JPH04102085A - Radar device - Google Patents

Radar device

Info

Publication number
JPH04102085A
JPH04102085A JP2220539A JP22053990A JPH04102085A JP H04102085 A JPH04102085 A JP H04102085A JP 2220539 A JP2220539 A JP 2220539A JP 22053990 A JP22053990 A JP 22053990A JP H04102085 A JPH04102085 A JP H04102085A
Authority
JP
Japan
Prior art keywords
received signal
coherent
signal
bandwidth
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2220539A
Other languages
Japanese (ja)
Inventor
Akihiro Shima
嶋 明弘
Takahiko Fujisaka
貴彦 藤坂
Yoshimasa Ohashi
大橋 由昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2220539A priority Critical patent/JPH04102085A/en
Publication of JPH04102085A publication Critical patent/JPH04102085A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To enable an optimum integration value to be specified and detection probability to be improved by determining the optimum integration value from S/N per pulse of a received signal according to a bandwidth of a Doppler spectrum of the received signal. CONSTITUTION:An A/D converter 1 converts a received signal to a digital signal. Then, each range pin 2 divides the digital signal from the converter 1 for each distance to a target. Each received signal bandwidth measurement means 8 measures the bandwidth of a Doppler spectrum of the received signal from an output signal of each pin 2. Then, a coherent integrator 7a determines an optimum integration value from S/N per pulse of received signal which is output from each pin 2 according to the bandwidth of Doppler spectrum of the received signal which is output from the means 8. Then, a non-coherent integrator 5 allows output signal of each amplitude detector 4 to be subjected to non-coherent integration. Then, a threshold detector 6 detects presence of an object to be detected when the output signal of the integration 5 exceeds a threshold level.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、探知目標物を検出するレーダ装置に関し、
特にパルス積分を用いたレーダ装置に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a radar device for detecting a detection target.
In particular, it relates to a radar device using pulse integration.

〔従来の技術〕[Conventional technology]

第5図は、特願平02−51108号公報に示されたレ
ーダ装置の構成を示すブロック図である。
FIG. 5 is a block diagram showing the configuration of a radar device disclosed in Japanese Patent Application No. 02-51108.

図中、1はA/D (アナログ/ディジタル)変換器、
2はレンジビン、4は振幅検波器、5はノンコヒーレン
ト積分器、6はスレッショルド検出器、7は最適積分数
の決定手段を有するコヒーレント積分器、8は受信信号
帯域幅測定手段、9は送信機、10は送受切換器、11
は送受信アンテナ、12は受信機、13は表示器である
。なお、上記構成要素の動作は下記の動作説明で述べる
In the figure, 1 is an A/D (analog/digital) converter,
2 is a range bin, 4 is an amplitude detector, 5 is a non-coherent integrator, 6 is a threshold detector, 7 is a coherent integrator having means for determining the optimum number of integrations, 8 is a received signal bandwidth measuring means, and 9 is a transmitter. , 10 is a transmission/reception switch, 11
12 is a transmitting and receiving antenna, 12 is a receiver, and 13 is a display device. Note that the operations of the above-mentioned components will be described in the operation description below.

次に動作について説明する。第5図において、送信信号
は、送信機9から送受切換器10.送受信アンテナ11
を介して外部に放射され、探知目標物で反射した信号は
、送受信アンテナ11.送受切換器10を介して受信信
号として受信機12に入り、受信信号は複素ビデオ信号
に変換された後、A/D変換器1にてディジタル信号に
変換される。このディジタル信号は距離ごとのM個のレ
ンジビン2に分けられ、各レンジビン2に接続された受
信信号帯域幅測定手段8に入力されるとともに最適積分
数の決定手段を有するコヒーレント積分器7に入力され
る。受信信号帯域幅測定手段8では第7図のフローチャ
ートに示すように、ステップ23でフーリエ変換を行い
、ステップ24でパルス繰返周波数(PRF)で正規化
した受信信号のドツプラースペクトルの帯域幅BWを求
める。
Next, the operation will be explained. In FIG. 5, a transmission signal is transmitted from a transmitter 9 to a transmitter/receiver switch 10. Transmitting/receiving antenna 11
The signal radiated to the outside via the detection target and reflected by the detection target is transmitted to the transmitting/receiving antenna 11. The received signal enters the receiver 12 as a received signal via the transmitter/receiver switch 10, is converted into a complex video signal, and is then converted into a digital signal by the A/D converter 1. This digital signal is divided into M range bins 2 for each distance, and is input to a received signal bandwidth measuring means 8 connected to each range bin 2, and is also input to a coherent integrator 7 having means for determining the optimum number of integrations. Ru. As shown in the flowchart of FIG. 7, the received signal bandwidth measuring means 8 performs Fourier transform in step 23, and in step 24 calculates the bandwidth BW of the Doppler spectrum of the received signal normalized by the pulse repetition frequency (PRF). seek.

コヒーレント積分器7は、後に説明する第6図のフロー
チャートに従って最適積分数NFを決定してコヒーレン
ト積分を行う。
The coherent integrator 7 determines the optimum number of integrations NF according to the flowchart of FIG. 6, which will be explained later, and performs coherent integration.

