BR) signal is added to the B signal.

ここで、係数に1を負、に6を正の値にし、赤色光がG
、B用撮像素子34,35 (第2図)にもれ込んだ分
を丁度キャンセルできる値に調整すれば。
Here, we set the coefficient to 1 as a negative value and 6 as a positive value, so that the red light
, if the value is adjusted to a value that can exactly cancel out the amount leaked into the B image pickup elements 34 and 35 (FIG. 2).

この赤色被写体撮像時のG、B信号出力が零になり、純
粋な赤色画像が再生できる。一方、緑色被写体を撮像す
ると、今度はR−G信号は負3G−B信号は正になる。
When this red object is imaged, the G and B signal outputs become zero, and a pure red image can be reproduced. On the other hand, when a green object is imaged, the RG signal becomes negative and the 3G-B signal becomes positive.

このため、スイッチ19.25は点線側に、スイッチ2
0.26は実線側に切替わり、R信号にはに2X(R−
G)信号が、B信号にはに3 X (G−B)信号が加
算される。よって。
Therefore, switch 19.25 is placed on the dotted line side, switch 2
0.26 switches to the solid line side, and the R signal has 2X (R-
The G) signal is added to the B signal, and the 3.times.(G-B) signal is added to the B signal. Therefore.

係数に2.に3を適当な値に調整すれば、純粋な緑色画
像が再生できる。また、同様に係数に4. K5の調整
で純粋な青色画像が再生できる。
2 for the coefficient. By adjusting 3 to an appropriate value, a pure green image can be reproduced. Similarly, the coefficient is 4. A pure blue image can be reproduced by adjusting the K5.

即2本発明では乗算器は3個しか使用していないが、R
,G、B各色信号の色相調整用係数は。
2. Although only three multipliers are used in the present invention, R
, G, and B color signals are as follows.

R信号用がKl、に6.G信号用かに2.に3.B信号
用かに4.に5と各々独立しているので、各色単独で簡
単に色相調整を行うことが可能になる。
6 for R signal to Kl. Crab for G signal 2. 3. Crab for B signal 4. and 5 are independent, so it is possible to easily adjust the hue of each color individually.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明を用いると、従来に比べ大幅に回路
規模の削減が図れ、かっ各色独立の色相調整が可能にな
るという大きなメリットがある。
As described above, the use of the present invention has the great advantage of being able to significantly reduce the circuit scale compared to the conventional method, and making it possible to independently adjust the hue of each color.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図。 第2図はテレビジョンカメラの概略ブロック図。 第3図はプリズムの分光感度特性図、第4図1土従来の
マスキング回路を示すブロック図である。 4〜6 : A−D変換器、7〜9:減算器、28〜3
3:加算器、22〜24:乗算器、19〜21.25〜
27:スイッチ。
FIG. 1 is a block diagram showing one embodiment of the present invention. FIG. 2 is a schematic block diagram of a television camera. FIG. 3 is a spectral sensitivity characteristic diagram of a prism, and FIG. 4 is a block diagram showing a conventional masking circuit. 4-6: A-D converter, 7-9: Subtractor, 28-3
3: Adder, 22-24: Multiplier, 19-21.25-
27: Switch.

Claims (1)

【特許請求の範囲】[Claims] 1、R(赤)3G(緑)、B(青)あるいはこれらの補
色の3原色信号における各2色信号間のレベル差をとり
、この差分を所定の割合で対応する上記3原色信号に、
加算又は減算することで色相補正を行うカラーテレビジ
ョンカメラにおいて、上記3原色信号における2色信号
間の各差信号の極性に応じ、該各差信号に乗ずる係数の
値を選択し乗算する手段と、該係数倍された各差信号を
対応する上記3原色信号に加算する手段とを有すること
を特徴とするカラーテレビジョンカメラの色補正回路。
1, R (red), 3G (green), B (blue), or their complementary colors, take the level difference between each two color signals, and apply this difference at a predetermined ratio to the corresponding three primary color signals,
In a color television camera that performs hue correction by addition or subtraction, means for selecting and multiplying the value of a coefficient to be multiplied by each difference signal according to the polarity of each difference signal between two color signals in the three primary color signals; , and means for adding each difference signal multiplied by the coefficient to the corresponding three primary color signals.
JP21891290A 1990-08-22 1990-08-22 Color correction circuit for color television camera Pending JPH04103286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21891290A JPH04103286A (en) 1990-08-22 1990-08-22 Color correction circuit for color television camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21891290A JPH04103286A (en) 1990-08-22 1990-08-22 Color correction circuit for color television camera

Publications (1)

Publication Number Publication Date
JPH04103286A true JPH04103286A (en) 1992-04-06

Family

ID=16727267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21891290A Pending JPH04103286A (en) 1990-08-22 1990-08-22 Color correction circuit for color television camera

Country Status (1)

Country Link
JP (1) JPH04103286A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100475284B1 (en) * 1997-12-24 2005-06-07 삼성테크윈 주식회사 Light source correction device of digital still camera

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100475284B1 (en) * 1997-12-24 2005-06-07 삼성테크윈 주식회사 Light source correction device of digital still camera

Similar Documents

Publication Publication Date Title
KR100657772B1 (en) Image processing apparatus, image processing method and camera
JPS61154357A (en) Color picture input device
JP3489118B2 (en) Single-chip color camera and its color signal processing circuit
US5949482A (en) Optimization processing for integrated circuit physical design automation system using optimally switched cost function computations
JPH0832056B2 (en) Color signal enhancement circuit
JPH04103286A (en) Color correction circuit for color television camera
JPH03272294A (en) Hue correction device for color video signal
JP2569691B2 (en) Color difference signal forming circuit
JP3612891B2 (en) Outline enhancement method of imaging output of solid-state imaging device
JP2995683B2 (en) Color correction circuit for color video signals
JPH0823541A (en) Color image pickup device
JP2532962B2 (en) Color video camera
JPH0651734A (en) Method and apparatus for adjusting luminance of chrominance signal
KR900006466B1 (en) Solid stade color image apparatus
JPH02140064A (en) Color signal processor
JPH10178653A (en) Color correcting circuit of television camera
JPH05145940A (en) Signal processor for color image pickup device
JP3049434B2 (en) Color imaging device
JP2502599B2 (en) Color imaging device
JPH10108212A (en) Color encoder matrix device and signal synthesizing method
JPH05316531A (en) Color reproduction variable circuit and image pickup device
JPH02254865A (en) Color picture reader
JPH04192988A (en) Matrix circuit
JPS59770B2 (en) Shikisaigazo Hanteisouchi
JPH0511642U (en) Color scanner with video plate making function