JPH04103214U - Internal combustion engine exhaust aftertreatment device - Google Patents

Internal combustion engine exhaust aftertreatment device

Info

Publication number
JPH04103214U
JPH04103214U JP156391U JP156391U JPH04103214U JP H04103214 U JPH04103214 U JP H04103214U JP 156391 U JP156391 U JP 156391U JP 156391 U JP156391 U JP 156391U JP H04103214 U JPH04103214 U JP H04103214U
Authority
JP
Japan
Prior art keywords
filter
fuel
catalyst
exhaust
spray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP156391U
Other languages
Japanese (ja)
Inventor
伸和 兼先
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP156391U priority Critical patent/JPH04103214U/en
Publication of JPH04103214U publication Critical patent/JPH04103214U/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】排気微粒子捕集用の触媒付フィルタに燃料を吹
き付けて該フィルタの再生を促進するものにおいて、フ
ィルタ前面に均一に燃料を供給し、不均一な燃焼を防止
する。 【構成】ケーシング4内にセラミックス等からなる排気
微粒子捕集用の触媒付フィルタ3が配設され、かつその
前方に、薄い燃料捕捉用フィルタ9が配置される。燃料
捕捉用フィルタ9は微粒子が通過し得るように比較的目
が粗い。また、この燃料捕捉用フィルタ9へ向けて燃料
噴射弁6が配置される。燃料捕捉用フィルタ9および触
媒付フィルタ3は、燃料噴射弁6の噴霧形状に沿うよう
に、楕円形をなしている。
(57) [Summary] [Purpose] To spray fuel onto a catalyst-equipped filter for collecting exhaust particulates to promote regeneration of the filter, by uniformly supplying fuel to the front of the filter and preventing uneven combustion. . Structure: A catalyst-equipped filter 3 made of ceramics or the like for collecting exhaust particulates is disposed in a casing 4, and a thin fuel-trapping filter 9 is disposed in front of it. The fuel trapping filter 9 has relatively coarse mesh so that particulates can pass therethrough. Further, a fuel injection valve 6 is arranged toward the fuel trapping filter 9. The fuel trapping filter 9 and the catalyst-equipped filter 3 have an elliptical shape so as to follow the spray shape of the fuel injection valve 6.

Description

【考案の詳細な説明】[Detailed explanation of the idea]

【0001】0001

【産業上の利用分野】[Industrial application field]

この考案は、主としてディーゼル機関等の内燃機関から排出されるカーボン微 粒子等の排気微粒子を捕集除去するための排気後処理装置に関する。 This idea is mainly based on carbon particles emitted from internal combustion engines such as diesel engines. The present invention relates to an exhaust aftertreatment device for collecting and removing exhaust particulates such as particles.

【0002】0002

【従来の技術】[Conventional technology]

例えばディーゼル機関で問題となるカーボン微粒子等を処理するために、排気 系にフィルタを介装した排気後処理装置においては、目詰まりによる背圧上昇を 避けるために、フィルタに堆積した粒子状物質を適当な時期に再燃焼させてフィ ルタの再生を図る必要がある。一般に、粒子状物質が堆積したフィルタを排気熱 により再生するためには、500℃〜600℃以上の排気温度が必要であるが、 通常の市街地走行に相当する機関運転領域では、排気温度が200℃〜300℃ 程度にしか達しないので、フィルタの確実な再生は期待できない。 For example, in order to treat carbon particulates that are a problem in diesel engines, In exhaust aftertreatment equipment that has a filter installed in the system, back pressure increases due to clogging can be avoided. In order to avoid It is necessary to revitalize the country. Generally, filters with deposits of particulate matter are exhausted by exhaust heat. In order to regenerate by In the engine operating range corresponding to normal city driving, the exhaust temperature is between 200℃ and 300℃. Therefore, reliable regeneration of the filter cannot be expected.

【0003】 そこで、従来から、フィルタに触媒を担持させるとともに、燃料噴射装置を設 けて強制的な再生を行うようにしたものが知られている。0003 Therefore, in the past, a catalyst was supported on the filter and a fuel injection device was installed. There is a known device that performs forced regeneration.