次に、各コヒーレント積分器出力信号は振幅検波器4に
て振幅検波されて後、ノンコヒーレント積分器5にてノ
ンコヒーレント積分(検波後積分)が行われる。このと
きノンコヒーレント積分数は総パルスヒント数Pを最適
積分数N7で除した数。
Next, each coherent integrator output signal is subjected to amplitude detection by an amplitude detector 4, and then non-coherent integration (post-detection integration) is performed by a non-coherent integrator 5. At this time, the number of non-coherent integrals is the number obtained by dividing the total number of pulse hints P by the optimal number of integrals N7.

P / N Pとなっている(図示していない)、ノン
コヒーレント8分W5の出力(t 号がスレッショルド
検出器6のスレッショルドレベルを越えたとき探知目標
物の存在が検出され、表示器13に表示される。
P / N P (not shown), when the output (t) of the non-coherent 8 minute W5 exceeds the threshold level of the threshold detector 6, the presence of the detection target is detected and the display 13 shows Is displayed.

ここで、上記のコヒーレント積分の最適積分数N、の決
定方法について説明する。第8図は、受信信号の1パル
ス当りのSN比をある値としたとき、SN比(コヒーレ
ント積分後の信号電力対雑音電力比)対コヒーレント積
分数Nの関係の一例を示したものであり、受信信号にゆ
らぎがない(受信信号帯域幅BW=O)場合、コヒーレ
ント積分数Nに比例してコヒーレント積分後のSN比は
向上する。この場合、与えられた誤警報確率PNのもと
で、探知確率P、が最大となるコヒーレント積分数N、
は、総パルスヒント数Pに等しくなることが知られてい
る。
Here, a method for determining the optimal number of integrals N for the above-mentioned coherent integration will be explained. Figure 8 shows an example of the relationship between the SN ratio (signal power to noise power ratio after coherent integration) and the number of coherent integrations N, when the SN ratio per pulse of the received signal is set to a certain value. , when there is no fluctuation in the received signal (received signal bandwidth BW=O), the SN ratio after coherent integration improves in proportion to the number N of coherent integrations. In this case, under a given false alarm probability PN, the coherent integral number N that maximizes the detection probability P,
is known to be equal to the total number of pulse hints P.

一方、探知目標物の不規則運動によって受信信号にゆら
ぎがある場合、コヒーレント積分数Nを増加してもある
値以上では、コヒーレント積分によるSN比改善効果が
得られなくなる。
On the other hand, when there is fluctuation in the received signal due to irregular movement of the detection target, even if the number N of coherent integrations is increased, the effect of improving the SN ratio by coherent integration cannot be obtained above a certain value.

第8図のα、βは夫々受信信号にゆらぎがある場合、コ
ヒーレント積分によるSN比改善効果が得られなくなる
コヒーレント積分数Nの値を示し、それらは1/BWで
表せる。
α and β in FIG. 8 each indicate the value of the coherent integration number N at which the SN ratio improvement effect by coherent integration is no longer obtained when there is fluctuation in the received signal, and these values can be expressed as 1/BW.

第9図は、与えられた誤警報確率PMのもとで、受信信
号の1パルス当りのSN比をある値とし、受信信号帯域
幅を変えたとき、探知確率PD対コヒーレント積分数N
(ノンコヒーレント積分数はP/Nで表せる)の関係の
一例を示したもので、計算機シミュレーションによる計
算結果を示したものである。
Figure 9 shows the detection probability PD versus the number of coherent integrals N when the SN ratio per pulse of the received signal is set to a certain value and the received signal bandwidth is changed under a given false alarm probability PM.
(The number of non-coherent integrals can be expressed as P/N) is shown as an example of the relationship, and shows calculation results by computer simulation.

上記第9図と同様に探知確率P0対コヒーレント積分数
Nの関係を、受信信号の1パルス当りのSN比、又は受
信信号帯域幅のいずれか一方を一定にし、他方を変えて
、その都度、それらから、探知確率poが最大値をとる
コヒーレント積分数N、(−最適積分数NF)を求める
ことができる。
Similarly to FIG. 9 above, the relationship between the detection probability P0 and the number of coherent integrals N is determined each time by keeping either the SN ratio per pulse of the received signal or the received signal bandwidth constant and changing the other. From these, the coherent integral number N, (-optimal integral number NF) for which the detection probability po takes the maximum value can be determined.

この最適積分数NFを第8図の上にもってくると、先に
述べた1/BWより小さい値である。
When this optimal integral number NF is placed on the top of FIG. 8, it is a value smaller than the above-mentioned 1/BW.

この最適積分数N、に対するコヒーレント積分後のBN
比をSNPと定義し、予め求めて計算機に記憶させてお
く。コヒーレント積分器7において、オンラインで計測
した受信信号帯域幅及び目標語l!1(受信信号の1パ
ルス当りのSN比を目標距離に換算して表している)に
より定まる最適積分数N2をテーブルから引き出せるよ
うになっている。
BN after coherent integration for this optimal integration number N
The ratio is defined as SNP, which is determined in advance and stored in the computer. In the coherent integrator 7, the received signal bandwidth and the target word l! are measured online! 1 (expressed by converting the SN ratio per pulse of the received signal into the target distance), the optimal integral number N2 determined by the value N2 can be extracted from the table.