【0004】 図7は、その一例として特開昭59−122721号公報に記載の排気後処理 装置を示しており、内燃機関11の排気通路12に例えば三次元多孔体からなる セラミックスフィルタ13が介装されているとともに、該フィルタ13に酸化触 媒がコーティングされている。そして、フィルタ13より上流側の排気通路12 に電磁弁型の燃料噴射弁14が配設されており、ポンプ15にて加圧された燃料 を、適宜な再生時期に排気通路12内に噴射供給するようになっている。このよ うに触媒と燃料噴射とを併用したものによれば、燃料と触媒との反応熱を利用し て粒子状物質の燃焼を開始させ得るので、比較的低い排気温度、例えば150℃ 程度でもってフィルタの再生が可能となる。0004 FIG. 7 shows an example of the exhaust aftertreatment described in Japanese Patent Application Laid-open No. 122721/1983. The device is shown in which an exhaust passage 12 of an internal combustion engine 11 is made of, for example, a three-dimensional porous body. A ceramic filter 13 is interposed, and the filter 13 is provided with an oxidizing catalyst. Coated with medium. Then, an exhaust passage 12 upstream of the filter 13 An electromagnetic valve type fuel injection valve 14 is disposed in the fuel injection valve 14, and the fuel pressurized by the pump 15 is injected into the fuel injection valve 14. is injected and supplied into the exhaust passage 12 at an appropriate regeneration timing. This way According to the combination of a sea urchin catalyst and fuel injection, the heat of reaction between the fuel and the catalyst is used. A relatively low exhaust temperature, e.g. 150°C, can initiate particulate combustion The filter can be regenerated to a certain degree.

【0005】[0005]

【考案が解決しようとする課題】 しかしながら、上記従来の排気後処理装置においては、燃料噴射弁14にて噴 射された燃料噴霧がフィルタ13上流の排気通路12壁面に衝突するようになっ ているので、噴射された燃料の多くが排気通路12の壁面に付着して下流に流れ る形となり、フィルタ13に均一に分布させることが難しい。[Problem that the idea aims to solve] However, in the above-mentioned conventional exhaust aftertreatment device, the fuel injection valve 14 injects The injected fuel spray collides with the wall surface of the exhaust passage 12 upstream of the filter 13. Therefore, most of the injected fuel adheres to the wall of the exhaust passage 12 and flows downstream. Therefore, it is difficult to distribute the particles uniformly on the filter 13.

【0006】 従って、フィルタ13を均一に再生することができず、例えば、燃え残った部 分に粒子状物質が多量に堆積し、次の再生時に過度に高温となってフィルタ13 の焼損を招く、等のおそれがあった。[0006] Therefore, the filter 13 cannot be regenerated uniformly, and for example, the filter 13 cannot be regenerated uniformly. During the next regeneration, a large amount of particulate matter accumulates and the filter 13 becomes too hot during the next regeneration. There was a risk of burnout, etc.

【0007】 しかも、周囲の通路壁面付近では逆に多量に燃料が溜まり、十分に触媒および 酸素と接触できないので、燃料成分が十分酸化されずにそのまま大気中に排出さ れてしまう可能性がある。[0007] Moreover, a large amount of fuel accumulates near the surrounding passage walls, making it difficult for the catalyst and Since it cannot come into contact with oxygen, the fuel components are not sufficiently oxidized and are emitted directly into the atmosphere. There is a possibility that it will be lost.