次に、コヒーレント積分器7の動作を、第6図に示すフ
ローチャートに沿って詳細説明をする。
Next, the operation of the coherent integrator 7 will be explained in detail along the flowchart shown in FIG.

ステップ14でレンジビン番号mを検出し、ステップ1
5で次式より目標語fiRを求める。
In step 14, range bin number m is detected, and in step 1
In step 5, the target word fiR is obtained from the following equation.

R=cmτ/ 2             − (1
1ここで、Cは光速(−3X10’ m/s) 、mは
レンジビン番号、τは送信パルス幅である。
R=cmτ/2-(1
1 Here, C is the speed of light (-3×10' m/s), m is the range bin number, and τ is the transmission pulse width.

次に、ステップ16でコヒーレント積分数Nの初期値と
して1を設定し、ステップ17で第(2)式によりSN
比を計算する。
Next, in step 16, 1 is set as the initial value of the coherent integral number N, and in step 17, SN
Calculate the ratio.

S N =P t ηF Gy G* λ2σN/(4
π) 3R’  (NF)kTBL −(21ここで、
N=1の場合は受信信号の1パルス当りのSN比が求め
られ、N=nの場合は積分数nのコヒーレント積分後の
SN比が求められる。探知目標物は特定のものを仮定し
、目標物のレーダ断面積は既知であるとする。
S N = P t ηF Gy G* λ2σN/(4
π) 3R' (NF)kTBL - (21 where,
When N=1, the SN ratio per pulse of the received signal is determined, and when N=n, the SN ratio after coherent integration of the number of integrals n is determined. It is assumed that the target to be detected is a specific one, and that the radar cross section of the target is known.

PLは送信パルス尖頭電力、η、はパルス圧縮比、G7
は送信アンテナ利得、GRは受信アンテナ利得、λは送
信波長、Rは探知目標物とレーダ間の距離、NFは受信
機雑音指数、kはボルツマン定数、Tは絶対温度、Bは
受信機の帯域幅、σは探知目標物のレーダ断面積、Nは
コヒーレント41数、Lはシステム損失である。
PL is the transmission pulse peak power, η is the pulse compression ratio, G7
is the transmitting antenna gain, GR is the receiving antenna gain, λ is the transmitting wavelength, R is the distance between the detection target and the radar, NF is the receiver noise figure, k is the Boltzmann constant, T is the absolute temperature, and B is the receiver band width, σ is the radar cross section of the detected target, N is the coherent 41 number, and L is the system loss.

システム損失しは、パルス積分数と受信信号帯域幅によ
って値が変わるので、予め計算機に記憶させておき、計
算時にテーブルより引出す。
Since the value of system loss changes depending on the number of pulse integrations and the received signal bandwidth, it should be stored in the computer in advance and retrieved from the table during calculation.

次に、ステップ22で第7図のステップ24で求めたパ
ルス繰返周波数(PRF)で正規化した受信信号帯域幅
をBWを用いて、l/BWとコヒーレント積分数Nとの
比較を行い、Nが1/BWより大きければ終了し、Nが
l/BW以下ならばステップ18に進む。
Next, in step 22, the received signal bandwidth normalized by the pulse repetition frequency (PRF) obtained in step 24 of FIG. 7 is compared with l/BW and the coherent integral number N using BW. If N is greater than 1/BW, the process ends; if N is less than l/BW, the process proceeds to step 18.

ステップ18で総パルスヒント数Pとコヒーレント積分
数Nとの比較を行い、NSPならば、ステップ19に進
み、N>Pならば終了する。ステップ19ではステップ
17で求めたSN比と、オンラインで計測した受信信号
帯域幅及び目標距離により定まる最適積分数NFを記憶
テーブルから引出して比較し、SN比がSNpに達する
まで、ステップ20.21にて、コヒーレント積分数N
を増加してコヒーレント積分を続ける。
In step 18, the total number of pulse hints P is compared with the number of coherent integrals N. If NSP, the process proceeds to step 19, and if N>P, the process ends. In step 19, the SN ratio obtained in step 17 and the optimal integral number NF determined by the received signal bandwidth measured online and the target distance are extracted from the storage table and compared, and until the SN ratio reaches SNp, step 20.21 , the coherent integral number N
Continue coherent integration by increasing .

SN比がS N pに達したとき、L個のコヒーレント
積分器7は、与えられた誤警報確率PMのもとで、1パ
ルス当りのSN比及び受信信号帯域幅に応じて、探知確
率PDが最大値をとるコヒーレント積分数N、(=最適
積分数NF)のコヒーレント積分が完了する。
When the S/N ratio reaches S N p, the L coherent integrators 7 calculate the detection probability PD according to the S/N ratio per pulse and the received signal bandwidth under the given false alarm probability PM. The coherent integration of the coherent integration number N, (=optimal integration number NF), in which the number takes the maximum value, is completed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のレーダ装置においては、上述したような処理によ
り探知確率が最大値をとるコヒーレント積分数(最適積
分数)を得ているが、この最適積分数を決定する手段が
明確でなく、探知確率の向上を図ることが難しいという
課題があった。
In conventional radar equipment, the number of coherent integrals (optimal integral number) that maximizes the detection probability is obtained through the processing described above, but the means for determining this optimal number of integrals is not clear, and the detection probability The problem was that it was difficult to make improvements.

この発明は上記のような課題を解決するためになされた
もので、従来装置において最適積分数を決定する手段が
明確でなかったものを明確にし、探知確率の向上を図れ
るレーダ装置を提供することを目的とする。
This invention has been made to solve the above-mentioned problems, and it is an object of the present invention to clarify the unclear means for determining the optimal number of integrals in conventional devices, and to provide a radar device that can improve the detection probability. With the goal.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るレーダ装置は、受信信号をディジタル信
号に変換するアナログ/ディジタル変換器1と、このア
ナログ/ディジタル変換器1からのディジタル信号を目
標物までの距離毎に分ける各レンジビン2と、上記各レ
ンジビン2の出力信号より受信信号のドツプラースペク
トルの帯域幅を測定する各受信信号帯域幅測定手段8と
、上記各受信信号帯域幅測定手段8から出力された受信
信号のドツプラースペクトルの帯域幅に応じて上記各レ
ンジビン2から出力された受信信号の1パルス当りのS
N比から最適積分数を決定する手段を有し該最適積分数
に従って受信信号のコヒーレント積分を行うコヒーレン
ト積分器7aと、このコヒーレント積分器7aから出力
された各受信信号に対応する各コヒーレント積分信号を
振幅検波する各振幅検波器4と、上記各振幅検波器4の
出力信号をノンコヒーレント積分する各ノンコヒーレン
ト積分器5と、上記各ノンコヒーレント積分器5の出力
信号がスレッショルドレベルを越えたときに探知目標物
の存在を検出するスレッショルド検出器6とを備えたも
のである。
The radar device according to the present invention includes an analog/digital converter 1 that converts a received signal into a digital signal, each range bin 2 that divides the digital signal from the analog/digital converter 1 by distance to a target, and Each received signal bandwidth measuring means 8 measures the Doppler spectrum bandwidth of the received signal from the output signal of each range bin 2, and the Doppler spectrum band of the received signal output from each received signal bandwidth measuring means 8. S per pulse of the received signal output from each range bin 2 according to the width
A coherent integrator 7a having means for determining an optimal number of integrals from the N ratio and performing coherent integration of a received signal according to the optimal number of integrals, and each coherent integral signal corresponding to each received signal output from the coherent integrator 7a. each amplitude detector 4 that amplitude-detects the amplitude, each non-coherent integrator 5 that non-coherently integrates the output signal of each of the above-mentioned amplitude detectors 4, and when the output signal of each of the above-mentioned non-coherent integrators 5 exceeds a threshold level. and a threshold detector 6 for detecting the presence of a detection target.

〔作用〕[Effect]

アナログ/ディジタル変換器1は受信信号をディジタル
信号に変換する。各レンジビン2はアナログ/ディジタ
ル変換器1からのディジタル信号を目標物までの距離毎
に分ける。各受信信号帯域幅測定手段8は各レンジビン
2の出力信号より受信信号のドップラースペクトルの帯
域幅を測定する。コヒーレント積分器7aは、各受信信
号帯域幅測定手段8から出力された受信信号のドツプラ
ースペクトルの帯域幅に応じて上記各レンジビン2から
出力された受信信号の1パルス当りのSN比から最適積
分数を決定し、該最適積分数に従って受信信号のコヒー
レント積分を行う。各振幅検波器4はコヒーレント積分
器7aから出力された各受信信号に対応する各コヒーレ
ント積分信号を振幅検波する。各ノンコヒーレント積分
器5は各振幅検波器4の出力信号をノンコヒーレント積
分する。スレッショルド検出器6は各ノンコヒーレント
積分器5の出力信号がスレッショルドレベルを越えたと
きに探知目標物の存在を検知する。
Analog/digital converter 1 converts the received signal into a digital signal. Each range bin 2 separates the digital signal from the analog/digital converter 1 by distance to the target. Each received signal bandwidth measuring means 8 measures the bandwidth of the Doppler spectrum of the received signal from the output signal of each range bin 2. The coherent integrator 7a performs optimal integration from the SN ratio per pulse of the received signal outputted from each range bin 2 according to the bandwidth of the Doppler spectrum of the received signal outputted from each received signal bandwidth measuring means 8. The received signal is coherently integrated according to the optimum integration number. Each amplitude detector 4 amplitude-detects each coherent integrated signal corresponding to each received signal output from the coherent integrator 7a. Each non-coherent integrator 5 non-coherently integrates the output signal of each amplitude detector 4. A threshold detector 6 detects the presence of a target to be detected when the output signal of each non-coherent integrator 5 exceeds a threshold level.