【0008】 また、上記のような燃料壁流を避けるために、フィルタ13の前面に向けて直 接燃料を噴射することも可能ではあるが、一般に燃料噴射弁の噴霧の広がり角度 は20〜30°程度であるため、広範囲に噴射することは難しく、やはりフィル タ13に均一に燃料を分布させることはできない。特に、この場合には、フィル タ13の中心部に燃料が多く溜まってしまい、十分酸化されずに下流に排出され 易くなるとともに、周辺部で燃料が不足しがちとなる。[0008] In addition, in order to avoid the fuel wall flow as described above, the Although it is possible to inject direct fuel, generally the spread angle of the fuel injector's spray Since the angle is about 20 to 30 degrees, it is difficult to spray over a wide area, and the filter It is not possible to uniformly distribute the fuel in the tank 13. In particular, in this case, the filter A large amount of fuel accumulates in the center of the tank 13 and is not sufficiently oxidized and is discharged downstream. At the same time, fuel tends to run out in the surrounding areas.

【0009】[0009]

【課題を解決するための手段】[Means to solve the problem]

そこで、この考案は、内燃機関の排気通路に介装された排気微粒子捕集用の触 媒付フィルタと、このフィルタを再生させるための燃料噴射装置とを備えた内燃 機関の排気後処理装置において、上記フィルタを断面楕円形に形成するとともに 、その前面から所定間隔離れた位置に、上記フィルタと略同一の楕円形状をなす 目の粒い燃料捕捉用フィルタを配設し、かつ上記燃料噴射装置を、その噴霧の投 影形状が上記燃料捕捉用フィルタの前面形状に略一致するように、該燃料捕捉用 フィルタへ向けて斜めに配設したことを特徴としている。 Therefore, this idea was developed to use a catalyst installed in the exhaust passage of an internal combustion engine to collect exhaust particulates. An internal combustion engine equipped with a media filter and a fuel injection device for regenerating this filter. In an engine exhaust aftertreatment device, the filter is formed to have an elliptical cross section and , located at a predetermined distance from the front surface, has an elliptical shape that is approximately the same as the above filter. A fine-mesh fuel capture filter is provided, and the fuel injection device is the fuel trapping filter so that its shadow shape approximately matches the front shape of the fuel trapping filter. It is characterized by being arranged diagonally toward the filter.

【0010】0010

【作用】[Effect]

上記構成では、燃料捕捉用フィルタは比較的目が粗いので、カーボン等の排気 微粒子はこの燃料捕捉用フィルタを素通りし、触媒付フィルタに捕集される。 In the above configuration, the fuel capture filter has relatively coarse mesh, so it is difficult to remove carbon, etc. Particulates pass through this fuel trapping filter and are collected by the catalyst-equipped filter.

【0011】 これに対し、適当な再生時期に燃料噴射装置から噴射された燃料噴霧は、その 粒径が排気微粒子に比して非常に大きいので、燃料捕捉用フィルタに捕捉され、 該燃料捕捉用フィルタの全面に広がる。ここで、燃料捕捉用フィルタは、斜め方 向から円錐状に噴射される燃料噴霧の投影形状と略一致するような楕円形状をな すため、全面に一層むらなく燃料が付着する。[0011] On the other hand, the fuel spray injected from the fuel injection device at the appropriate regeneration timing Since the particle size is very large compared to exhaust particulates, they are captured by the fuel capture filter, It spreads over the entire surface of the fuel trapping filter. Here, the fuel capture filter is installed diagonally. An elliptical shape that approximately matches the projected shape of the fuel spray that is injected conically from the opposite direction. As a result, fuel adheres to the entire surface more evenly.

【0012】 そして、この燃料捕捉用フィルタの全面に付着した燃料は、排気流によって吹 き飛ばされ、更に微粒化されて、下流に位置する触媒付フィルタの前面に略均一 に付着する。この燃料によって、触媒付フィルタの再生が各部均一に促進される 。0012 The fuel adhering to the entire surface of this fuel trapping filter is then blown away by the exhaust flow. The particles are blown away, further atomized, and distributed almost uniformly on the front surface of the catalyst-equipped filter located downstream. Attach to. This fuel uniformly promotes regeneration of the catalytic filter in all parts. .

【0013】[0013]

【実施例】【Example】

以下、この考案の一実施例を図面に基づいて詳細に説明する。 Hereinafter, one embodiment of this invention will be described in detail based on the drawings.