〔実施例〕〔Example〕

第1図はこの発明の一実施例に係るレーダ装置の構成を
示すブロック図である。第1図において、1は受信信号
をディジタル信号に変換するA/D(アナログ/ディジ
タル)変換器、2はA/D変換器1からのディジタル信
号を距離毎に分ける各レンジビン、8は各レンジビン2
の出力信号より受信信号のドツプラースペクトルの帯域
幅を測定する各受信信号帯域幅測定手段、7aは各受信
信号帯域幅測定手段8から出力された受信信号のドツプ
ラースペクトルの帯域幅に応じて上記各レンジビン2か
ら出力された受信信号の1パルス当りのSN比から最適
積分数を決定する手段を有し該最適積分数に従って受信
信号のコヒーレント積分を行うコヒーレント積分器、4
はコヒーレント積分器7aから出力された各受信信号に
対応する各コヒーレント積分信号を振幅検波する各振幅
検波器、5は各振幅検波器4の出力信号をノンコヒーレ
ント積分する各ノンコヒーレント積分器、6は各ノンコ
ヒーレント積分器5の出力信号がスレッショルドレベル
を越えたときに探知目標の存在を検出するスレッショル
ド検出器、13は探知目標を表示する表示器、9は送信
信号を発生する送信機、10は送信/受信を切り換える
送受切換器、11は送受信アンテナ、12は探知目標物
で反l)した信号を受信する受信機である。
FIG. 1 is a block diagram showing the configuration of a radar device according to an embodiment of the present invention. In Figure 1, 1 is an A/D (analog/digital) converter that converts the received signal into a digital signal, 2 is each range bin that divides the digital signal from A/D converter 1 by distance, and 8 is each range bin. 2
Each received signal bandwidth measuring means measures the bandwidth of the Doppler spectrum of the received signal from the output signal of the received signal; 7a measures the bandwidth of the Doppler spectrum of the received signal output from each received signal bandwidth measuring means 8; a coherent integrator that has means for determining an optimal number of integrations from the SN ratio per pulse of the received signal output from each of the range bins 2, and performs coherent integration of the received signal according to the optimal number of integrations; 4;
5 is each amplitude detector that amplitude-detects each coherent integrated signal corresponding to each received signal output from the coherent integrator 7a, 5 is each non-coherent integrator that non-coherently integrates the output signal of each amplitude detector 4, 6 1 is a threshold detector that detects the presence of a detected target when the output signal of each non-coherent integrator 5 exceeds a threshold level; 13 is a display that displays the detected target; 9 is a transmitter that generates a transmission signal; 10 1 is a transmitting/receiving switch for switching transmission/reception, 11 is a transmitting/receiving antenna, and 12 is a receiver for receiving a signal reflected by a detected target.

次に動作について説明する。第1図において、送信信号
は、送信機9から送受切換器10及び送受信アンテナ1
1を介して外部に放射され、探知目標物で反射した信号
は、送受信アンテナ11及び送受切換器10を介して受
信信号として受信機12に入り、受信信号は複素ビデオ
信号に変換された後、A/D変換器lにてディジタル信
号に変換される。このディジタル信号は距離ごとのM個
ルンシヒン2に分けられ、各レンジビン2に接続された
受信信号帯域幅測定手段8に入力されるとともに最適積
分数の決定手段を有するコヒーレント積分器7aに入力
される。受信信号帯域幅測定手段8では第3図のフロー
チャートに示すように、ステップ23でフーリエ変換を
行い、ステップ24でパルス繰返周波数(PRF)で正
規化した受信信号のドツプラースペクトルの帯域幅BW
を求める。
Next, the operation will be explained. In FIG. 1, a transmission signal is transmitted from a transmitter 9 to a transmission/reception switch 10 and a transmission/reception antenna 1
The signal radiated to the outside via 1 and reflected by the detection target enters the receiver 12 as a received signal via the transmitting/receiving antenna 11 and the transmitting/receiving switch 10, and the received signal is converted into a complex video signal. It is converted into a digital signal by an A/D converter l. This digital signal is divided into M range signals 2 for each distance, and is input to a received signal bandwidth measuring means 8 connected to each range bin 2, and is also input to a coherent integrator 7a having means for determining the optimum number of integrations. . As shown in the flowchart of FIG. 3, the received signal bandwidth measuring means 8 performs Fourier transform in step 23, and in step 24 calculates the Doppler spectrum bandwidth BW of the received signal normalized by the pulse repetition frequency (PRF).
seek.

コヒーレント積分器7aは、後に説明する第2図のフロ
ーチャートに従って最適なコヒーレント積分数N及びノ
ンコヒーレント積分数Kを決定してコヒーレント積分を
行う。
The coherent integrator 7a determines the optimal number N of coherent integrals and the optimal number K of non-coherent integrals according to the flowchart of FIG. 2, which will be explained later, and performs coherent integration.

次に、各コヒーレント積分器出力信号は振幅検波器4に
て振幅検波されて後、最適積分数の決定手段を有するコ
ヒーレント積分器7aにて決定されたノンコヒーレント
積分数にの回数のノンコヒーレント積分がノンコヒーレ
ント積分器5にて行われる。ノンコヒーレント積分器5
の出力信号がスレッショルド検出器6のスレッショルド
レベルを越えたとき探知目標物の存在が検出され、表示
器13に表示される。
Next, each coherent integrator output signal is subjected to amplitude detection by an amplitude detector 4, and then a coherent integrator 7a having means for determining the optimum number of integrals performs non-coherent integration of the number of times determined by the number of non-coherent integrals. is performed by the non-coherent integrator 5. Non-coherent integrator 5
When the output signal exceeds the threshold level of the threshold detector 6, the presence of the detection target is detected and displayed on the display 13.

ここで、上記の最適積分数N及びKの決定方法について
説明する。受信信号帯域幅BWに応じて係数を及びUが
存在し、1パルス当りのSN比(SNRI )と探知確
率が最大となる最適なノンコヒーレント1分数に対総パ
ルスヒント数Pの比との間には第4図に示すように次式
のような関係が成立する。
Here, a method for determining the above-mentioned optimal integral numbers N and K will be explained. There is a coefficient U depending on the received signal bandwidth BW, and there is a coefficient between the signal-to-noise ratio per pulse (SNRI) and the ratio of the total number of pulse hints P to the optimal non-coherent fraction that maximizes the detection probability. As shown in FIG. 4, the following relationship holds true.

K/P# t X (SNRI ) u      −
(3]従って、最適なノンコヒーレント積分数には次式
%式% に=1番近い整数(tX (SNR,)” xp)−・
(4) また、最適なノンコヒーレント積分数Nは次式で与えら
れる。
K/P#tX (SNRI) u-
(3) Therefore, the optimal number of non-coherent integrals is the following formula % = the nearest integer (tX (SNR,)”xp)−・
(4) Moreover, the optimal non-coherent integral number N is given by the following equation.

N = P / K                
−(51次に、コヒーレント積分器7aの動作を、第2
図に示す)ml−チャートに従って詳細説明をする。
N=P/K
-(51) Next, the operation of the coherent integrator 7a is
A detailed explanation will be given according to the ml-chart shown in the figure.

ステップ25でレンジビン番号mを検出し、ステップ2
6で次式より目標路MRを求める。
In step 25, range bin number m is detected, and in step 2
In step 6, find the target road MR using the following equation.

R=cmτ/2            ・−(6)こ
こで、Cは光速(=3X10” m/s ) 、mはレ
ンジビン番号、τは送信パルス幅である。
R=cmτ/2·−(6) Here, C is the speed of light (=3×10” m/s), m is the range bin number, and τ is the transmission pulse width.

次に、ステップ27で第(7)式により1パルス当りの
SN比を計算する。
Next, in step 27, the SN ratio per pulse is calculated using equation (7).

SNR,=PtηP GT GRス2 σ/(4π)’
 R’  (NF)kTB   −(71ここで、探知
目標物は特定のものを仮定し、探知目標物のレーダ断面
積は既知とする。
SNR, = PtηP GT GR S2 σ/(4π)'
R' (NF) kTB - (71 Here, it is assumed that the target to be detected is a specific one, and the radar cross section of the target to be detected is known.

Ptは送信パルス尖頭電力、η、はパルス圧縮比、Ct
ば送信アンテナ利得、GRは受信アンテナ利得、λは送
信波長、Rは探知目標物とレーダ装置間の距離、NFは
受信機雑音指数、kはボルツマン定数、Tは絶対温度、
Bは受信機の帯域幅、σは探知目標物のレーダ断面積で
ある。
Pt is the transmission pulse peak power, η is the pulse compression ratio, Ct
is the transmitting antenna gain, GR is the receiving antenna gain, λ is the transmitting wavelength, R is the distance between the detection target and the radar device, NF is the receiver noise figure, k is the Boltzmann constant, T is the absolute temperature,
B is the receiver bandwidth and σ is the radar cross section of the detected target.

次に、ステップ28で第3図のステップ24で求めたパ
ルス繰返周波数(PRF)で正規化した受信信号帯域幅
をBWにより定まる係数を及びUを図示しない記憶テー
ブルから読み出し、ステ。
Next, in step 28, the received signal bandwidth normalized by the pulse repetition frequency (PRF) obtained in step 24 of FIG. 3, the coefficient determined by BW, and U are read from a storage table (not shown).

プ29で第(4)式により最適なノンコヒーレント積分
数Kを計算する。ステップ30でノンコヒーレント積分
数にと0との比較を行い、K=Oならば、ステップ31
に進んだ後ステップ32に進み、K≠0ならば、ステッ
プ32に進む。ステップ31ではKを1に設定する。ス
テップ32で第(5)式により最適なノンコヒーレント
積分数Nを計算して、ステップ33でN回のコヒーレン
ト積分を行って終了する。
In step 29, the optimum non-coherent integral number K is calculated using equation (4). In step 30, the non-coherent integral number is compared with 0, and if K=O, step 31
After the process proceeds to step 32, if K≠0, the process proceeds to step 32. In step 31, K is set to 1. In step 32, the optimum number N of non-coherent integrations is calculated using equation (5), and in step 33, coherent integration is performed N times, and the process ends.

第4図は、与えられた誤警報値率P、のちとで、受信信
号帯域幅BWをある値とし、最適なノンコヒーレント積
分数対総パルスヒント数の比と1パルス当りのSN比の
関係の一例を示したものである。
Figure 4 shows the relationship between the ratio of the optimal number of non-coherent integrals to the total number of pulse hints and the S/N ratio per pulse, given the false alarm value rate P and later, when the received signal bandwidth BW is set to a certain value. This is an example.