【0014】 図3は、この考案に係る排気後処理装置の一実施例を示すもので、内燃機関1 の排気通路2に排気微粒子捕集用の触媒付フィルタ3がケーシング4とともに介 装されている。[0014] FIG. 3 shows an embodiment of the exhaust aftertreatment device according to this invention, in which an internal combustion engine 1 A catalyst-equipped filter 3 for collecting exhaust particulates is interposed in the exhaust passage 2 together with a casing 4. equipped.

【0015】 上記ケーシング4は、図1,図2に示すように、排気通路2に比して大きな断 面積を有し、かつ偏平な楕円形の断面形状をなしている。そして、一方に略円錐 形の入口部4aが、他方に略円錐形の出口部4bがそれぞれ形成されていて、前 後の排気通路2に接続されている。また、上記入口部4aの一方の側部に、円筒 形をなす燃料噴霧導入管5が突出形成されている。[0015] As shown in FIGS. 1 and 2, the casing 4 has a larger cross section than the exhaust passage 2. It has a flat elliptical cross-sectional shape. And on one side there is a roughly conical shape. A substantially conical inlet portion 4a is formed on the other side, and a substantially conical outlet portion 4b is formed on the other side. It is connected to the rear exhaust passage 2. Further, a cylindrical cylinder is provided on one side of the inlet portion 4a. A shaped fuel spray introduction pipe 5 is formed protrudingly.

【0016】 この燃料噴霧導入管5は、燃料通路2の中心軸線に対し斜めに、例えば60° 程度傾いた状態に形成されており、その底部に、燃料噴射装置の主要部をなす電 磁弁型の燃料噴射弁6が取り付けられている。尚、上記燃料噴射弁6の噴射方向 は燃料噴霧導入管5と同軸状となっており、円錐形に広がる燃料噴霧(その広が り角をθとして示す)と干渉しないように燃料噴霧導入管5の口径が設定されて いる。[0016] The fuel spray introduction pipe 5 is arranged at an angle of, for example, 60° with respect to the central axis of the fuel passage 2. It is formed in a somewhat slanted state, and at the bottom there is an electric terminal that is the main part of the fuel injection device. A magnetic valve type fuel injection valve 6 is attached. In addition, the injection direction of the fuel injection valve 6 is coaxial with the fuel spray introduction pipe 5, and the fuel spray spreads in a conical shape (its spread The diameter of the fuel spray introduction pipe 5 is set so as not to interfere with the angle shown as θ). There is.

【0017】 上記燃料噴射弁6には、図3に示すように、燃料ポンプ7によって加圧された 燃料が供給されており、制御回路8からの駆動信号によって燃料噴射弁6が開く と、ケーシング4内に燃料が噴射されるようになっている。[0017] As shown in FIG. 3, the fuel injection valve 6 is pressurized by a fuel pump 7. Fuel is being supplied, and the fuel injection valve 6 is opened by a drive signal from the control circuit 8. Then, fuel is injected into the casing 4.

【0018】 上記触媒フィルタ3は、セラミックスの三次元多孔体(いわゆるセラミックス フォーム)や格子状の網目を有する薄い金属板を多数積層した金属網目構造体等 からなり、カーボン等の排気微粒子(通常、その粒径は0.1〜0.2μm程度 である)を十分に捕集できるように、その目の粗さや軸方向長さが設定されてい るとともに、表面に、パラジウム等の触媒が担持されている。そして、上記触媒 付フィルタ3は、ケーシング4に沿った楕円形断面を有し、図示せぬ緩衝材を介 してケーシング4内に保持されている。[0018] The catalyst filter 3 is a three-dimensional ceramic porous body (so-called ceramic foam) or metal mesh structures made by laminating many thin metal plates with lattice-like meshes, etc. It consists of exhaust particulates such as carbon (usually, the particle size is about 0.1 to 0.2 μm) The coarseness of the mesh and the length in the axial direction are set so that it can sufficiently collect In addition, a catalyst such as palladium is supported on the surface. And the above catalyst The attached filter 3 has an elliptical cross section along the casing 4, and is provided with a cushioning material (not shown). and is held within the casing 4.

【0019】 上記触媒付フィルタ3の前方には、比較的薄い(軸方向長さが短い)燃料捕捉 用フィルタ9が配設されている。この燃料捕捉用フィルタ9は、触媒付フィルタ 3と同様にセラミックスの三次元多孔体あるいは金属構造体等から形成されてい るが、触媒付フィルタ3とは異なり、触媒は担持していない。また、この燃料捕 捉用フィルタ9は、燃料噴霧(噴霧粒径は約200μm程度である)は捕捉する が、微細なカーボン等の排気微粒子は捕集せずに通過させ得るように、その目の 粗さが比較的大きく設定されている。[0019] In front of the catalyst filter 3, there is a relatively thin (short axial length) fuel trap. A filter 9 for use is provided. This fuel trapping filter 9 is a filter with a catalyst. Similar to 3, it is formed from a three-dimensional porous ceramic body or a metal structure. However, unlike the catalyst-equipped filter 3, no catalyst is supported. Also, this fuel trap The trapping filter 9 traps fuel spray (spray particle size is approximately 200 μm). However, the eyes are designed to allow exhaust particulates such as fine carbon to pass through without being collected. The roughness is set relatively large.

【0020】 そして、上記燃料捕捉用フィルタ9は、触媒付フィルタ3と同一の楕円形状を なし、図示せぬ緩衝材を介してケーシング4内に保持されている。[0020] The fuel trapping filter 9 has the same elliptical shape as the catalyst-equipped filter 3. None, it is held within the casing 4 via a cushioning material (not shown).

【0021】 ここで、上記燃料捕捉用フィルタ9は、触媒付フィルタ3の前面から所定間隔 離れた位置にあり、かつ排気通路2の中心軸線と直交するように配設されている 。また、上述した燃料噴射弁6から噴射される燃料噴霧の投影形状と上記燃料捕 捉用フィルタ9の前面形状とが略一致している。換言すれば、斜めから噴射され る円錐形の燃料噴霧を排気通路2の中心軸線に対し垂直に切ったときの投影形状 と一致するように、噴射方向および燃料捕捉用フィルタ9等の楕円形状が設定さ れている。[0021] Here, the fuel trapping filter 9 is arranged at a predetermined distance from the front surface of the catalyst-equipped filter 3. located at a remote location and arranged perpendicular to the central axis of the exhaust passage 2 . Furthermore, the projected shape of the fuel spray injected from the fuel injection valve 6 described above and the fuel capture The front shape of the trapping filter 9 substantially matches. In other words, it is sprayed from an angle. Projected shape of a conical fuel spray cut perpendicular to the central axis of the exhaust passage 2 The injection direction and the elliptical shape of the fuel capture filter 9, etc. are set to match the It is.

【0022】 上記実施例の構成においては、内燃機関から排出されたカーボン等の排気微粒 子は、目の粗い燃料捕捉用フィルタ9をそのまま通過し、下流の触媒付フィルタ 3に捕集される。そして、機関がある程度の高速高負荷域で運転され、排気温度 が400℃程度となれば、触媒作用によってフィルタ3に堆積していた粒子状物 質が再燃焼し、フィルタ3の再生が自然になされることになる。[0022] In the configuration of the above embodiment, exhaust particulates such as carbon emitted from the internal combustion engine The fuel passes through the coarse fuel trapping filter 9 as it is, and then passes through the downstream filter with catalyst. It is collected in 3. Then, the engine is operated at a certain high speed and high load range, and the exhaust temperature When the temperature reaches about 400℃, the particulate matter that had accumulated on the filter 3 due to the catalytic action The fuel will be re-burned and the filter 3 will be regenerated naturally.