上記のように構成された実施例のレーダ装置では、各レ
ンジビンに接続された受信信号帯域幅を測定する手段と
、コヒーレント積分器に、受信信号帯域幅に応じて受信
信号の1パルス当りのSN比から最適積分数を決定する
手段とを備えたことにより、与えられた誤警報確率PH
のもとで、受信信号帯域幅及び受信信号の1パルス当た
りのSN比に応じて、探知確率を最大にする最適なコヒ
ーレント積分数N及びノンコヒーレント積分数Kを決定
し、パルス積分を行うことができる。
In the radar device of the embodiment configured as described above, a means for measuring the received signal bandwidth connected to each range bin and a coherent integrator are provided with a means for measuring the received signal bandwidth, and a means for measuring the SN per pulse of the received signal according to the received signal bandwidth. A given false alarm probability PH
Under these conditions, determine the optimal number of coherent integrals N and the optimal number of non-coherent integrals K that maximize the detection probability according to the received signal bandwidth and the S/N ratio per pulse of the received signal, and perform pulse integration. I can do it.

即ら、上記実施例のレーダ装置は、受信信号帯域幅に応
して1パルス当りのSN比に対する最適なノンコヒーレ
ント積分数と総パルスヒント数との比が方程式で表され
ることを利用して、探知確率が最大になるパルス積分数
の配分を選択して探知確率を向上させている。
That is, the radar device of the above embodiment utilizes the fact that the ratio of the optimal number of non-coherent integrals to the total number of pulse hints for the S/N ratio per pulse is expressed by an equation according to the received signal bandwidth. The detection probability is improved by selecting the distribution of the number of pulse integrals that maximizes the detection probability.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、各レンジビンから出力さ
れた受信信号のド・7プラースペクトルの帯域幅を測定
する受信信号帯域幅測定手段と、上記帯域幅に応じて受
信信号の1パルス当りのSN比から最適積分数を決定す
る手段を有するコヒーレント積分器とを備えて構成した
ので、最適積分数を決定する手段が明確でなかった従来
の場合に比べ、的確な最適積分数を使用でき、これによ
り探知確率が向上するという効果が得られる。
As described above, according to the present invention, there is provided a received signal bandwidth measuring means for measuring the bandwidth of the Do-7-Pler spectrum of the received signal output from each range bin, and Since the system is equipped with a coherent integrator that has means for determining the optimal number of integrals from the S/N ratio of , this has the effect of improving the detection probability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係るレーダ装置の構成を
示すブロック図、第2図は第1図中のコヒーレント積分
器の動作を示すフローチャート、第3図は第1図中の受
信信号帯域幅測定手段の動作を示すフローチャート、第
4図はこの実施例において最適なノンコヒーレント積分
数対総パルスヒント数の比と1パルス当りのSN比との
関係を示す図、第5図は従来のレーダ装置の構成を示す
ブロック図、第6図は第5図中のコヒーレント積分器の
動作を示すフローチャート、第7図は第5図中の受信信
号帯域幅測定手段の動作を示すフロチャート、第8図は
SN比(コヒーレント積分後)対コヒーレント積分数の
関係を示す図、第9図は探知確率対コヒーレント積分数
の関係を示す図である。 1・・・アナログ/ディジタル変換器、2・・・レンジ
ビン、4・・・振幅検波器、5・・・ノンコヒーレント
積分器、6・・・スレッショルド検出器、7a・・・最
適積分数決定手段を有するコヒーレント積分器、8・・
・受信信号帯域幅測定手段。 代理人 弁理士  宮  園  純 第 図 第 図 1パルスコリのSNI? (dB) 第 図 第8図 第 図 1、事件の表示 書(自発) 平成 3年 7月 特願平2−220539号 5 補正の対象 明細書の発明の詳細な説明の欄。 G 補正の内容 +11明細書第6頁第7行目rBN比」とあるのをrS
N比」と補正する。 (2)同書第15頁第3行目、第16頁第15行目「ノ
ンコヒーレント積分数」とあるのを「コヒーレント積分
数」と補正する。 3、補正をする者 代表者 4、代
FIG. 1 is a block diagram showing the configuration of a radar device according to an embodiment of the present invention, FIG. 2 is a flowchart showing the operation of the coherent integrator in FIG. 1, and FIG. 3 is a received signal in FIG. FIG. 4 is a flowchart showing the operation of the bandwidth measuring means. FIG. 4 is a diagram showing the relationship between the ratio of the optimal number of non-coherent integrals to the total number of pulse hints and the S/N ratio per pulse in this embodiment. FIG. 6 is a flowchart showing the operation of the coherent integrator in FIG. 5; FIG. 7 is a flowchart showing the operation of the received signal bandwidth measuring means in FIG. 5; FIG. 8 is a diagram showing the relationship between the SN ratio (after coherent integration) and the number of coherent integrals, and FIG. 9 is a diagram showing the relationship between the detection probability and the number of coherent integrals. DESCRIPTION OF SYMBOLS 1... Analog/digital converter, 2... Range bin, 4... Amplitude detector, 5... Non-coherent integrator, 6... Threshold detector, 7a... Optimal integration number determining means a coherent integrator with 8...
- Received signal bandwidth measurement means. Agent Patent Attorney Jun Miyazono Figure 1 SNI of Pulscoli? (dB) Figure 8 Figure 1, Statement of the case (spontaneous) July 1991 Japanese Patent Application No. 2-220539 5 Column for detailed explanation of the invention in the specification subject to amendment. G Correction details + 11 Specification page 6 line 7 rBN ratio" rS
Correct it as "N ratio". (2) In the same book, page 15, line 3, and page 16, line 15, "Non-coherent integral number" is corrected to "coherent integral number." 3.Representative of the person making the amendment4.