【0023】 一方、市街地走行に相当する排気温度の低い運転状態が長時間継続すると、排 気熱のみによる再生は期待できないので、低速走行の走行距離積算値や運転時間 積算値あるいはフィルタ3の前後差圧の検出などに基づいて制御回路8により燃 料噴射弁6から適当量の燃料が噴射される。この燃料噴霧は、燃料捕捉用フィル タ9に衝突し、該フィルタ9に捕捉されて、その全面に広がる。ここで、燃料捕 捉用フィルタ9の前面形状は、噴霧の投影形状と略一致しているので、該フィル タ9の全面にむらなく燃料が吹き付けられる。[0023] On the other hand, if operating conditions with low exhaust gas temperature, equivalent to city driving, continue for a long time, Since regeneration by air heat alone cannot be expected, the cumulative mileage and driving time when driving at low speeds The control circuit 8 controls the combustion based on the integrated value or the detection of the differential pressure across the filter 3. An appropriate amount of fuel is injected from the fuel injection valve 6. This fuel spray is produced by a fuel trapping filter. The particles collide with the filter 9, are captured by the filter 9, and spread over the entire surface thereof. Here, the fuel trap Since the front shape of the trapping filter 9 approximately matches the projected shape of the spray, the filter Fuel is sprayed evenly over the entire surface of the tank 9.

【0024】 そして、このように燃料捕捉用フィルタ9に付着した燃料は、排気流によって 吹く飛ばされ、下流に位置する触媒付フィルタ3の前面に付着する。従って、触 媒付フィルタ3の前面に均一に燃料を付着させることができ、触媒作用により1 50〜200℃程度の低い排気温度でもって各部均一な再生を行わせることが可 能となる。[0024] The fuel adhering to the fuel trapping filter 9 in this way is removed by the exhaust flow. It is blown away and adheres to the front surface of the catalyst-equipped filter 3 located downstream. Therefore, touch The fuel can be evenly deposited on the front surface of the mediated filter 3, and the catalytic action Uniform regeneration of each part is possible with a low exhaust temperature of about 50 to 200℃. Becomes Noh.

【0025】 図4〜図6は、燃料捕捉用フィルタ9を単純な格子状の網目構造にモデル化し た説明図であって、図4に示すように、排気流が矢印Aのように燃料捕捉用フィ ルタ9に垂直に流入するのに対し、燃料噴霧は矢印Bのように斜め方向から衝突 する。そのため、排気流方向から見ると、図5のように見える格子パターンが、 燃料噴霧方向から見ると、図6のように変化することになり、実質的な格子間隔 Lが小さくなる。図示例では、60°の傾斜角で燃料を噴射するため、上記格子 間隔LがL/2となる。[0025] 4 to 6 model the fuel trapping filter 9 as a simple grid-like network structure. FIG. 4 is an explanatory diagram showing that the exhaust flow flows through the fuel capture filter as shown by arrow A. While the fuel spray enters the router 9 vertically, it collides from an oblique direction as shown by arrow B. do. Therefore, when viewed from the exhaust flow direction, the lattice pattern that looks like Figure 5 is When viewed from the fuel spray direction, the actual grid spacing changes as shown in Figure 6. L becomes smaller. In the illustrated example, in order to inject fuel at an inclination angle of 60°, the grid The interval L is L/2.

【0026】 従って、燃料噴霧に対しては網目構造が密となり、その結果燃料粒子が通過し てしまうことなく確実に捕捉される。[0026] Therefore, the network structure becomes dense for fuel spray, and as a result, fuel particles cannot pass through. It is captured reliably without being lost.

【0027】 これに対し、排気流に対しては網目構造が粗となるので、燃料捕捉用フィルタ 9に一旦付着した燃料が排気流によって容易に吹き飛ばされ、確実に下流へ流さ れる。そして、このように燃料捕捉用フィルタ9から離脱して下流に流れる際に 、燃料粒子は更に微粒化するので、触媒付フィルタ3に一層均一に付着するよう になるとともに、触媒付フィルタ3の触媒と十分に接触し、酸化,発熱が速やか に開始される。[0027] On the other hand, the mesh structure is coarse for the exhaust flow, so the fuel capture filter Once the fuel has adhered to 9, it is easily blown away by the exhaust flow and is ensured to flow downstream. It will be done. When the fuel leaves the fuel trapping filter 9 and flows downstream in this way, , the fuel particles become even more atomized, so that they adhere more uniformly to the catalyst-equipped filter 3. At the same time, it comes into sufficient contact with the catalyst of the catalyst-equipped filter 3, and oxidation and heat generation occur quickly. will be started on.

【0028】 また、この燃料の供給による強制的な再生は、一般に排気温度が低いときに実 行されるが、燃料捕捉用フィルタ9は厚さが薄く熱容量が小さいため、排気熱に よって加熱され易い。そのため、この燃料捕捉用フィルタ9に向けて燃料を衝突 させることにより、燃料は一層霧化し易くなる。[0028] Additionally, this forced regeneration by supplying fuel is generally carried out when the exhaust temperature is low. However, since the fuel trapping filter 9 is thin and has a small heat capacity, it absorbs exhaust heat. Therefore, it is easily heated. Therefore, the fuel collides toward this fuel trapping filter 9. By doing so, the fuel becomes easier to atomize.

【0029】[0029]

【考案の効果】[Effect of the idea]

以上の説明で明らかなように、この考案に係る内燃機関の排気後処理装置によ れば、噴霧投影形状に合わせて楕円形とした目の粗い燃料捕捉用フィルタに斜め 方向から一旦燃料を衝突させ、ここから排気流により下流の触媒付フィルタ前面 に吹き付けるようにしたので、燃料を直接触媒付フィルタへ向けて噴射する場合 に比して、触媒付フィルタ前面に非常に均一に燃料成分を供給することができ、 触媒や酸素と効率良く接触させることができる。そのため、市街地走行に相当す る低排温時にも触媒付フィルタを各部均一に再生させることが可能となる。従っ て、局部的に多量に堆積した微粒子成分の急激な燃焼によるフィルタの焼損、あ るいは供給された燃料成分が十分に酸化されずに外部へ排出されてしまう、とい った不具合を防止できる。 As is clear from the above explanation, the exhaust aftertreatment device for internal combustion engines according to this invention If so, insert it diagonally into a coarse fuel trapping filter that has an oval shape to match the spray projection shape. The fuel is collided with the fuel from the direction, and then the exhaust flow causes the front surface of the catalyst-equipped filter downstream. When injecting fuel directly to the filter with catalyst, Compared to this, fuel components can be supplied very evenly to the front of the filter with catalyst, It can be brought into efficient contact with the catalyst and oxygen. Therefore, it is equivalent to city driving. This makes it possible to uniformly regenerate each part of the catalyst-equipped filter even at low exhaust temperatures. follow Therefore, the filter may be burnt out due to rapid combustion of locally deposited large amounts of particulate components. Otherwise, the supplied fuel components are not sufficiently oxidized and are discharged to the outside. It is possible to prevent such problems.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この考案の一実施例を示す要部の断面図。FIG. 1 is a sectional view of essential parts showing an embodiment of this invention.

【図2】同じく側面図。FIG. 2 is a side view as well.

【図3】排気後処理装置の全体的構成を示す説明図。FIG. 3 is an explanatory diagram showing the overall configuration of the exhaust aftertreatment device.

【図4】燃料捕捉用フィルタの格子間隔をモデル化して
示す説明図。
FIG. 4 is an explanatory diagram showing a model of the lattice spacing of the fuel trapping filter.

【図5】このモデル化した燃料捕捉用フィルタを排気流
方向から見た場合の格子パターンを示す説明図。
FIG. 5 is an explanatory diagram showing a lattice pattern when this modeled fuel trapping filter is viewed from the exhaust flow direction.

【図6】同じく燃料噴霧方向から見た場合の格子パター
ンを示す説明図。
FIG. 6 is an explanatory diagram showing a lattice pattern similarly viewed from the fuel spray direction.

【図7】従来の排気後処理装置の一例を示す説明図。FIG. 7 is an explanatory diagram showing an example of a conventional exhaust aftertreatment device.