Claims (1)

【特許請求の範囲】[Claims] 受信信号をディジタル信号に変換するアナログ/ディジ
タル変換器と、このアナログ/ディジタル変換器からの
ディジタル信号を目標物までの距離毎に分ける各レンジ
ビンと、上記各レンジビンの出力信号より受信信号のド
ップラースペクトルの帯域幅を測定する各受信信号帯域
幅測定手段と、上記各受信信号帯域幅測定手段から出力
された受信信号のドップラースペクトルの帯域幅に応じ
て上記各レンジビンから出力された受信信号の1パルス
当りのSN比から最適積分数を決定する手段を有し該最
適積分数に従って受信信号のコヒーレント積分を行うコ
ヒーレント積分器と、このコヒーレント積分器から出力
された各受信信号に対応する各コヒーレント積分信号を
振幅検波する各振幅検波器と、上記各振幅検波器の出力
信号をノンコヒーレント積分する各ノンコヒーレント積
分器と、上記各ノンコヒーレント積分器の出力信号がス
レッショルドレベルを越えたときに探知目標物の存在を
検出するスレッショルド検出器とを備えたことを特徴と
するレーダ装置。
An analog/digital converter that converts the received signal into a digital signal, each range bin that divides the digital signal from this analog/digital converter according to the distance to the target, and the Doppler spectrum of the received signal from the output signal of each range bin. and one pulse of the received signal output from each of the range bins according to the bandwidth of the Doppler spectrum of the received signal output from each of the received signal bandwidth measuring means. a coherent integrator that has means for determining an optimal number of integrals from a given SN ratio and performs coherent integration of a received signal according to the optimal number of integrals; and each coherent integral signal corresponding to each received signal output from the coherent integrator. and each non-coherent integrator that non-coherently integrates the output signal of each of the above-mentioned amplitude detectors, and detects the detected target when the output signal of each of the above-mentioned non-coherent integrators exceeds a threshold level. A radar device comprising a threshold detector for detecting the presence of.
JP2220539A 1990-08-22 1990-08-22 Radar device Pending JPH04102085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2220539A JPH04102085A (en) 1990-08-22 1990-08-22 Radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2220539A JPH04102085A (en) 1990-08-22 1990-08-22 Radar device

Publications (1)

Publication Number Publication Date
JPH04102085A true JPH04102085A (en) 1992-04-03

Family

ID=16752581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2220539A Pending JPH04102085A (en) 1990-08-22 1990-08-22 Radar device

Country Status (1)

Country Link
JP (1) JPH04102085A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234275A (en) * 1993-11-18 1995-09-05 Hughes Aircraft Co Short-distance microwave detection for radar system utilizing frequency-modulated continuous wave and stepwise frequency
JP2011133404A (en) * 2009-12-25 2011-07-07 Denso It Laboratory Inc Observation signal processing apparatus
WO2012140859A1 (en) * 2011-04-15 2012-10-18 パナソニック株式会社 Radar device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234275A (en) * 1993-11-18 1995-09-05 Hughes Aircraft Co Short-distance microwave detection for radar system utilizing frequency-modulated continuous wave and stepwise frequency
JP2011133404A (en) * 2009-12-25 2011-07-07 Denso It Laboratory Inc Observation signal processing apparatus
WO2012140859A1 (en) * 2011-04-15 2012-10-18 パナソニック株式会社 Radar device
JP2012225688A (en) * 2011-04-15 2012-11-15 Panasonic Corp Radar device
US9128182B2 (en) 2011-04-15 2015-09-08 Panasonic Intellectual Property Management Co., Ltd. Radar device

Similar Documents

Publication Publication Date Title
US5550549A (en) Transponder system and method
EP0984299A1 (en) Method for discovering the location of a living object and microwave location device for realising the same
JP2016151425A (en) Radar system
US8812063B2 (en) Signal characteristic-based leading edge detection
JP2003050275A (en) Radar
US20210231816A9 (en) Signal acquisition method and device
JPH0795183A (en) Selection of optimum receiving antenna from more than two receiving antennas
JPH07218621A (en) Distance measuring equipment
CN109752720B (en) Vibration information positioning method and system based on distributed vibration sensor
US5132688A (en) Pulsed doppler radar system having an improved detection probability
EP3899580A1 (en) Coordination of wireless communication unit and radar unit in a wireless communication network
JPH04102085A (en) Radar device
US7868816B2 (en) Radio detection device and method
JP7452310B2 (en) Radar equipment and its control method
JPH1164507A (en) Range finder method
JP2022051702A (en) Method for analyzing radar signals in a radar system with multiple sensor units
JP2000321351A (en) Target detection method and radar device
JP2638246B2 (en) Sensor device
JP2004064450A (en) Level correcting circuit of transmitting pulse, method for correcting, and transponder of digital multieffect unit using the same
JPH0341796B2 (en)
JPH0545449A (en) Radar apparatus and target tracking method
CN112083405A (en) Target detection method based on mixed waveform and related device
JP2008164370A (en) Pulse signal processing apparatus, pulse position detection method, and dme receiving device
JP2910451B2 (en) Radar equipment
JPH04348292A (en) Measuring apparatus of distance between objects