【符号の説明】[Explanation of symbols]

3…触媒付フィルタ 6…燃料噴射弁 9…燃料捕捉用フィルタ 3... Filter with catalyst 6...Fuel injection valve 9...Fuel capture filter

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】内燃機関の排気通路に介装された排気微粒
子捕集用の触媒付フィルタと、このフィルタを再生させ
るための燃料噴射装置とを備えた内燃機関の排気後処理
装置において、上記フィルタを断面楕円形に形成すると
ともに、その前面から所定間隔離れた位置に、上記フィ
ルタと略同一の楕円形状をなす目の粒い燃料捕捉用フィ
ルタを配設し、かつ上記燃料噴射装置を、その噴霧の投
影形状が上記燃料捕捉用フィルタの前面形状に略一致す
るように、該燃料捕捉用フィルタへ向けて斜めに配設し
たことを特徴とする内燃機関の排気後処理装置。
1. An exhaust aftertreatment device for an internal combustion engine, comprising: a filter with a catalyst for collecting exhaust particulates installed in an exhaust passage of the internal combustion engine; and a fuel injection device for regenerating the filter; The filter is formed to have an elliptical cross section, and a fine fuel trapping filter having substantially the same elliptical shape as the filter is disposed at a predetermined distance from the front surface of the filter, and the fuel injection device is configured to include: An exhaust aftertreatment device for an internal combustion engine, characterized in that the spray is disposed obliquely toward the fuel trapping filter so that the projected shape of the spray substantially matches the front shape of the fuel trapping filter.
JP156391U 1991-01-23 1991-01-23 Internal combustion engine exhaust aftertreatment device Pending JPH04103214U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP156391U JPH04103214U (en) 1991-01-23 1991-01-23 Internal combustion engine exhaust aftertreatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP156391U JPH04103214U (en) 1991-01-23 1991-01-23 Internal combustion engine exhaust aftertreatment device

Publications (1)

Publication Number Publication Date
JPH04103214U true JPH04103214U (en) 1992-09-07

Family

ID=31728996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP156391U Pending JPH04103214U (en) 1991-01-23 1991-01-23 Internal combustion engine exhaust aftertreatment device

Country Status (1)

Country Link
JP (1) JPH04103214U (en)

Similar Documents

Publication Publication Date Title
KR100819396B1 (en) Method for removing soot particles from an exhaust gas and corresponding collecting element
JP4870303B2 (en) Exhaust gas treatment device for a motor equipped with an internal combustion engine
US4934142A (en) Exhaust emission control device for a diesel engine
KR100400974B1 (en) Backwashing type exhaust purification apparatus and regeneration method
JP2839851B2 (en) Exhaust gas treatment method and apparatus
JP2004130229A (en) Honeycomb structure, its production method, and exhaust gas cleaning system using the honeycomb structure
US6755016B2 (en) Diesel engine particle filter
JP4222599B2 (en) Honeycomb structure, manufacturing method thereof, and exhaust gas purification system using the honeycomb structure
JPH04103214U (en) Internal combustion engine exhaust aftertreatment device
JP3559235B2 (en) Exhaust gas purification device
JP3374654B2 (en) Diesel engine exhaust purification system
JP2001205108A (en) Particulate filter
JP4415816B2 (en) Exhaust purification device
JPS6364603B2 (en)
JP2002336628A (en) Apparatus for removing suspended particles in exhaust gas
JP2003106139A (en) Exhaust emission control device
JP3401946B2 (en) Exhaust particulate processing equipment for internal combustion engines
JPH1033923A (en) Particulate trap device
JP2002045653A (en) Device for removing suspended particulate in exhaust gas and method for removing the same
JPH11210442A (en) Exhaust emission control device
JPH0430329Y2 (en)
JPH0329532Y2 (en)
JPS6141939Y2 (en)
JP2004293417A (en) Exhaust emission control method of internal combustion engine and its device
JP2002097924A (en) Diesel particulate filter with deodorizing function